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Abstract: Vitamin C is a crucial micronutrient for human immune cell function and has potent
antioxidant properties. It is hypothesized that vitamin C serum levels decline during infection.
However, the precise mechanisms remain unknown. To gain deeper insights into the true role of
vitamin C during infections, we aimed to evaluate the body’s vitamin C storage during a SARS-CoV-2
infection. In this single-center study, we examined serum and intracellular vitamin C levels in
peripheral blood mononuclear cells (PBMCs) of 70 hospitalized COVID-19 patients on the first and
fifth days of hospitalization. Also, clinical COVID-19 severity was evaluated at these timepoints. Our
findings revealed a high prevalence of hypovitaminosis C and vitamin C deficiency in hospitalized
COVID-19 patients (36% and 15%). Moreover, patients with severe or critical disease exhibited a
higher prevalence of low serum vitamin C levels than those with moderate illness. Serum vitamin C
levels had a weak negative correlation with clinical COVID-19 severity classification on the day of
hospitalization; however, there was no correlation with intracellular vitamin C. Intracellular vitamin
C levels were decreased in this cohort as compared to a healthy cohort and showed further decline
during hospitalization, while serum levels showed no relevant change. Based on this observation, it
can be suggested that the reduction of intracellular vitamin C may be attributed to its antioxidative
function, the need for replenishing serum levels, or enhanced turnover by immune cells. These
data give an incentive to further investigate the role of intracellular vitamin C in a larger and more
heterogeneous cohort as well as the underlying mechanisms.

Keywords: vitamin C; COVID-19; immune cells

1. Introduction

Vitamin C is an important micronutrient for the human immune system. As an
antioxidant, it plays an important role in reducing oxidative stress [1]. Moreover, vitamin
C has an interesting role in the regulation of immune function, and various immune cells
are affected by it [2,3]. It modulates the balance between pro-inflammatory and anti-
inflammatory cytokines [4], resulting in increased chemotaxis, phagocytosis, and microbial
killing by neutrophils [5,6]. Vitamin C accumulates in neutrophils, and a process called
recycling takes place, creating high concentrations of vitamin C intracellularly and lower
concentrations extracellularly. This effect creates more oxidant reduction inside the cells
and more oxidants outside the cell for improved microbial killing [7]. Furthermore, by
promoting T helper 1 (Th1) skewing, it facilitates the activation of cytotoxic T cells (CTL),
and it has been proven to be an absolute prerequisite for T cell development [8,9]. In vitro
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studies have also demonstrated that vitamin C stimulation enhances the maturation and
proliferation of natural killer (NK) cells [10,11]. Our findings, as well as those of others,
have highlighted the accumulation of vitamin C in various immune cells, underscoring
its pivotal role as an important micronutrient crucial for the development and optimal
function of these cells [12,13]. Vitamin C has numerous additional functions beyond the
ones described above; it serves as a cofactor or cosubstrate for various enzymes, for example,
in collagen hydroxylation, which plays a role in wound healing, and in the production of
noradrenalin [7].

In humans, the heavily mutated Gulo gene is nonfunctional due to evolutionary
processes, and therefore humans are not able to synthesize vitamin C to maintain a normal
serum level and hence depend on dietary intake and storage. Vitamin C uptake takes place
in the intestine through the glucose transporter (GLUT) and the sodium-dependent vitamin
C transporter (SVCT) 1. The SVCT1 receptor is also responsible for tissue uptake of vitamin
C in epithelial cells, whereas the SVCT2 receptor is responsible for vitamin C uptake in
more specialized cells of the adrenal gland, the brain, and lymphocytes [14]. Intra- and
extracellular vitamin C levels have been shown not to correlate, and as opposed to serum
vitamin C, intracellular levels, which can be up to 50–100 times higher than serum levels,
do not show a dose-dependent increase [15]. Cells that express the SVCT2 receptor show
a high intracellular vitamin C concentration, which protects these metabolically active
cells from oxidative stress [16,17]. Additionally, vitamin C storage in these cells preserves
their function during vitamin C depletion. Therefore, symptoms of vitamin C deficiency
only occur when the intracellular resources are exhausted. This occurs, depending on
the different tissues, days to weeks after serum vitamin C becomes within the deficient
range [18]. As a result, it has been postulated that intracellular vitamin C concentrations
are more reflective of the body’s accurate vitamin C status than serum vitamin C.

In the general healthy population, the occurrence of hypovitaminosis C is approxi-
mately 12% [19,20]. However, studies have revealed that hospitalized patients exhibit a
prevalence nearly seven times higher [21]. Patients with infectious diseases are particularly
susceptible to vitamin C deficiency [21,22]. Most prominent are the extremely low vitamin
C levels in septic and critically ill patients admitted to the intensive care unit (ICU), even
when receiving standardized nutrition [23]. In these patients, low vitamin C levels have
been associated with severity of illness and poor outcome [24,25].

The decreased vitamin C levels observed during infectious diseases are most likely
caused by an increased production of reactive oxygen species (ROS), resulting in more scav-
enging of ROS by vitamin C [22]. Vitamin C plays a crucial role in numerous antioxidant
and anti-inflammatory processes [13], leading to an increased demand for vitamin C in
patients suffering from infectious diseases. These well-established functions of vitamin C
have prompted several clinical studies investigating the effect of vitamin C treatment on
critically ill patients in the ICU. While results vary widely across the different studies, a
comprehensive meta-analysis suggests the clinical benefit of administering an intermediate
dose of intravenous vitamin C to septic ICU patients [26]. This clinical benefit was reflected
by a decrease in the duration of vasopressor support and mechanical ventilation [27,28]. Ad-
ditionally, other studies showed a reduction in ICU stays and lower mortality rates [26,29].
Variations in study outcomes may be attributed to differences in patient populations and
the dosages of vitamin C administered.

Several studies have examined the effect of vitamin C supplementation on the pre-
vention and treatment of the common cold [30]. Similar to the ICU studies, conflicting
results have been reported. However, while vitamin C supplementation does not affect the
incidence of the common cold in the general population, the most consistent finding is a
reduction in the duration and severity of cold symptoms when vitamin C is administered
within 24 h after symptom onset and continued for at least 5 days [30]. It is thought
that the beneficial effects are mostly explained by the antioxidant functions of vitamin
C, thereby reducing further tissue damage, and by its immunomodulatory effects, which
create a less pro-inflammatory environment [10]. Inspired by this compelling data, we
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hypothesized that vitamin C levels might also reduce symptoms following a SARS-CoV-2
infection. Severe or critical COVID-19 is often associated with a pro-inflammatory state or
cytokine storm [31]. Vitamin C might be able to reduce the pro-inflammatory state through
its immune-modulating and antioxidant functions. To investigate this, we set out to not
only investigate serum vitamin C levels but also intracellular storage by analyzing intra-
cellular vitamin C levels in leukocytes. Serum vitamin C levels are highly susceptible to
acute changes, such as decreased dietary intake, and might therefore not accurately reflect
the true vitamin C status [12,18]. In contrast, intracellular vitamin C levels in leukocytes
represent vitamin C storage better as they are less sensitive to acute changes [12]. Leukocyte
vitamin C levels are up to 30–100 times higher than plasma levels and offer a more accurate
reflection of tissue levels [12,32]. In septic patients, Carr et al. showed normal intracellular
vitamin C levels in neutrophils despite low serum vitamin C levels; however, these cells
exhibited increased ex vivo uptake of vitamin C compared to neutrophils from healthy
donors, which displayed negligible vitamin C uptake [33]. Intracellular vitamin C levels in
immune cells may correlate more specifically with immune function than serum vitamin C
levels, and changes in these levels may provide further insights into the use of vitamin C
during infections.

To the best of our knowledge, the assessment of intracellular vitamin C levels in
leukocytes has not been explored in COVID-19 patients. Therefore, the objective of this
study is to examine vitamin C levels in both serum and intracellular fluid during the
hospitalization of COVID-19 patients. By doing so, we aim to gain valuable insights into
the dynamics of vitamin C metabolism during infection and determine whether these levels
correlate with disease progression and severity.

2. Materials and Methods
2.1. Patients

This study was a single center prospective cross-sectional cohort study. It was con-
ducted at the COVID-19 ward at the Maastricht University Medical Center (MUMC+).
Inclusion of participants took place from 2 December 2020 until 10 March 2021 and from
13 December 2021 until 23 March 2022. The study was approved by the medical ethical
committee at the MUMC, and all procedures were conducted in accordance with the ethical
principles outlined in the Declaration of Helsinki, the ICH-GCP Guidelines, and the EU
Clinical Trial Directive (2001/20/EG). Inclusion criteria consisted of the following: (1) symp-
tomatic patients primarily admitted to the COVID-19 ward with a positive SARS-CoV-2
PCR; (2) an age of 18 years or older; and (3) the provision of written informed consent.
Patients underwent nasopharyngeal swab polymerase chain reaction (PCR) testing for
SARS-CoV-2.

2.2. Collection of Clinical Data

The data were extracted from the electronic medical records. Baseline characteristics
were collected on day 1 of their hospitalization. Additional outcome measures, such as the
maximal clinical COVID-19 severity classification (according to Chinese Clinical Guidance
for COVID-19 Pneumonia Diagnosis and Treatment, 7th edition [34]), ICU admission,
duration of ICU stay, duration of mechanical ventilation, and time until discharge or
death, were recorded. The definition of the clinical COVID-19 severity classification was
as follows: mild (mild symptoms, no sign of pneumonia on chest imaging), moderate
(fever and respiratory symptoms, chest imaging shows pneumonia), severe (dyspnea
with a respiratory rate of 30 times/minute or higher, and/or oxygen saturation of 93% or
lower, and/or alveolar oxygen partial pressure/fraction of inspiration O2 (PaO2/FiO2) of
300 mmHg or lower), and critically ill (respiratory failure needing mechanical ventilation,
and/or shock, and/or organ failure in need of ICU monitoring and treatment; this included
patients that met this definition but had an advance directive of no ICU admission). The
sequential organ failure assessment (SOFA) score, C-reactive protein (CRP), and lactate
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dehydrogenase (LDH) are established clinical biomarkers that predict clinical COVID-19
severity and clinical outcome [26,35] and were therefore also collected.

2.3. Collection and Analysis of Blood Samples

Blood samples were collected twice from each participant, once on day 1 of hospital-
ization and again on day 5 of hospitalization, with a time range of 72 h. Both serum and
intracellular vitamin C levels were measured. For serum vitamin C level determination, a
commercial kit from Chromsystems (Gräfelfing, Germany) was used. This analysis was
performed by the central diagnostic laboratory of the MUMC+, which holds ISO 15189
accreditation for this routine measurement. The steps include protein precipitation and
vitamin C stabilization, followed by quantification using a stable internal standard with
high-performance liquid chromatography (HPLC) with UV detection. The measurement of
the intracellular vitamin C concentration of peripheral blood mononuclear cells (PBMCs)
was conducted after extracting vitamin C from the PBMCs, also using HPLC with UV
detection. First, lymphoprep density centrifugation was used to separate PBMCs from
8 mL of heparinized blood. Then, a washing step and cell count took place; 2 × 106 PBMCs
were then resuspended in ammonium acetate, followed by the addition of precipitation
reagent. The sample was thoroughly mixed and then incubated for 10 min. The supernatant
was frozen at −80 ◦C until final analysis. More detailed information about this method has
previously been described [36].

2.4. Data Analysis

Continuous variables were presented as mean ± standard deviation in the case of a
normal distribution or median with interquartile range (IQR) in the case of a non-normal
distribution. The Shapiro–Wilk test was used to assess normality. Categorical data were
presented as counts with percentages. Frequencies were presented as percentages or
proportions and compared to population numbers by performing a one-sample binomial
test. To compare paired groups over time, paired t-tests were used, assuming a normal
distribution of the variables. Unpaired t-tests were used to compare vitamin C levels in
patients with improving disease versus patients with progressive disease.

Spearman’s rank test was performed to examine the correlation between serum and
intracellular vitamin C levels with clinical COVID-19 severity, SOFA score, duration of
hospital stay, and duration of ICU admission when non-normally distributed variables
were involved. Binary logistic regression was performed to assess the risk of low vitamin C
in different patient populations based on the COVID-19 severity score. The significance
level (α) was set at 0.05. Statistical analysis was performed using IBM SPSS Statistics for
Windows, Version 27.0 (IBM Corp., released 2020; Armonk, NY, USA). For data visualiza-
tion, GraphPad Prism version 9.4.1 for MacOS (GraphPad Software, San Diego, CA, USA)
was used.

3. Results
3.1. Inclusion

A total of 80 patients admitted to the COVID-19 ward at MUMC+ between 2 December 2020,
and 23 March 2022, were invited to participate in this study. Four patients did not meet
the inclusion criteria, and one patient did not provide informed consent. Additionally, five
patients were excluded from the analysis because of failure of all vitamin C measurements
(Figure 1).

3.2. Baseline Characteristics

The baseline characteristics of the cohort are summarized in Table 1. The mean
age of the patients was 70 ± 11 years, with a male predominance (64%). Almost all
patients (except 12) had relevant comorbidities, with cardiac conditions (47%), pulmonary
diseases (37%), and diabetes (29%) being the most prevalent. The median duration from
the start of symptoms to hospitalization was 7 days. According to the clinical COVID-19
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severity classification, 1% were classified as ‘mild’, 15% as ‘moderate’, 60% as ‘severe’,
and 27% as ‘critically ill’. A total of five (7%) patients were admitted to the ICU; the other
14 patients were not admitted due to treatment restrictions and received best supportive
care. Unfortunately, eleven (16%) patients passed away before being discharged from the
hospital. The majority of patients were admitted when the SARS-CoV-2 Alpha variant was
dominant (n = 56); the other patients were admitted during the Delta wave and the start of
the Omicron wave in the Netherlands (n = 14).
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Table 1. Baseline characteristics.

Characteristic n = 70 (Mean ± SD or Median (IQR))

Age (years) 70 ± 12

Gender (n, %)
Male 45 (64%)

Female 25 (36%)

Vitals upon admission
Oxygen suppletion (L/min) 2 (1–5)

Oxygen saturation (%) 93 ± 3

Comorbidities (n, %)

None 12 (17%)
1 15 (21%)
2 22 (31%)

3+ 21 (30%)

Body mass index (BMI) 27.8 (24.4–31.6)

Diabetes mellitus (n, %) 20 (29%)

(Hematologic) cancer (n, %) 3 (4%)
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Table 1. Cont.

Characteristic n = 70 (Mean ± SD or Median (IQR))

Medication (n,%)
None 20 (29%)

Immunosuppression 9 (13%)
Anticoagulation therapeutic 14 (20%)

Anticoagulation prophylactic 24 (34%)
Antibiotics 12 (20%)

Chemotherapy 1 (1%)

Abnormal chest X-ray (n, %) 40 (57%)

CT-value SARS-CoV-2 PCR 22 ± 6

Time since first symptoms (days) 6.5 (2.3–9.0)

SOFA score 2 (2-3)

Maximal clinical COVID-19 severity
classification * (n, %)

Mild 1 (1%)
Moderate 8 (11%)

Severe 42 (60%)
Critically ill (ICU indication) 19 (27%)

Duration of hospital admission (days) 9 (4–14)

Actual ICU admission (n, %) 5 (7%)

Duration ICU admission (days) 7 (4–29)

Death (n, %) 11 (16%)
Abbreviations: CT: cycle threshold, PCR: polymerase chain reaction, ICU: intensive care unit. * According to
Chinese Clinical Guidance for COVID-19 135 Pneumonia Diagnosis and Treatment, 7th edition [34].

3.3. Serum Vitamin C Levels

Upon admission, 49% of patients displayed normal levels of serum vitamin C, while
36% had hypovitaminosis C (<26 µmol/L) and 15% had a vitamin C deficiency (<11 µmol/L).
These proportions remained relatively stable, with percentages of 46%, 35%, and 19%, re-
spectively, on day 5 (Figure 2). Optimal vitamin C status (serum/plasma level > 50 µmol/L),
as defined by the European Food Safety Authority, is based on the level of vitamin C that is
needed to maintain an adequate body pool and ensure proper functioning [37]. It was only
present in 11% of the patients on day 1 and in 12% of the patients on day 5.

Nutrients 2023, 15, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 2. Proportion of normal versus low vitamin C levels in serum and intracellularly on days 1 
and 5 of hospitalization. 

Definition of normal vitamin C levels 
Serum levels: normal (≥26 µmol/L), hypovitaminosis (<26 µmol/L), deficient (<11 µmol/L). 
Intracellular levels: normal (≥4.0 µg/108 cells), low (<4.0 µg/108 cells). 

In terms of intracellular vitamin C levels, 55% of the cases on day 1 and 27% of the 
cases on day 5 of hospitalization had levels above or equal to 4.0 µg/108 cells (10th percen-
tile of the healthy adult population, aged 18–62) previously determined in our center [36] 
(Figure 2).  

3.4. Dynamics of Serum and Intracellular Vitamin C 
During hospitalization, the serum vitamin C serum levels did not significantly 

change from baseline in the majority of the patients between day 1 and day 5 (p = 0.187), 
whereas the intracellular levels significantly decreased between these two time points (p 
= 0.025) (Figure 3).  

 
Figure 3. Dynamics of serum and intracellular vitamin C levels during COVID-19 hospitalization. 
(A) Serum vitamin C of patients over time from day 1 (n = 70) to day 5 (n = 26) of hospitalization, 
measured by HPLC. Lines connect measurements of the same patients; day 5 measurements were 

Figure 2. Proportion of normal versus low vitamin C levels in serum and intracellularly on days 1
and 5 of hospitalization.



Nutrients 2023, 15, 3653 7 of 14

Definition of normal vitamin C levels
Serum levels: normal (≥26µmol/L), hypovitaminosis (<26µmol/L), deficient (<11 µmol/L).
Intracellular levels: normal (≥4.0 µg/108 cells), low (<4.0 µg/108 cells).
In terms of intracellular vitamin C levels, 55% of the cases on day 1 and 27% of the cases

on day 5 of hospitalization had levels above or equal to 4.0 µg/108 cells (10th percentile
of the healthy adult population, aged 18–62) previously determined in our center [36]
(Figure 2).

3.4. Dynamics of Serum and Intracellular Vitamin C

During hospitalization, the serum vitamin C serum levels did not significantly change
from baseline in the majority of the patients between day 1 and day 5 (p = 0.187), whereas
the intracellular levels significantly decreased between these two time points (p = 0.025)
(Figure 3).
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Figure 3. Dynamics of serum and intracellular vitamin C levels during COVID-19 hospitalization.
(A) Serum vitamin C of patients over time from day 1 (n = 70) to day 5 (n = 26) of hospitalization,
measured by HPLC. Lines connect measurements of the same patients; day 5 measurements were not
available for all patients due to early discharge, death, or sampling failure. Complete data (n = 26)
on days 1 and 5 was compared with a paired t-test (p = 0.187). (B) Intracellular vitamin C over time
from day 1 (n = 58) to day 5 (n = 17) of hospitalization, measured by PBCM isolation, vitamin C
extraction, and HPLC. Lines connect measurements of the same patient; day 5 measurements were
not available for all patients. Only complete data on day 1 and day 5 (n = 17) were compared with a
paired empht-test (p = 0.025). ns = non-significant; * = p < 0.05.

3.5. Correlation of Serum and Intracellular Vitamin C with COVID-19 Severity

A weak but significant negative correlation was observed between the maximal clinical
COVID-19 severity classification and serum vitamin C level on the first day of admission
(Spearman’s r = −0.341, p = 0.005) (Table 2). However, this correlation was no longer
present on day 5. There was no correlation between intracellular vitamin C levels and
COVID-19 severity at any time point (Table 2). Nevertheless, our data indicate a higher
percentage of patients with low serum (Figure 4A) and intracellular (Figure 4B) vitamin C
in the group with more severe disease. When comparing the risk of low serum vitamin C
levels on day 1 of hospitalization, it was found that critically ill (odds ratio 7.2) COVID-19
patients were more likely to have low serum vitamin C levels compared to COVID-19
patients classified with moderate disease severity; the same trend was observed for severe
versus moderate disease severity, though not statistically significant (Figure 4C). A similar
trend was observed for intracellular vitamin C levels (Figure 4D).



Nutrients 2023, 15, 3653 8 of 14

Table 2. Correlation of serum and intracellular vitamin C levels with maximal clinical COVID-19
severity classification.

Vitamin C Serum Day
1 (n = 66)

Vitamin C Serum Day
5 (n = 26)

Vitamin C Intracellular
Day 1 (n = 58)

Vitamin C Intracellular
Day 5 (n = 22)

r(s) p-Value r(s) p-Value r(s) p-Value r(s) p-Value

Maximal clinical
COVID-19 severity

classification *
−0.341 0.005 −0.169 0.407 −0.082 0.542 −0.142 0.528

Table shows Spearman’s rank correlation of serum and intracellular vitamin C levels with the maximal clinical
COVID-19 severity classification during hospitalization. * according to Chinese Clinical Guidance for COVID-19
135 Pneumonia Diagnosis and Treatment, 7th edition [34].
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Figure 4. (A) Percentage of patients with normal or low serum vitamin C per COVID-19 clinical
severity group. (B) Percentage of patients with normal or low intracellular vitamin C per COVID-19
clinical severity group. (C) Univariate logistic regression analysis of serum vitamin C on day 1 of
hospitalization (normal or low *) and clinical COVID-19 severity classification. Mild COVID-19 was
not included in the analysis because of the low inclusion number in this category (n = 1); therefore,
moderate COVID-19 was used as the reference category. Severe (n = 40) and critically ill (n = 17)
COVID-19 were compared to moderate COVID-19 (n = 8). (D) Univariate logistic regression analysis
of intracellular vitamin C on day 1 of hospitalization (normal or low) and clinical COVID-19 severity
classification. Mild COVID-19 was not included in the analysis because of the low inclusion number
in this category (n = 1); therefore, moderate COVID-19 was used as the reference category. Severe
(n = 36) and critically ill (n = 15) COVID-19 were compared to moderate COVID-19 (n = 6). * low is
defined as hypovitaminosis C or vitamin C deficiency, as described earlier.

Within this cohort, there were 29 patients with an improvement in disease severity
between day 1 and day 5 of hospitalization, while 11 patients experienced progressive
disease and 30 patients had stable disease (as defined by the clinical COVID-19 severity
classification). Median serum vitamin C levels appeared lower in the group with progres-
sive disease when compared to the group with improving disease; however, the ranges
were wide, and no statistical differences were observed (Table 3). There was also no statisti-
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cally significant difference in intracellular vitamin C levels between the progressive and
improving disease groups.

Table 3. Mean vitamin C levels in patients with improving progressive COVID-19.

Improving Disease
(n = 29)

Progressive Disease
(n = 11) p-Value

Serum vitamin C day 1 32.1 ± 19.8 19.8 ± 14.4 0.108

Intracellular vitamin C day 1 5.2 ± 6.5 5.4 ± 3.7 0.920
Median serum and intracellular vitamin C levels are shown with interquartile ranges; comparisons were made
using unpaired t-test, and p-values are shown in the table.

3.6. Correlation of Serum and Intracellular Vitamin C with COVID Severity Markers

In this cohort, no correlations were found between serum vitamin C and the SOFA
score on both the first and fifth days of hospital admission. Similarly, no correlations were
observed between intracellular vitamin C levels and the SOFA score (Table 4). Furthermore,
no significant correlations were found between the serum and intracellular vitamin C levels
and the duration of the hospital stay or the duration of the intensive care unit (ICU) stay
(Table 3). Regarding other biomarkers, only a weak positive correlation was observed
between CRP and clinical COVID-19 severity classification, whereas LDH did not show
any correlation with COVID-19 severity at all (Table 5).

Table 4. Correlation of serum and intracellular vitamin C with duration of hospital and ICU stay and
SOFA score.

Vitamin C Serum Day 1 Vitamin C Serum Day 5 Vitamin C Intracellular Day 1 Vitamin C Intracellular Day 5

r(s) p-Value r(s) p-Value r(s) p-Value r(s) p-Value

Duration hospital stay
(days) −0.201 0.105 0.206 0.313 0.008 0.952 −0.032 0.886

Duration of ICU stay
(days) 0.029 0.957 - - 0.143 0.787 - -

SOFA score −0.021 0.1 0.156 0.467 −0.017 0.904 −0.240 0.354

Table shows results of Spearman’s rank correlation of serum and intracellular on days 1 and 5 of hospitalization
with duration of hospital stay, duration of ICU stay, and SOFA score on day 1 of hospitalization. Analysis for the
correlation of vitamin C in serum and intracellularly with duration of ICU stay was not carried out because of the
low number of inclusions.

Table 5. Correlation of CRP and LDH with clinical COVID-19 severity classification.

CRP LDH

r(s) p-Value r(s) p-Value

Maximal clinical COVID-19
severity classification 0.26 0.030 0.11 0.374

Table shows results of Spearman’s rank correlation of CRP and LDH with duration of maximal clinical COVID-19
severity classification (according to Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment,
7th edition [34]) during hospitalization.

4. Discussion

In this study, we provide valuable insights into the vitamin C status of hospitalized
COVID-19 patients. Our findings demonstrate that a significant proportion of COVID-19
patients display hypovitaminosis C or vitamin C deficiency upon their initial hospital
admission. Furthermore, we have observed that serum vitamin C levels remain relatively
constant over time. However, we did not investigate the clinical consequences of vitamin
C deficiency (e.g., scurvy). These observations align with previously published data on
serum vitamin C levels in hospitalized patients suffering from various infections, including
COVID-19 [21,38–40].
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Our study introduced a novel approach by investigating not only serum vitamin C
but also intracellular vitamin C in PBMCs as a marker for vitamin C storage [11]. Inter-
estingly, when comparing the serum vitamin C status—hypovitaminosis C and vitamin
C deficiency—of this COVID-19 cohort with published data from a large British healthy
cohort study (36% vs. 12% and 15% vs. 1.4%, respectively) [19,20], the observed per-
centages in the hospitalized COVID-19 patients were significantly lower (day 1 p < 0.001
and day 5 p < 0.001, one sample binominal test). This British study is one of the largest
studies evaluating vitamin C status in a healthy cohort. A second large study in France
showed similar data [41], but smaller studies conducted in Europe and Canada show larger
variations in vitamin C levels [20]. In addition, lower vitamin C levels are associated with
male sex and increasing age [42]. Since our cohort is predominantly male and the median
age is 70 years, the percentage of vitamin C deficiency in the healthy population could
be an underestimation. Upon hospital admission, 45% of patients already exhibited low
intracellular vitamin C levels, which further deteriorated during hospitalization, resulting
in 73% of patients with low levels at day 5. When compared to a healthy population
(40 Dutch healthy volunteers with a female predominance (73%) and a mean age of 35 years
(range 18–62)), only 10% exhibited this low (below the 10th percentile) intracellular vitamin
C level [36] (one sample binomial test: p < 0.001 for both days 1 and 5).

We evaluated intracellular vitamin C levels in PBMCs, including monocytes, NK cells, and
T- and B-lymphocytes. These cell types play vital roles in viral clearance, and it is known that
SARS-CoV-2 can directly infect these cells, potentially leading to apoptosis [43,44]. Previously,
we showed that under normal conditions, all of these immune cells show comparable levels
of intracellular vitamin C [36]. We assume that measurement of intracellular vitamin C in
the PBMC fraction effectively reflects levels in monocytes and lymphocytes.

The underlying mechanism behind our observed findings remains unknown. How-
ever, it is hypothesized that intracellular vitamin C from PBMCs reflects the body’s vitamin
C storage [12]. Our observations suggest that there may be either vitamin C usage or
redistribution taking place. Redistribution is the obvious mechanism when serum vitamin
C is utilized to scavenge free radicles produced under high oxidative stress caused by the
inflammatory response to the SARS-CoV-2 infection. Exhausted serum levels might be re-
plenished by intracellular stores. Another plausible explanation could be the use of vitamin
C by the immune cells themselves [10,13]. The role of vitamin C in various immune cells
has been described previously [10,13]. Vitamin C is crucial for neutrophil function, T cell
development and proliferation, NK cell proliferation, and Th1 and Th17 polarization [13],
all of which are important in the clearance of viral invaders like SARS-CoV-2. Data from
Carr et al. support the latter hypothesis, as they demonstrated increased vitamin C uptake
by neutrophils during infection [33]. If this mechanism also holds true for PBMCs during
active SARS-CoV-2 infection, the low intracellular vitamin C levels can be explained by the
increased immune cell activation [8–11,13].

Remarkably, we found no strong correlation between serum or intracellular vitamin C
levels and the clinical COVID-19 severity classification in this cohort. This lack of correlation
could be attributed to the substantial variability in the patient population included in the
study. Most patients had pre-existing comorbidities, were on chronic medication, and
were aged 65 or older, all of which can potentially influence vitamin C levels but also
the severity of COVID-19 (e.g., immunoscenescence in the elderly). This resulted in a
diverse patient population at baseline. On the other hand, it is important to note that the
cohort did not contain many patients with a clinical COVID-19 severity classification that
was ‘mild’ or ‘critically ill’, as we did not allocate patients in each disease severity group.
This is because this study was conducted primarily on the COVID-19 ward, and primary
inclusions did not take place on the ICU. Additionally, primary care facilities were not
included in this study, which was responsible for the lack of patients with mild diseases.
The cohort was therefore more homogenous in terms of disease severity than expected. Due
to the combination of the heterogeneous patient cohort at baseline and the homogeneous
distribution of COVID-19 severity, the study was underpowered to evaluate if vitamin C
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could be a potential biomarker predicting disease severity. Consequently, the results of our
study might be less generalizable than anticipated.

Although the current study did not establish vitamin C levels as definitive biomarkers
for assessing COVID-19 severity, we did observe that critically ill patients had higher
odds of having low serum vitamin C levels compared to patients with moderate disease
severity. Moreover, there was a trend towards lower serum vitamin C levels in patients
with progressive disease during the first 5 days of hospitalization. However, it is worth
noting that the clinical COVID-19 severity classification used in this study may not be
the most accurate instrument for measuring variations in disease severity as it does not
effectively discriminate between minor and major changes in the patient’s health status.
Our results are in line with findings from previous studies that reported low vitamin
C levels in critically ill patients. Low vitamin C has been identified as a risk factor for
mortality, though it is influenced by age [38–40].

Importantly, our study extended beyond analyzing serum vitamin C levels by incor-
porating intracellular vitamin C analysis, which allowed us to generate hypotheses about
a possible underlying mechanism of decreased serum vitamin C levels during infectious
diseases. In this cohort, we found no correlation between intracellular and serum vitamin C,
which aligns with data from our previous studies in healthy individuals [36]. Although no
correlation between intracellular vitamin C levels and COVID-19 severity was observed, we
did identify a significant progressive decline in intracellular vitamin C levels in this cohort.
This emphasizes the potential importance of maintaining adequate intracellular vitamin C
storage, even in critically ill patients. Our study provides a rationale for evaluating both
serum and intracellular vitamin C and supports further in vitro and in vivo research to
substantiate the role of intracellular vitamin C in disease.

The SOFA score and duration of hospital/ICU stay correlated poorly with serum and
intracellular levels of vitamin C in this cohort. Similarly, the commonly used biomarkers,
CRP and LDH, showed only a weak correlation and no correlation with COVID-19 sever-
ity, respectively. It is important to note that other studies have reported much stronger
correlations between these biomarkers and COVID-19 severity [26], again suggesting that
the relatively homogenous nature of this cohort in terms of COVID-19 severity may have
hindered the detection of strong correlations. Furthermore, it is worth considering that
there are numerous other factors known to predispose individuals to low vitamin C levels,
such as older age, obesity, smoking status, and diabetes mellitus, amongst others [38,45,46].
Also, in addition to critical illness, hyperglycemia and sepsis are possible causes for de-
creased vitamin C levels; these were factors that were not evaluated in the current study [7].
These factors may contribute to the complexity of the relationship between vitamin C levels
and disease severity observed in this study.

The results from vitamin C intervention trials in COVID-19 patients have yielded
conflicting outcomes, as reviewed in [47]. Nevertheless, there appears to be an overall
beneficial effect of vitamin C supplementation on severely ill patients, leading to a re-
duction in early mortality. Conversely, studies focusing on patients with longer-lasting
symptoms of COVID-19 have generally not demonstrated a significant effect of vitamin
C supplementation [48], which is in line with many interventions utilized in critically
ill COVID-19 patients, including convalescent plasma, anti-SARS-CoV-2 antibodies, and
antiviral medication.

In our study, we observed a higher prevalence of vitamin C shortage as the severity of
the disease increased, with only a small proportion of patients maintaining optimal vitamin
C levels. Optimizing vitamin C status in the early phase of SARS-CoV-2 infection may
potentially prevent severe illness and the need for hospital care. The positive effects of early
vitamin C supplementation have already been demonstrated in the context of common
cold infections [30,49]. However, further research specific to COVID-19 conducted in the
primary health care setting would be necessary to confirm this hypothesis.

The limitations of the study are that specific measurements to learn more about the
overall vitamin C dynamics were not performed because this study focused on clinical
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parameters. For example, immune function was not properly evaluated, and no analyses
of vitamin C intake or excretion were performed. Additionally, no oxidant levels were mea-
sured, though these can highly influence vitamin C levels intracellularly and extracellularly.
Lastly, vitamin C’s role as a cofactor for many enzymes and vitamin C’s epigenetic functions
were not considered. As there are various enzymes that are assumed to be necessary in
infectious disease (e.g., for noradrenalin production and healing), the lack of vitamin C
could also partly be explained by this, as well as a poor diet during illness or the high
oxidant levels and therefore the high need for scavenging by vitamin C. Nevertheless, we
remain curious if these phenomena could also provide an explanation for the persistent
deficiency of intracellular vitamin C in PBMCs. In addition, due to loss of follow-up, early
discharge, death, or failure of measurements, we have less than 50% of patient data on both
days 1 and 5. Valuable data that could have shed more light on the vitamin C metabolism
in disease.

5. Conclusions and Future Directions

In conclusion, our study reveals a striking prevalence of hypovitaminosis C, or vitamin
C deficiency, among hospitalized COVID-19 patients, emphasizing the need to address this
nutritional deficit. Furthermore, our findings suggest that the depletion of intracellular
vitamin C storage levels may be attributed to its utilization by immune cells, implicating a
vital role in combating infections. Although the correlations between serum vitamin C levels
and clinical COVID-19 severity classification appear modest, further investigations within a
more heterogeneous group of patients are warranted to better understand this relationship.
With the current study, we have generated hypotheses regarding the mechanisms of vitamin
C cycling in infectious diseases, opening exciting possibilities for further investigations
in in vitro and in vivo studies. The distinct differences observed between serum and
intracellular vitamin C warrant further evaluation of both serum and intracellular vitamin
C in future observational and interventional studies. Future studies should take into
consideration that the physiological role of vitamin C is extensive, and therefore many
factors should be addressed in a follow-up study. For a better mechanistic understanding
of our findings, we suggest that immune cell and immune function measurements, vitamin
C uptake in immune cells, oxidant levels, vitamin C intake and excretion, and possibly
also enzymology be evaluated. Additionally, future studies should control for possible
confounders such as older age, co-morbidities, and smoking status. Lastly, we suggest
that future studies be conducted in a more homogenous group of patients at baseline and
that a more even distribution of disease severity be achieved, for example, by allocation at
inclusion. The ultimate goal is to identify patients who derive the greatest benefits from
targeted vitamin C treatments. By shedding light on the complex dynamics of vitamin C in
COVID-19, our study paves the way for advancing clinical strategies aimed at optimizing
vitamin C status in patients and improving their overall outcome.
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