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Abstract: Atherosclerosis is an immuno-inflammatory process underlying cardiovascular diseases.
One of the main actors of this inflammation is monocytes, with the switch in their phenotypes
and irregularities in their cytokine production. Objective: This study was aimed to investigate the
nutraceutical potential of extra virgin olive oil (EVOO) on the inflammatory status of monocytes in
participants showing different levels of cardiovascular risk. Methods: 43 participants 65–85 years
old were recruited including 14 healthy, 12 dyslipidemic patients with hypercholesterolemia recently
diagnosed, and 17 post-infarct patients. Participants from all groups were supplemented with EVOO
(25 mL/day) for 6 months. IL-1β, IL-6, IL-10, TNF-α cytokine production, and monocyte phenotypes
were investigated both at quiescent and at stimulated state by flow cytometry. Results: At the baseline
(pre-intervention), dyslipidemic patients, compared to healthy and post-infarct participants, showed
monocytes in an inflammatory state characterized by a significantly weaker IL-10 production. Our
results do not show a significant modulation of the phenotype or IL-10, IL-6, and TNF-α production
following a 6-month EVOO intake whether at quiescence or under stimulation. However, IL-1β
is significantly increased by the intervention of EVOO in post-infarct patients. Paradoxically after
the 6-month intervention, monocytes from dyslipidemic patients showed a significantly decreased
secretion of IL-1β under LPS stimulation despite the increase observed at basal state. Conclusion:
Our results show that 6-month EVOO intervention did not induce a monocyte phenotypic change or
that this intervention significantly modifies cytokine production.

Keywords: atherosclerosis; hypercholesterolemia; infarcts; EVOO; monocyte; inflammation

1. Introduction

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation
of lipids, inflammatory cells, and extracellular matrix components in the arterial wall.
This process can lead to the formation of plaques that can potentially rupture and lead
to thrombosis which can hinder or stop blood flow to vital organs and lead to infarcts or
stroke. This pathology, with all the treatments available, remains a major cause of morbidity
and mortality worldwide. Several risk factors are associated with this disease such as high
blood pressure, smoking, and high levels of low-density lipoprotein cholesterol (LDL-C).
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Several studies have documented an inverse association between adherence to the
Mediterranean diet and risk of coronary heart diseases (CHD) [1–3]. Extra virgin olive oil
(EVOO) is one of the key components of this diet. It is rich in monounsaturated fatty acids,
polyphenols, and other bioactive compounds that have been shown to have antioxidant
and anti-inflammatory effects [4]. Interestingly, inflammation, as well as the interaction
between cells with the plaque, are the major determinants of plaque progression and insta-
bility. Although innate and adaptive immunity actors are all present in advanced plaques,
monocytes play a key role in the pathogenesis of atherosclerosis [5]. Monocytes, after being
recruited from the bloodstream into the arterial wall, differentiate into macrophages and
through their absorption of oxidized lipoproteins become the main contributor to the for-
mation of the lipid/necrotic core. Monocytes and macrophages are also important sources
of cytokines that reveal their inflammatory state and influence the fate of the plaques.

Monocytes are a critical component of the cellular innate immune system, and can be
subdivided into classical, intermediate, and non-classical subsets based on surface CD14
and CD16 expression. Classical monocytes (high CD14 but no CD16 expression) play the
canonical role of phagocytosis, support the inflammatory process, and account for most
circulating cells. Intermediate (high CD14 and low CD16 expression) and non-classical
cells (relatively lower CD14 expression and high CD16) are known to exhibit varying
levels of phagocytosis and cytokine secretion and are differentially expanded in certain
pathological states. The intermediate monocytes contribute through antigen presentation
to T cell activation and clonal proliferation and produce large amount of ROS while the
non-classical monocytes activate CD4+ T cells and patrol the endothelium [6,7].

Some studies revealed that monocytes may be pre-activated in the circulation of CVD-
high-risk patients and might be more susceptible to have pro-inflammatory phenotypes
predisposing them to become pro-inflammatory macrophages in the plaque, hence pro-
moting its growth and instability [8]. This pre-activated state is called trained immunity,
a process demonstrated in vivo notably with oxLDL [9]. In atherosclerosis and dyslipi-
demia on top of this phenomenon, some studies report that these monocytes could become
dysfunctional due to these pathologies and lose their specific pro or anti-inflammatory
phenotype and all show pro-inflammatory activity [10].

Several studies have investigated the effect of EVOO on the production of cytokines
in monocytes and macrophages. In vitro studies have demonstrated that EVOO and its
phenolic compounds can modulate the expression of cytokines such as tumor necrosis
factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) mostly using
monocytes—macrophages and THP-1 [11] or J774 models [12].

Animal studies have also suggested that EVOO can reduce the expression of pro-
inflammatory cytokines in monocytes and macrophages and attenuate the development of
atherosclerosis [13]. EVOO compared to sunflower oil rich-diet group was shown to induce
a reduction in the inflammatory cytokine production in C57BL/6 mice [14].

Clinical studies have provided evidence for the anti-inflammatory effects of EVOO
in humans. A Mediterranean diet supplemented with EVOO for three months led to a
reduction in the expression of adhesion molecules on peripheral blood mononuclear cells as
well as a reduction in inflammatory cytokine concentrations in plasma [15,16]. The effect of
EVOO combined with a Mediterranean diet compared to low-fat diet showed a beneficial
effect on vascular inflammation [17]. However, the effect of EVOO intervention on human
monocytes are scarcer although the anti-inflammatory effect of polyphenols in vitro on
monocytes/macrophages is clearly established [11,12,18]. This pilot study aimed to investi-
gate the nutraceutical potential of EVOO of 6-month EVOO intervention on monocyte’s
inflammatory status depending on the level of cardiovascular risk—dyslipidemic and
post-infarct patients compared to healthy control individuals.
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2. Materials and Methods
2.1. Recruitment of Patients

This study was conducted within the framework of the LIPIMAGE cohort, which is an
ongoing prospective study using positron emission tomography imaging to investigate the
effect of EVOO on atherosclerotic plaque progression and stability in patients at high risk
for CVD. The study was conducted according to the guidelines set out in the Declaration of
Helsinki. The protocol was approved by the Ethics Committee of the Sherbrooke University
Hospital Center (#2019-3145). Written informed consent was obtained from all subjects.

A total of 43 participants (65–85 years old) were recruited from the LIPIMAGE cohort.
Participants were distributed, according to their cardiovascular-risk level, into three groups
(Figure 1). Healthy group includes 14 healthy individuals that do not present any recent
or familial medical record with normal arterial pressure (PA): 140/85 mmHg and normal
lipid profile, a BMI comprised between 23 and 28 kg/m2, and exposing a normal ECG. The
dyslipidemic group was formed with recently diagnosed dyslipidemic patients (12 patients)
who did not receive lipid-lowering therapy throughout their 6-month participation in the
study. These patients were selected for having hypercholesterolemia with LDL-C values
between 3.5 and 5 mmol/L (excluding patients with familial hypercholesterolemia). The
third group encompassed myocardial infarction patients (17 patients) admitted to this study
at least 3 months after their infarct event as to stabilize their infarct-associated inflammation.
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Exclusion criteria for all participants were tobacco use, diabetes (HbA1c > 6%),
chronic inflammatory diseases, kidney failure, collagenases, or cancer carriers, taking anti-
inflammatories, omega-3 fatty acids, or replacement hormones for women. Participants
also taking EVOO on a usual basis (>3 times a week and in raw form) were also excluded.

Participants were asked to consume 25 mL/day of EVOO and compliance to the
intervention was checked with monthly appointments where a questionnaire was issued
and total EVOO consumed could be assessed as they gave back previous EVOO containers.
No specific recommendations regarding diet or physical activity before the study were given
to the participants. All subjects normally participated in all their daily activities without
modifications throughout the study duration. Blood collection for experiments and blood
tests were performed at recruitment and after 6 months of EVOO consumption. During
the 6 months of intervention, some participants dropped out of the study (7 dyslipidemic
and 9 post-infarction patients) for personal reasons, change of medication, problem of
compliance, or long journey. For healthy participants, we compared data obtained from
participants at the baseline to those obtained from the same number of other healthy
participants who were selected according to the same inclusion and exclusion criteria and
who were subjected to an EVOO-rich diet (25 mL/day for 6 months).

2.2. Extraction of Plasma and Purification of Monocytes

Patients’ blood was collected in heparin tubes, after which quick centrifugation
(400× g for 15 min) allowed to extract plasma. The PBMC (Peripheral Blood Mononu-
clear Cells) were then separated from the red blood cells using the Ficoll-Hypaque density
gradient centrifugation, followed by the separation of monocytes from lymphocytes on a
high-density hyper-osmotic Percoll density gradient according to Menck et al. method [19].
The isolated monocytes were then incubated at 37 ◦C in a humid environment with 5% CO2
in 12-well plates with RPMI 1640 supplemented with 10% FBS and 1% antibiotic-antimitotic.
The monocytes were stimulated for 4 h with 100 ng/mL LPS (lipopolysaccharide).

2.3. FACScan Analysis

The FACS staining was performed according to the manufacturer’s instructions (BD
bioscience). The FACScan machine used was a Cytoflex 30 (laser UV) B5-R3-V3-NUV2.
Cells were treated with 1 mL Brefeldin A (ab51-2301KZ) simultaneously with LPS stimula-
tion. After 4 h, extracellular staining was achieved using CD14 (ab557742) and CD16
(ab556618), whereas intracellular cytokine [IL-1β (ab340516), IL-6 (ab563279), TNF-α
(ab566957), IL-10 (ab554707)] staining was performed after cells fixation and permeabi-
lization (ab555028). The gating strategy used for identifying and separating monocyte
subpopulation is presented in Figure S1 (Supplementary Data).

2.4. Plasma Analysis

Cytokine levels in the plasma was assessed using a Luminex with a Human High
Sensitivity Kit #HSTCMAG-28SK-12 from Millipore Sigma, Burlington, MA, USA.

2.5. Statistical Analysis

Per-protocol analysis was used. After assessing normality using the Shapiro–Wilk test,
the results were consequently analyzed using paired t-test, Wilcoxon test, or impaired t-test
(for healthy groups) between pre- and post-intervention. ANOVA, unpaired t-test, and Mann–
Whitney test were performed to compare the different health status between groups before
and after 6 months of EVOO intervention. A p-value less than 0.05 (typically ≤ 0.05) was
considered significant. Statistical analyses were conducted on GraphPad Prism version 9.5.1.

3. Results
3.1. Study Population

Table 1 present the demographic and clinical parameters of participants from the
three groups. The selected groups were comparable in their demographic and clinical
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parameters and the only exception was the lipid parameters (total cholesterol, HDL-C,
LDL-C, non-HDL-C). Dyslipidemic patients present, at baseline, significantly higher total
cholesterol level (6.01 +/− 0.42, p < 0,05), higher LDL-C (3.56 +/− 0.38, p < 0,05), and
higher non-HDL cholesterol (4.27 +/− 0.48, p < 0,05) when compared to both healthy and
post-infarct patients (Table 1). These values underline the clinical differences between the
heathy and dyslipidemia subjects (Table 1). It is of note that the creatinine levels were also
significantly different but remained in the normal value range. Table 1 also presents the
demographic and clinical parameters of the three studied groups after the 6-month EVOO
intervention. The intervention did not significantly affect the lipid profile of these three
groups to the exception of ALT which remained in normal ranges.

Table 1. Anthropometric and clinical parameters of participants at different cardiovascular risk
level (healthy, dyslipidemic, and post-infarct patients) at baseline and after 6 months of EVOO
consumption.

Pre-Intervention Post-Intervention

Groups Healthy Dyslipidemic Post-Infarct Healthy Dyslipidemic Post-Infarct

N (% m/w) 7 (67/33) 12 (16/84) 17 (69/31) 7 5 8

Age (years) 76.36 ± 5.21 73.40 ± 4.81 72.78 ± 5.70 79.4 ± 2.07 73.40 ± 4.81 72.78 ± 5.70

Height (cm) 166.70 ± 8.86 164.11 ± 6.22 165.30 ± 10.87 166.6 ± 7.23 164.32 ± 6.22 165.31 ± 10.87

Weight (kg) 81.46 ± 25.97 63.50 ± 12.63 75.92 ± 12.32 82.00 ± 11.91 64.50 ± 12.50 77.33 ± 12.19

BMI (kg/m2) 28.94 ± 7.47 23.48 ± 3.38 27.52 ± 1.82 29.58 ± 4.25 23.77 ± 3.23 28.07 ± 1.38

Waist (cm) 107.60 ± 27.37 86.75 ± 13.82 99.10 ± 5.29 102.81 ± 14.52 85.75 ± 12.95 99.89 ± 5.09

SAP (mmHg) 143.70 ± 19.31 133.33 ± 23.92 140.4 ± 20.03 140.22 ± 31.03 134.00 ± 6.83 129.40 ± 15.64

DAP (mmHg) 81.77 ± 15.14 78.51 ± 7.05 76.44 ± 4.04 80.61 ± 12.58 76.5 ± 2.38 78.67 ± 7.14

Lp(a) (nmol/L) 57.06 ± 71.59 87.55 ± 75.85 130.20 ± 85.34 80.81 ± 54.34 81.68 ± 74.18 125.7 ± 95.25

ALT (UI/L) 19.57 ± 6.10 17.25 ± 4.43 58.89 ± 70.42 15.63 ± 7.30 18.5 ± 4.2 * 36.33 ± 26.66

AST (UI/L) 20.29 ± 4.45 20.25 ± 1.89 43.11 ± 46.95 18.2 ± 5.07 22.67 ± 6.35 33.71 ± 23.64

CRP (mg/L) 1.76 ± 1.61 1.7 ± 0.89 2.26 ± 3.09 1.58 ± 1.24 1.78 ± 1.1 1.46 ± 1.08

TC (mmol/L) 4.88 ± 0.63 +- 6.01 ± 0.42 *+ 3.04 ± 0.52 *- 4.54 ± 1.21 6.39 ± 0.75 3.12 ± 0.49

TG (mmol/L) 1.21 ± 0.60 0.86 ± 0.14 1.17 ± 0.6 0.93 ± 0.20 0.83 ± 0.17 1.44 ± 0.98

C-HDL (mmol/L) 1.58 ± 0.49 2.06 ± 0.69 * 1.08 ± 0.23 * 1.49 ± 0.40 2.27 ± 0.72 1.08 ± 0.28

C-LDL (mmol/L) 2.75 ± 0.47 - 3.56 ± 0.38 * 1.43 ± 0.54 *- 2.63 ± 0.96 3.74 ± 0.26 1.38 ± 0.45

TC/HDL 3.33 ± 0.90 3.23 ± 1.16 2.91 ± 0.75 3.13 ± 0.57 3.03 ± 0.94 2.98 ± 0.59

Non-HDL (mmol/L) 3.28 ± 0.54 +- 4.27 ± 0.48 *+ 1.96 ± 0.54 *- 3.05 ± 0.50 4.12 ± 0.31 2.04 ± 0.4

HbA1c (%) 5.58 ± 0.32 5.35 ± 0.45 5.74 ± 0.41 5.58 ± 0.37 5.35 ± 0.41 5.81 ± 0.62

SAP: Systolic arterial pressure. DAP: Diastolic arterial pressure, ALT: Alanine transaminase. AST: Aspartate
transaminase. BMI: Body Mass Index. In Pre-intervention: + p < 0.05 between healthy and dyslipidemia, - p < 0.05
between healthy and post-infarct, * p < 0.05 between dyslipidemia and post-infarct. In Post-intervention: * p < 0.05
V1 & V2 of the same health status group.

3.2. Monocyte Subpopulation Distribution and Polarization by LPS and EVOO Effect

First, we determined the monocyte subpopulations (classical, intermediate, and non-
classical) in the three groups of subjects. Our data do not indicate any significant difference
in the monocyte subpopulation distribution between the three groups (Figure 2A). When
the polarization in classical monocyte was induced by LPS, we found that all three groups of
patients were able to similarly shift their monocyte subsets into the classical phenotype with-
out any significant discrepancy among the groups (Figure 2B). Interestingly, 6-month EVOO
intervention did not induce any significant changes in monocyte distribution whether it be
at quiescence and under LPS stimulation (Figure 2C,D).
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Figure 2. Monocyte sub-population distribution (%) across health status at quiescent state and
polarization of these subsets with LPS and effect of EVOO on these parameters. (A) Distribution
of monocyte subpopulation at quiescent state by health status. (B) Distribution of monocyte sub-
population after 4 h of LPS stimulation for each condition before intervention. (C) Difference in
classical monocyte (%) between pre and post EVOO intervention for dyslipidemia and post-infarct
patients. (D) Distribution of monocyte subpopulation after 4 h of LPS stimulation for each condition
after EVOO intervention. H: healthy participants (n = 7 before and 7 after). D: dyslipidemic patients
(n = 12 before and 5 after) and I: post-infarct patients (n = 17 before and 8 after).

3.3. Production of Cytokines by Monocyte Sub-Populations with and without Stimulation and
Effect of EVOO Intervention

We subsequently determined the production of IL-1β in various monocyte subpop-
ulations in the three subject’s groups. Our results showed significant differences in the
production of IL-1β between the three groups. Monocytes from dyslipidemic patients
produce significantly less IL1-β compared to healthy subjects (p < 0.05) (Figure 3A). Fur-
thermore, the post-infarct patients also produce less IL1-β than healthy subjects (p < 0.05).
We could not find significant differences between dyslipidemic and post-infarct patients
with respect to IL-1β production. When we consider the production of IL1β by subpopu-
lations, we found that only post-infarct patients showed a significant reduction in IL1-β
secretion in intermediate and almost significant in classical monocytes (Figure 3A).
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(n = 17 before and 8 after).

All monocytes, regardless of the donor’s health status (healthy, dyslipidemic, or post-
infarct) increased the production of inflammatory cytokines (IL-1β) when stimulated with
LPS with variability in the scale of the increase. When we consider the IL-1β production
after LPS stimulation in the three groups of participants, our data do not show significant
differences between groups at baseline (Figure 3B). However, after 6-month intervention
with EVOO, dyslipidemic patients presented a significant decrease in IL-1β production
compared to healthy subjects (Figure 3B). Our results also showed that only post infarct
patients significantly increased IL-1β production in the intermediate subset (+68% average
increase in median fluorescence, p < 0.05) and in the whole monocyte population (+47% in
average increase in median fluorescence, p < 0.05) following 6 months with EVOO interven-
tion (Figure S2). No significant changes were observed in other subsets suggesting that the
significant increase in IL-1β in whole monocyte population is due solely to intermediate
monocyte activity.

Figure 4A,B present the level of IL-6 production in the three groups of patients at
baseline and after 6 months of supplementation with EVOO. No significant differences
or trend emerges between the three groups. Similarly, stimulation with LPS do not show
significant differences. However there appears to be a higher potential for IL-6 secretion
in dyslipidemic and post-infarct patients. The EVOO intervention did not significantly
impact the LPS response of monocytes from different groups (Figure 4B). Similar results
were found for IL-6 production by monocytes at baseline and after 6-month intervention
with EVOO (result not shown). It is of note that, at the baseline (pre-intervention), even if
LPS levels of IL-6 production do not differ significantly between groups, when accounting
for the difference between steady state and stimulated state, a significant difference in IL-6
production is observed between healthy and dyslipidemic and post-infarct patients as well
(Figure S3 Supplementary Data).
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Figure 4. Production of IL-6 by monocyte sub-populations with and without LPS stimulation and
effect of EVOO intervention. (A) Pre-intervention cytokine production by monocyte sub-populations
at quiescent state for each patient group. (B) Pre-and post-intervention cytokine production for the
whole monocyte population after 4 h of LPS stimulation for each patient/group. The presented values
correspond to the measurement of the median fluorescence for IL-6. H: (n = 7 before and 7 after).
D: dyslipidemic patients (n = 12 before and 5 after) and I: post-infarct patients (n = 17 before and 8 after).

Conversely, monocytes at quiescence, either classical or intermediate, from dyslipi-
demic patients present a decreased production of IL-10 cytokine than healthy and post-
infarct patients (Figure 5A). The trends persisted although the smaller sample made those
differences not significant (p < 0.09) (Figure 5B). Interestingly, EVOO intervention did not
significantly impact IL-10 production whether it be at quiescent state (results not shown) or
stimulated (Figure 5B) and for both healthy, dyslipidemic, and post infarct patients.
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Figure 5. Production of IL-10 by monocyte sub-populations with and without LPS stimulation and
effect of EVOO intervention. (A) Pre-intervention cytokine production by monocyte sub-population
at quiescent state for each patient group. (B) Pre-and post-intervention cytokine production for the
whole monocyte population after 4 h of LPS stimulation for each patient and group. The presented
values represent measurement of the median fluorescence for IL-10. H: healthy participants (n = 7
before and 7 after). D: dyslipidemic patients (n = 12 before and 5 after) and I: post-infarct patients
(n = 17 before and 8 after). ns = nonsignificant.

Figure 6A,B present the TNF-α production by monocytes of patients from the three
groups of patients. As for IL-10, our results do show significant differences between groups
in the capacity of their monocytes to secrete TNF-α at quiescence (Figure 6A) or after
stimulation with LPS (Figure 6B). The EVOO intervention did not significantly modulate
TNF-α production in monocytes whether stimulated by LPS or in non-stimulated state.
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Figure 6. Production of TNF-α by monocyte sub-populations with and without LPS stimulation and
effect of EVOO intervention. (A) Pre-intervention cytokine production by monocyte sub-population
at quiescent state for each patient group. (B) Pre- and post-intervention cytokine production for
the whole monocyte population after 4 h of LPS stimulation for each patient/group. The presented
values correspond to the measurement of the median fluorescence for TNF-α. H: healthy participants
(n = 7 before and 7 after). D: dyslipidemic patients (n = 12 before and 5 after) and I: post-infarct
patients (n = 17 before and 8 after).

3.4. Plasma Cytokine Levels

The plasma cytokine levels (IL-1, IL-6, IL-10, and TNF-alpha) were also analyzed.
EVOO intervention did not significantly induce significant changes in these cytokines
levels whether it be in healthy, dyslipidemic, or post infarct patients (Figure 7).

Nutrients 2023, 15, x FOR PEER REVIEW 9 of 14 
 

 

modulate TNF-α production in monocytes whether stimulated by LPS or in non-stimu-
lated state. 

 

 

Figure 6. Production of TNF-α by monocyte sub-populations with and without LPS stimulation and 
effect of EVOO intervention. (A) Pre-intervention cytokine production by monocyte sub-population 
at quiescent state for each patient group. (B) Pre- and post-intervention cytokine production for the 
whole monocyte population after 4 h of LPS stimulation for each patient/group. The presented val-
ues correspond to the measurement of the median fluorescence for TNF-α. H: healthy participants 
(n = 7 before and 7 after). D: dyslipidemic patients (n = 12 before and 5 after) and I: post-infarct 
patients (n = 17 before and 8 after).  

3.4. Plasma Cytokine Levels 
The plasma cytokine levels (IL-1, IL-6, IL-10, and TNF-alpha) were also analyzed. 

EVOO intervention did not significantly induce significant changes in these cytokines lev-
els whether it be in healthy, dyslipidemic, or post infarct patients (Figure 7). 

 
Figure 7. Cytokine concentration of IL-1β   , IL-6,   IL-10,   and TNF-α   in the plasma. (A) 
Healthy control subjects, (B) dyslipidemic, and (C) post infarct patients at baseline and after 6-
month EVOO intervention V1: Pre-EVOO intervention and V2: Post-EVOO intervention. H: Healthy 

0

10

20

30

40

50

pg
/m

l

V1               V2 V1               V2 V1               V2 V1               V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1          V2 V1        V2 V1         V2 V1         V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1           V2 V1           V2 V1          V2 V1          V2
IL-1β IL-6 IL-10 TNF-α

A

B

C

0

500

1,000

1,500

2,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Classical Non 
Classical

All Monocytes
H D  I H I H D I H DD
Intermediate

I
0

20,000

40,000

60,000

80,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Pre-intervention Post-intervention

H D I H D I

A B

Figure 7. Cytokine concentration of IL-1β

Nutrients 2023, 15, x FOR PEER REVIEW 9 of 14

modulate TNF-α production in monocytes whether stimulated by LPS or in non-stimu-
lated state. 

Figure 6. Production of TNF-α by monocyte sub-populations with and without LPS stimulation and 
effect of EVOO intervention. (A) Pre-intervention cytokine production by monocyte sub-population 
at quiescent state for each patient group. (B) Pre- and post-intervention cytokine production for the 
whole monocyte population after 4 h of LPS stimulation for each patient/group. The presented val-
ues correspond to the measurement of the median fluorescence for TNF-α. H: healthy participants 
(n = 7 before and 7 after). D: dyslipidemic patients (n = 12 before and 5 after) and I: post-infarct 
patients (n = 17 before and 8 after). 

3.4. Plasma Cytokine Levels 
The plasma cytokine levels (IL-1, IL-6, IL-10, and TNF-alpha) were also analyzed.

EVOO intervention did not significantly induce significant changes in these cytokines lev-
els whether it be in healthy, dyslipidemic, or post infarct patients (Figure 7).

Figure 7. Cytokine concentration of IL-1β  , IL-6,   IL-10,   and TNF-α   in the plasma. (A) 
Healthy control subjects, (B) dyslipidemic, and (C) post infarct patients at baseline and after 6-
month EVOO intervention V1: Pre-EVOO intervention and V2: Post-EVOO intervention. H: Healthy 

0

10

20

30

40

50

pg
/m

l

V1    V2 V1    V2 V1  V2 V1   V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1          V2 V1        V2 V1         V2 V1         V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1           V2 V1   V2 V1      V2 V1    V2
IL-1β IL-6 IL-10 TNF-α

A

B

C

0

500

1,000

1,500

2,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Classical Non 
Classical

All Monocytes
H D  I H I H D I H DD
Intermediate

I
0

20,000

40,000

60,000

80,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Pre-intervention Post-intervention

H D I H D I

A B

, IL-6

Nutrients 2023, 15, x FOR PEER REVIEW 9 of 14 
 

 

modulate TNF-α production in monocytes whether stimulated by LPS or in non-stimu-
lated state. 

 

 

Figure 6. Production of TNF-α by monocyte sub-populations with and without LPS stimulation and 
effect of EVOO intervention. (A) Pre-intervention cytokine production by monocyte sub-population 
at quiescent state for each patient group. (B) Pre- and post-intervention cytokine production for the 
whole monocyte population after 4 h of LPS stimulation for each patient/group. The presented val-
ues correspond to the measurement of the median fluorescence for TNF-α. H: healthy participants 
(n = 7 before and 7 after). D: dyslipidemic patients (n = 12 before and 5 after) and I: post-infarct 
patients (n = 17 before and 8 after).  

3.4. Plasma Cytokine Levels 
The plasma cytokine levels (IL-1, IL-6, IL-10, and TNF-alpha) were also analyzed. 

EVOO intervention did not significantly induce significant changes in these cytokines lev-
els whether it be in healthy, dyslipidemic, or post infarct patients (Figure 7). 

 
Figure 7. Cytokine concentration of IL-1β   , IL-6,   IL-10,   and TNF-α   in the plasma. (A) 
Healthy control subjects, (B) dyslipidemic, and (C) post infarct patients at baseline and after 6-
month EVOO intervention V1: Pre-EVOO intervention and V2: Post-EVOO intervention. H: Healthy 

0

10

20

30

40

50

pg
/m

l

V1               V2 V1               V2 V1               V2 V1               V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1          V2 V1        V2 V1         V2 V1         V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1           V2 V1           V2 V1          V2 V1          V2
IL-1β IL-6 IL-10 TNF-α

A

B

C

0

500

1,000

1,500

2,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Classical Non 
Classical

All Monocytes
H D  I H I H D I H DD
Intermediate

I
0

20,000

40,000

60,000

80,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Pre-intervention Post-intervention

H D I H D I

A B

, IL-10

Nutrients 2023, 15, x FOR PEER REVIEW 9 of 14 
 

 

modulate TNF-α production in monocytes whether stimulated by LPS or in non-stimu-
lated state. 

 

 

Figure 6. Production of TNF-α by monocyte sub-populations with and without LPS stimulation and 
effect of EVOO intervention. (A) Pre-intervention cytokine production by monocyte sub-population 
at quiescent state for each patient group. (B) Pre- and post-intervention cytokine production for the 
whole monocyte population after 4 h of LPS stimulation for each patient/group. The presented val-
ues correspond to the measurement of the median fluorescence for TNF-α. H: healthy participants 
(n = 7 before and 7 after). D: dyslipidemic patients (n = 12 before and 5 after) and I: post-infarct 
patients (n = 17 before and 8 after).  

3.4. Plasma Cytokine Levels 
The plasma cytokine levels (IL-1, IL-6, IL-10, and TNF-alpha) were also analyzed. 

EVOO intervention did not significantly induce significant changes in these cytokines lev-
els whether it be in healthy, dyslipidemic, or post infarct patients (Figure 7). 

 
Figure 7. Cytokine concentration of IL-1β   , IL-6,   IL-10,   and TNF-α   in the plasma. (A) 
Healthy control subjects, (B) dyslipidemic, and (C) post infarct patients at baseline and after 6-
month EVOO intervention V1: Pre-EVOO intervention and V2: Post-EVOO intervention. H: Healthy 

0

10

20

30

40

50

pg
/m

l

V1               V2 V1               V2 V1               V2 V1               V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1          V2 V1        V2 V1         V2 V1         V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1           V2 V1           V2 V1          V2 V1          V2
IL-1β IL-6 IL-10 TNF-α

A

B

C

0

500

1,000

1,500

2,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Classical Non 
Classical

All Monocytes
H D  I H I H D I H DD
Intermediate

I
0

20,000

40,000

60,000

80,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Pre-intervention Post-intervention

H D I H D I

A B

and TNF-α

Nutrients 2023, 15, x FOR PEER REVIEW 9 of 14

modulate TNF-α production in monocytes whether stimulated by LPS or in non-stimu-
lated state. 

Figure 6. Production of TNF-α by monocyte sub-populations with and without LPS stimulation and 
effect of EVOO intervention. (A) Pre-intervention cytokine production by monocyte sub-population 
at quiescent state for each patient group. (B) Pre- and post-intervention cytokine production for the 
whole monocyte population after 4 h of LPS stimulation for each patient/group. The presented val-
ues correspond to the measurement of the median fluorescence for TNF-α. H: healthy participants 
(n = 7 before and 7 after). D: dyslipidemic patients (n = 12 before and 5 after) and I: post-infarct 
patients (n = 17 before and 8 after). 

3.4. Plasma Cytokine Levels 
The plasma cytokine levels (IL-1, IL-6, IL-10, and TNF-alpha) were also analyzed.

EVOO intervention did not significantly induce significant changes in these cytokines lev-
els whether it be in healthy, dyslipidemic, or post infarct patients (Figure 7).

Figure 7. Cytokine concentration of IL-1β  , IL-6,   IL-10,   and TNF-α   in the plasma. (A) 
Healthy control subjects, (B) dyslipidemic, and (C) post infarct patients at baseline and after 6-
month EVOO intervention V1: Pre-EVOO intervention and V2: Post-EVOO intervention. H: Healthy 

0

10

20

30

40

50

pg
/m

l

V1    V2 V1    V2 V1  V2 V1   V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1          V2 V1        V2 V1         V2 V1         V2
IL-1β IL-6 IL-10 TNF-α

0

10

20

30

40

50

pg
/m

l

V1           V2 V1   V2 V1      V2 V1    V2
IL-1β IL-6 IL-10 TNF-α

A

B

C

0

500

1,000

1,500

2,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Classical Non 
Classical

All Monocytes
H D  I H I H D I H DD
Intermediate

I
0

20,000

40,000

60,000

80,000

M
ed

ia
n 

flu
or

es
ce

nc
e

Pre-intervention Post-intervention

H D I H D I

A B

in the plasma.
(A) Healthy control subjects, (B) dyslipidemic, and (C) post infarct patients at baseline and after 6-
month EVOO intervention V1: Pre-EVOO intervention and V2: Post-EVOO intervention. H: Healthy
(n = 7 at visit 1 (V1) and 6 at visit 2 (V2)). D: dyslipidemic patients (n = 12 at V1 and 6 at V2) and
I: post-infarct patients (n = 17 at V1 and 8 at V2).
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4. Discussion

Cardiovascular diseases, despite the numerous treatments, continue to generate a
great morbidity and mortality. Inflammation, which plays a critical role in CVD, has been
targeted by various interventions including the nutraceutical ones. In this paper we studied
the effect of EVOO intake on monocyte phenotypes as well their cytokine production. Our
results did not show any changes in either monocyte phenotypes or cytokine production
by monocytes after 6-month of EVOO intake regardless of the cardiovascular risk level
(healthy, dyslipidemic, or post-infarction).

Most studies in the literature on CVD point out that there could be differences in
subpopulation distribution in infarcts and dyslipidemia, mainly that classical monocyte
subsets would diminish whereas intermediate subsets increase [20]. In contrast, several
other studies did not observe differences in monocytes subpopulation distribution whether
it be in hypercholesterolemia [21], in CHD [22], or in CAD [23]. In the present study, our
results did not show significant differences between monocyte subpopulation distribution
among the three studied groups. However, we can notice that the tendencies are the same as
the clinical studies showing significant phenotype differences—more intermediate and less
classical monocyte in dyslipidemia and post-infarct patients compared to healthy control
subjects. It is of note that all patients with dyslipidemia, in the present study, were free of
any lipid-lowering treatment, which is quite different from other studies in which treated
and non-treated patients as well as obese or diabetic patients are mixed [24,25]. Therefore,
these results may have some clinical importance even if the statistical significance level was
not reached.

Regarding cytokines production from dyslipidemic patients, our studied population
presents a low and homogeneous levels of IL-10 compared to healthy control individuals,
while there is a high diversity of pro-inflammatory signals due to numerous inflammatory
cytokines and other pro-inflammatory mediators which are known to play a role in the
development of atherosclerosis. In contrast, this cannot be said for anti-inflammatory
signals where IL-10 and TGF-β are the main counterbalance for the local and systemic
inflammation. The monocytes from the dyslipidemic group in our study could be in an
inflammatory state, not because they have high levels of pro-inflammatory cytokines but
because they present a homogeneous profile of low anti-inflammatory cytokines—IL-10.
This finding correlates with the data from Collado et al. [26] where IL-10 levels in plasma
and production by T-lymphocytes was significantly lower in primary hypercholesterolemic
patients. This underlines the necessity not to study only the pro-inflammatory but also the
anti-inflammatory mediators to establish a balance among them.

Surprisingly, the inflammatory status in dyslipidemic patients was more significant
than that of post-infarction patients. However, it should be noted that our group of post-
infarction patients are over-medicated in connection with their medical condition. On top
of the statins, they have anti-inflammatories, antiplatelets, β-blockers, and many other
medications. This set of drugs has a strong anti-inflammatory effect which could explain
the fact that monocytes from post-infarct patients do not show an inflammatory activity.
As a matter of fact, they show significantly less inflammation for the studied parameters
than healthy controls with less IL-1β—a cytokine found to be impacted by statin treatment
in most studies [27–29].

Stimulation of monocytes with LPS induced a comparable monocyte response regard-
less of patient group—healthy, dyslipidemic, or post-infarction. Thus, none of the patient
groups showed an alteration in the response of monocytes to LPS stimulation (Figure S2).
These results seem to be concordant that no changes in monocyte subpopulations were
found in non-stimulated state. Even if we did not study specifically the trained immunity,
our results seem to indicate that the monocyte of dyslipidemic and post-infarct patients
from our cohorts are not in a hyper-activated state.

Surprisingly, EVOO intervention induced a significant increase in the IL-1β by mono-
cytes of post-infarct patients when no other cytokines did. Since this increase in IL-1β
did not happen concurrently with other inflammatory cytokines, this may suggest that
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the underlying transcription factor modulated by the intervention must not be the NF-κB
pathway but rather via NLRP3 inducing the inflammasome pathway. It has been shown
that an increase in IL-1β in the heart of post-infarct patients could have a positive effect
by inhibiting ventricular remodeling/fibrosis [30,31]. Measurement of plasma IL-1β and
other inflammatory cytokines (IL-6 and TNF-α) did not show significant change following
EVOO intervention. Nevertheless, we should keep in mind that systemic inflammation is
not always correlated to monocytic activity as it is only one of the numerous inflammation-
modulating actors as cytokines producers also group lymphocytes, polymorphonuclear
leukocytes (PMN), endothelial and epithelial cells, adipocytes, and connective tissue [32].
Moreover, when looking at the production of cytokines of all monocytes, it is hard to
separate the effect of the distribution of the subpopulation into a more active phenotype
in terms of cytokine secretion than the differences between monocyte subclasses cytokine
secretion alteration.

We should note that clinical trials have not reached a consensus on the effect of EVOO
on monocyte-inflammatory activity because the results obtained greatly vary between trials.
The disparity of the results could be attributed to many factors like the quantity of EVOO
used in the supplementation, as the absorption is dose-dependent [33], or the quality of the
EVOO that includes the conservation conditions of the EVOO used (4 ◦C and protected
from light). Moreover, although the cardioprotective effect of EVOO is well established, the
results of a meta-analysis of prospective cohort studies showed that the beneficial effect of
EVOO increases with the daily dose with no additional benefits beyond 20 g/day on CVD
risk reduction and all-cause mortality [34].

In the circulation, phenolic compounds are only present in nanomolar quantities [35]
and the increase in the antioxidant capacity-associated with phenolic compounds in the
plasma stays noticeable only 1–2 h after phenolic compounds intake [36]. These polyphenols
probably might affect individuals via cell signaling as it has been demonstrated in vivo [37]
and not through systemic oxidative stress reduction. However, there is another parameter
that needs to be considered for the postprandial effect, that is the digestion of the major
components of EVOO and monounsaturated fats (MUFA). Some studies have shown that
EVOO alone may affect the endothelium function during the postprandial phase [38,39].
Conversely, the beneficial effect of EVOO is significantly improved with an antioxidants-
rich diet [40]. Olive oil might only be able to show its beneficial potential when taken
concurrently with a Mediterranean diet, not a North American one [39,41]. All these
considerations may explain why our EVOO treatment could not result into a concrete effect
on monocyte subpopulations and cytokine production.

5. Conclusions

Our study demonstrates that there is no significant shift in monocytes subpopulation
between the three patient groups studied as well as in the pro-inflammatory cytokine
production. Small trends in dyslipidemic patients were found towards inflammatory
monocytes subsets and in decreased anti-inflammatory cytokine production. The EVOO
treatment alone could not be demonstrated beneficial for the monocyte homeostasis. Future
studies are needed to evaluate how dyslipidemic patients could be targeted for more
drastic anti-inflammatory treatment to decrease this risk factor to progress towards overt
CVD. Moreover, elucidating the impact of EVOO on oxidative capacity of monocytes
simultaneously with their inflammatory profile might be of interest.

Strengths of the study: The patient selection was very thorough with stringent criteria
as our dyslipidemic patients are untreated and are not diabetic. Moreover, the cytokines
observed encompass pro inflammatory as well as anti-inflammatory cytokines which
allows a more complete assessment of inflammatory status of monocytes. The addition of
plasma cytokines allows separating the monocyte inflammatory state from the systemic
inflammatory condition. The patient compliance to the EVOO uptake was very closely
monitored throughout the 6-month intervention.
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Limitations of the study: We should note that our study has several limitations.
The first limitation is the relatively small number of patients as the stringent exclusion
criteria made recruitment challenging. Moreover, some participants dropped out of the
intervention due to the follow-up requirements or for personal reasons. As a result, we
had patients for whom we could not have data for the second visit (after 6 months of
intervention with the EVOO). The second limitation is related to the absence of control over
the concomitant diet of the enrolled subjects. The last limitation could be that these subjects
were maybe more aware of their health by following a better lifestyle when deciding to
take part in the study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15173819/s1, Figure S1: Gating strategy for identification of
monocyte subsets.; Figure S2: Effect of EVOO on IL-1b production in dyslipidemic and post-infarct
patients. IM: intermediate monocytes, CM: classical monocytes, NCM: non-classical monocytes, all
monocytes. * p < 0.05.; Figure S3: Median fluorescence differential between LPS stimulated Classical
monocyte and Classical monocytes at quiescence for each studied cytokine pre-intervention. (A) for
IL-1β and IL-10. (B) for TNF-α and IL-6. Acronyms H represents Healthy. D represents Dyslipidemia
and I represents the post-infarcts patient cohorts. * p < 0.05; Figure S4: Estimated Paired T-test for
IL-1β. IL-10. TNF-α and IL-6. No significant differences where observed.
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