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Abstract: The impact of host–microbiome interactions on cognitive health and disease has received
increasing attention. Microbial-derived metabolites produced in the gut are one of crucial mechanisms
of the gut–brain axis interaction, showing attractive perspectives. Urolithins (Uros) are gut microbial-
derived metabolites of ellagitannins and ellagic acid, whose biotransformation varies considerably
between individuals and decreases greatly with age. Recently, accumulating evidence has suggested
that Uros may have specific advantages in preventing brain aging including favorable blood–brain
barrier permeability, selective brain distribution, and increasingly supporting data from preclinical
and clinical studies. However, the usability of Uros in diagnosis, prevention, and treatment of
neurodegenerative diseases remains elusive. In this review, we aim to present the comprehensive
achievements of Uros in age-related brain dysfunctions and neurodegenerative diseases and discuss
their prospects and knowledge gaps as functional food, drugs, or biomarkers against brain aging.
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1. Introduction

To date, the population of dementia is approximately 45 million worldwide (this
number will double if mild cognitive impairment (MCI) is included), and this population is
expected to triple (approximately 130 million) by 2050 [1]. As the population of older adults
is increasing, interest in the aging brain and the quest for “healthy brain aging” is growing.
Modern medicine and nutrition evidence has confirmed that polyphenol consumption
is an effective strategy in delaying brain aging [2]. However, the poor bioavailability of
dietary polyphenols in vivo is contradictory to their health benefits [3,4]. Recently, there
has been increasing evidence suggesting that the health benefits of polyphenols are mainly
based on: (1) Polyphenols being either directly absorbed or in most cases converted into
bioactive metabolites by gut microbiota and then get to the target tissues; (2) Polyphenols
reshaping the gut microbiome during their bidirectional interaction. In addition, microbial-
derived metabolites of polyphenols can be used as biomarkers to predict individual health
status or even the efficacy of some drugs in vivo [5]. Over the past decade, research
on gut microbiota and the gut–brain axis has brought increasingly new insights into
humans [6]. Several pathways have been confirmed in the communication of the gut
microbiota and the brain: (1) neuroendocrinology: the gut cells secrete a large amount of
the signaling molecules in neuroendocrinology which can be influenced by gut microbiota;
(2) neuroimmunity: the GI tract itself is the largest immune organ to stress response and
the gut microbiota can promote immune cells to produce cytokines that can affect the
brain; (3) neurotransmitters: the gut microbiota can affect the neurotransmitter secretion
directly (several neurotransmitters, including acetylcholine, dopamine, noradrenaline, and
serotonin can be synthesized by gut bacteria) and indirectly; and (4) microbial-derived
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metabolites: neuroactive metabolites mediate bidirectional interactions between the gut,
gut microbiome, and the brain to modulate host neurophysiology and behavior [7–9].

As many of the host–microorganism interactions pertaining to human health are
mediated by metabolites, interest in the microbial-derived metabolites has been increas-
ing [10–12]. Among these active metabolites, urolithins (Uros), the gut bacterial metabolites
of ellagitannins (ETs) and ellagic acid (EA), have shown to be beneficial in delaying many
age-related diseases such as cancer (especially prostate, breast, and colorectal cancers), car-
diovascular diseases, and chronic metabolic disorders (diabetes and hyperuricemia) [13–18].
Recently, growing evidence has supported the multiple health benefits of Uros against brain
aging and the therapeutic potential for neurodegenerative diseases [17,19–22]. Moreover,
Uros have been proposed as biomarkers of gut dysbiosis and disease stage in Parkinson’s
patients [23]. Herein, we aim to review the recent achievements of Uros in brain aging and
neurodegenerative diseases, with a particular emphasis on their therapeutic targets and
mechanisms and discuss their prospects and knowledge gaps.

2. Overview and Advantage of Uros

Uros are gut metabolites derived from ETs and EA, which are richly available in
many fruits (pomegranates, berries), nuts (walnuts), wood-aged wine, and some medicinal
plants (galla chinensis, chebulae fructus, and seabuckthorn leaf) [12]. ETs and EA have
very poor bioavailability in vivo and are converted into Uros by intestinal microbes in the
colon, which are believed to be responsible for their biological activities [24,25]. ETs are a
group of important dietary polyphenols and hydrolysable tannins that share a common
core, hexahydroxydiphenoyl (HHDP), and differ in the number of monomer residues. ETs
are mainly hydrolyzed to EA in the upper GI tract (stomach and small intestine), and
most of the EA is converted to Uros in the lower GI tract (mainly in the colon) [25–27].
Uros are 6H-dibenzo [b, d] pyran-6-one derivatives which differ in their hydroxyl groups.
The family includes the main end metabolites, dihydroxy derivatives UroA, Iso-UroA
and monohydroxy derivative UroB, and other intermediates UroC, UroD, UroE, UroM-5,
UroM-6, and UroM-7. Overall, UroA is the main metabolite produced in humans, which
demonstrates the highest concentrations in plasma and urine, and remains high for days
after the consumption of ET-rich food [28–30].

The bioconversion of Uros from ETs and EA varies considerably between individuals.
Some individuals can produce high plasma concentrations of Uros (high Uro producers),
while others cannot produce significant levels of Uros (low Uro producers). Additionally,
Uro producers can also be classified into “metabotype A” (only high concentration of UroA
is produced), and “metabotype B” (more Iso-UroA and/or UroB in comparison to UroA is
produced) [31]. Therefore, the consumption of dietary ETs will produce different health
benefits in high or low Uro producers, and those with different metabolic phenotypes.
The different capacities for excreting Uros are mainly attributed to the variability of gut
microbiota ecology, and vary with age, health status, dietary intake, obesity, and digestive
organ surgery [32,33]. Notably, age is a key factor that affects the bioconversion of Uros. The
bioconversion of Uros significantly decreases with aging. According to clinical observations,
approximately 10% of individuals (aged 5–90) are non-Uro producers, and only 40% of
elderly people (>60) can produce meaningful levels of Uros from dietary precursors [34].
Therefore, Uro supplementation may be a good alternative for certain individuals (e.g.,
elderly people) to meet the required healthy Uro level [35].

In comparison to precursors and live bacteria, Uros possess clear chemical structure,
good bioavailability, and high safety in animals and humans [36,37]. Recently, two multi-
center clinical trials showed that long-term (4-month) oral administration of UroA is safe
and well tolerated [38,39]. Moreover, UroA is considered as GRAS (generally recognized as
safe) for its use in food products by the Food and Drug Administration (FDA) [40]. Notably,
Uros can also pass through the blood–brain barrier (BBB) and distribute in a brain-targeted
manner after absorption [17,41,42], which may greatly facilitate their activities in the central
nervous system (CNS), while other ET derivatives cannot cross the BBB. Additionally, as
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increasing evidence supporting the involvement of the gut metabolites in human health
and diseases, metabolite-based treatment has been considered as a novel and promising
therapeutic approach. It can overcome limitations and deficiencies of microbiome-based
treatment (probiotics and prebiotics supplementation or fecal microbiome transplantation),
such as colonization resistance and inter-individual variation in microbial composition [43].
Microbial-derived metabolites may be able to provide an improved efficacy (safety, stability,
and individual variation) by exerting a beneficial host effect downstream of the microbiome.
Collectively, these findings highlight the advantages of Uros in developing into functional
food or drugs.

Many studies have investigated the biotransformations of ETs and EA to Uros. ETs are
first converted into EA, facilitated by physiological pH and/or microbial enzymes such
as tannin–hydrolase and lactonase. EA is then catalyzed by several microbial enzymes,
including lactonase, decarboxylase, dehydroxylases, methyl esterases, and hydrolases, to
produce Uros in the colon [25]. The metabolic pathways associated with these enzymes
have been elucidated. Recently, several Uro-producing gut bacteria have been identified
that can facilitate the conversion of EA to Uros in vitro [44–46]. Therefore, in addition to
the chemical synthesis of Uros, the biotransformation of Uros with bacteria or enzymes
in vitro in the near future can be expected [28,47].

As previously described, the consumption of dietary polyphenols is highly correlated
with human health and the risk of neurodegenerative diseases [12]. Dynamic two-way
communications between the gut, gut microbiome, and the CNS have been considered an
increasingly vital factor for cognitive health and disease. Novel perspectives suggest that
microbial-derived metabolites of polyphenols can be used as biomarkers to predict the risk
of neurodegenerative diseases [48]. Therefore, in addition to the potential as functional food
or drugs, Uros may be potential biomarkers of age-related cognitive decline and related
disorders, which is mainly based on the following: (1) As bioactive metabolites, they exert
multiple health benefits against brain aging and related diseases (which we will discuss
below in detail); (2) the level of Uros in baseline is an indicator of personalized nutrition
status (the consumption of dietary polyphenols in individuals, particularly for ETs and
EA consumption), which is highly correlated with the risk of neurodegenerative diseases;
(3) the level of Uros after consuming ET- or EA-rich food is an indicator of individual
metabotypes associated with specific gut microbial ecologies (gut microbiota composition
and functionality), which is tightly involved in neurodegenerative diseases. A recent study
based on 52 patients and 117 healthy individuals showed that gut dysbiosis occurred
during the onset and progression of Parkinson’s disease (PD) and the concentration of
Uros in urine was highly associated with the severity of gut dysbiosis and PD in elderly
people [23].

3. Preclinical and Clinical Studies

As UroA and UroB are the most abundant final metabolites in vivo, they are the
most widely studied Uros across species, particularly UroA. Accumulating preclinical
studies have demonstrated the beneficial effects of UroA and UroB on age-related brain
dysfunctions. The cell studies in vitro are summarized in Table 1. Although these studies
all demonstrated the neuroprotective effect of Uros in aging conditions such as oxidative
stress, inflammation, and high concentrations of glucose, the treatment conditions in
different laboratories and the sensitivity of different cells to Uros varied considerably. The
animal studies in vivo are summarized in Table 2. Uros administration has been shown
significantly improve cognition, learning, and memory in aged animals and animal models
of neurodegenerative diseases.

It has been reported that ET- or EA-rich food consumption improve cognition and
memory in the elderly (summarized in Table 3), whereas the effect of Uros supplementa-
tion in the elderly is still unknown. Two sequential randomized, double-blind, placebo-
controlled trials in middle-aged and older adults (aged 50–75 years) with MCI showed
that drinking 8 ounces (237 mL) of pomegranate juice every day for short-term 4 weeks



Nutrients 2023, 15, 3884 4 of 25

or long-term 12 months significantly improved performance in the Brief Visuospatial
Memory Test–Revised and Buschke Selective Reminding Test, and increased functional
brain activation during verbal and visual memory tasks (ClinicalTrials.gov Identifier:
NCT02093130) [42,49]. Moreover, cognition and memory improvement by pomegranate
juice consumption is in line with the concentration of UroA–glucuronide in plasma and
the plasma Trolox-equivalent antioxidant capacity. Additionally, berry and walnut con-
sumption are related to better cognitive function and memory performance in the elderly
with normal cognition or MCI [50–53]. Recently, several clinical trials have shown that
UroA administration improves skeletal muscle function and mitochondrial health in elderly
and middle-aged adults (ClinicalTrials.gov Identifier: NCT02655393, NCT03464500, and
NCT03283462) [37–39]. In summary, evidence supporting the role of Uros in preventing
the degeneration of brain during aging is accumulating, whereas clinical study in humans
is lacking and needs further investigation.

Table 1. Preclinical studies of Uros on brain aging in vitro cell models.

Uros Cells
Pharmacological

or Genetic
Interventions

Treatment
(Dosage and Time) Effects Findings Refs.

UroA Neuro-2a cells H2O2 (250 µM)
for 45 min

0.5 µM, 1 µM,
2 µM, 4 µM

pretreatment for 24 h
antioxidation

↑ cells viability, ↓MAO-A
and Tyrosinase, ↑ free

radical (O2− and DPPH), ↓
ROS, lipid peroxidation,
↑ peroxiredoxins expression,
↑ CAT, SOD, GR, GSH-Px,

[54]

UroA PC12 cells H2O2 (100 µM)
for 2 h

10 µg/mL, 30 µg/mL,
and 50 µg/mL

pretreatment for 24 h
antioxidation

↑ cells viability, ↓ LDH
release, ↓ apoptosis,
↓ caspase 3 and Bcl-2

[17]

UroA SK-N-MC cells H2O2 (300 µM)
for 18 h

1.25 µM, 2.5 µM,
and 5 µM

pretreatment for 6 h
antioxidation

↑ cells viability, ↓ apoptosis,
↓ ROS, Bax/Bcl-2, PARP,

cytochrome c, caspase 3/9,
p38 MAPK

[55]

UroA SH-SY5Y cells H2O2 (100 µM)
for 24 h

10 µM treatment
for 2 h, 6 h or 24 h antioxidation

↑ REDOX activity,
↓ cytotoxicity, ↓ ROS, ↓

apoptosis,
↓ caspase 3/8 and 9

[20]

UroA SH-SY5Y cells H2O2(200 µM)
for 6 h

5 µM, 7.5 µM,
10 µM, 15 µM

pretreatment for 12 h
antioxidation

↑ cells viability, ↓ ROS, ↑
SOD, CAT, ↑

PKA/CREB/BDNF
[56]

UroB Neuro-2a cells H2O2 (250 µM)
for 2 h

20 µg/mL, 40 µg/mL,
and 60 µg/mL

pretreatment for 24 h
antioxidation

↑ cells viability, ↓ ROS, ↓
apoptosis, cytotoxicity, ↓

caspase 3, ↑ Bcl-2
[57]

UroB BV-2 cells

LPS (100 ng/mL)
or LTA

(10 µg/mL)
or poly(I:C)
(25 µg/mL)

for 16 h

30 µM, 50 µM,
or 100 µM

pretreatment for 1 h

antioxidation,
anti-

inflamation

↓ NO, ROS, TNF-α,
IL-6, IL-1β, iNOS, COX-2, ↓

NF-κB, p-JNK, p-ERK,
p-Akt, AP-1, ↑ IL-10,

pAMPK, p47phox, gp91phox

[58]

UroA
mUroA

UroB
mUrOA

BV-2 cells,
SH-SY5Y cells

H2O2 (100 µM)
for 6 h;

LPS (1 µg/mL)
for 24 h

0.1 µM, 0.5 µM, 5 µM,
10 µM pretreatment for

1 h, 24 h, or 48 h

antioxidation,
anti-

inflammation

↓ apoptosis, ↓ NO,
TNF-α,NO, COX-2, IL-1,
IL-6, PGE2, ↓ caspase 3/7
and 9, ↓ oxidative stress

[19]

UroA BV-2 cells

LPS (500 ng/mL)
for 3 h, 12 h, 24 h;
IL-4 (100 ng/mL),
IL-13 (10 ng/mL)

for 24 h

10 µM
pretreatment for 12 h

anti-
inflammation

↓ IL-6, IL-1β, TNF-α, ↓ NOS,
↓ JNK/c-Jun,

↑M2 microglia polarization
[59]
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Table 1. Cont.

Uros Cells
Pharmacological

or Genetic
Interventions

Treatment
(Dosage and Time) Effects Findings Refs.

UroA BV-2 cells
LPS (1 µg/mL)
for 6 h, 12 h or

24 h

2.5 µM, 5 µM, and
10µM pretreatment for

2 h

anti-
inflammation

improved
mitochondrial

function

↓ IL-1β, iNOS, COX-2, ↓
ROS, ↑MMP, ↑ p62, ↓

LC3-II, ↑ Parkin, PINK, ↓
caspase 1, NLRP3, ↓ TOM20,

Tim23,↑mitophagy, ↑
OXPHOS

[14]

UroA,
UroB,
UroC,

mUroA
dmUroC

BV-2 cells

LPS
(100 ng/mL) for

30 min,
16 h or 24 h

3 µM, 10 µM,
30 µM

treatment for 30 min,
1 h, 16 h or 24 h

anti-
inflammation

↓ NO, TNF-α, IL-6, IL-1β,
iNOS, COX-2, ↓ pAkt,↓
pERK1/2, p38 MAPK, ↓

NF-κB

[60]

UroA BV-2 cells,
ReNcell VM cells

LPS (100 ng/mL)
for 1 h, 24 h,

or transfected
with APPSwe

2 µM, 5 µM, 10 µM
treatment for 30 min,

6 h or 48 h

anti-
inflammation,

anti-Aβ

↑ cells viability, ↓ NO,
TNFα, IL-6, ↓ Aβ, ↑ SIRT1, ↓

NF-Kb,
↑ induction of autophagic

flux

[21]

UroA SH-SY5Y cells,
iPSC-ND cells

D-glucose 25 mM
for 24 h, 48 h,

and 72 h,
Aβ (1–42) for 24 h,

48 h, and 72 h

100 nM
pretreatment for

30 min

anti-Aβ,
improved

mitochondrial
function

↓ APP, BACE1, TGM2,
Aβ(1–42), mitochondrial

calcium influx, AhR, mtROS,
↓ LDH release

[61]

UroA SH-SY5Y cells transfected with
the APP 695

1 µM,10 µM
treatment for

1 h or 24 h

improved
mitochondrial

function

↑MMP, ATP, ROS,
OXPHOS, mitochondrial

biogenesis
[62]

UroA PC12 cells
6-OHDA
(150 µM)

for 18 h or 24 h

2.5 µM, 5 µM,
10 mM treatment for 2 h

improved
mitochondrial

function

↑ cells viability, MPP
PGC-1α, SIRT1, TFAM, ↓

apoptosis, ↑ APP, ↓ ROS, ↓
mitochondria damage

[63]

UroA
DHA+
LUT+
UroA

BE(2)-M17 cells
oligomeric Aβ1–42

(20 µM)
for 72 h

5 µM to 40 µM
pretreatment for 24 h,
5 µM (combination)

pretreatment for 24 h

anti-Aβ
↑ cells viability,
↓ LDH release [64]

UroA,
UroA+
EGCG

HT22 cells
transfected with
APP cDNA for

24 h

no concentration
mentioned, treatment

for 24 h

improved
mitochondrial

function

↑mitochondrial
respiration [65]

UroA,
UroA+
EGCG

HT22 cells
transfected with
Tau cDNA for

24 h

1 µM or 10 mM
treatment for

24 h

improved
mitochondrial

function

↓ Drp1 and Fis1,
↑ PGC-1α, Nrf1, Nrf2,
↑ TFAM, PINK1, Parkin,
↑Mfn1, Mfn2, and Opa1

[66]

UroA HT22 cells
transfected with
APP cDNA for

24 h

1 µM, 2 µM, 5 µM,
10 mM treatment

for 24 h

improved
mitochondrial

function

↓ Drp1 and Fis1,
↑ PGC-1α, Nrf1, Nrf2,
↑ TFAM, PINK1, Parkin,
↑Mfn1, Mfn2, and Opa1

[67]

Abbreviations: dmUroC: 8,9-dimethyl-O-Urolithin C, MAO: monoamine oxidase, DPPH: 1,1-diphenyl-2-
picrylhydrazyl, ROS: reactive oxygen species, CAT: catalase, GR: glutathione reductase, GSH-Px: glutathione
peroxidase, LDH: Lactic dehydrogenase, Bcl-2: B-cell lymphoma-2, Bax: Bcl-2-associated X, TNF-α: tumor necrosis
factor-α, iNOS: inducible nitric oxide synthase, IL-6: interleukin-6, IL-1β: interleukin-1β, IL-1: interleukin-1,
COX-2: cyclooxygenase-2, PARP: poly ADP-ribose polymerase, MAPK: mitogen-activated protein kinase, REDOX:
mitochondrial oxidation-reduction, PKA: protein kinase A, CREB: cAMP-response element binding protein, BDNF:
brain derived neurotrophic factor, NLRP3: negative regulation of NLR family pyrin domain containing 3, PGE2:
prostaglandin E2, JNK: c-Jun N-terminal kinase, LC3-II: protein light chain 3-II, PINK1: PTEN induced kinase 1,
MMP: mitochondrial membrane potential, OXPHOS: oxidative phosphorylation, APP: amyloid precursor protein,
TGM2: transglutaminase type 2, PGC-1α: peroxisome proliferator-activated receptor-gamma coactivator-1-alpha,
AhR: aryl hydrocarbon receptor, TFAM: transcription factor A, ERK1/2: extracellular signal-regulated kinase
1/2, SIRT1: silent information regulator of transcription 1, BACE1: β-site APP cleaving enzyme-1, poly(I:C):
polyinosinic-polycytidylic acid, Drp1: dynamin-related protein 1, Fis1: fission mitochondrial 1; Nrf1: nuclear
respiratory factor 1, Nrf2: nuclear respiratory factor 2, Mfn1: mitofusin, Mfn2: mitofusin 2, Opa1: optic atrophy 1.
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Table 2. Preclinical studies of Uros on brain aging in vivo animal models.

Uros Animal Pharmacological or
Genetic Interventions

Route of
Administration

Treatment
(Dosage and Time) Effects Findings Refs.

UroA

male
ICR mice

(4–6 weeks,
18–22 g)

D-gal
150 mg/kg/d s.c. for

8 weeks
i.g.

50, 100, 150 mg/kg
b.w./day

for 8 weeks

anti-brain
aging,
anti-

inflammation,
antioxidation

↑ spontaneous locomotion, object
recognition learning, ↓ AchE,

MAO, ↑ SOD, CAT, GSH-Px, ↓
p53/p21, TEAC, ↑ SIRT1, ↓ TNF-α,
IL-1β, and IL-6, ↑ Bcl-2, ↓ caspase

3, mTOR, ↓ dysfunctional
autophagy, astrocyte activation, ↓

apoptosis

[17]

UroB
male C57BL/6 mice

(6–8 weeks,
18–22 g)

D-gal
150 mg/kg/d s.c. for

8 weeks
i.g. 50, 100, 150 mg/kg

b.w./day for 8 weeks

anti-brain
aging,
anti-

inflammation,
antioxidation

↓ cognitive deficits, ↑ pAkt, ↑
hippocampal LTP,↑ CAT, GSH-Px,

TEAC, SOD, ↓MDA, ↓ TNF-α,
IL-6, IL-1β, AGEs, cytotoxicity, ↓
the activation of microglia and

astrocytes, ↓ AchE, ↑ number of
neuron, ↓MAO

[57]

UroA
female APP/PS1
transgenic mice

(28 weeks)
transgenic AD mice i.g. 300 mg/kg b.w./day

for 14 days
anti-

inflammation

↓ spatial learning deficits, ↑
neurogenesis, ↓ neuronal

apoptosis, ↓ reactive gliosis, ↓ Aβ,
IL-1β, TNF-α, ↑ AMPK, ↓ p-P65,

NF-κB, p-P38, MAPK, BACE1

[22]

UroA

APP/PS1
transgenic mice

(13 months)
C.elegans

transgenic AD mice i.g.

200 mg/kg b.w./day
for 1 month or

0.1 mM
(C.elegans)

anti-
inflammation

↑ learning and memory retention,
↑ OCR, ↓ ROS, ↓ Aβ1–42,

Aβ1–40, ↑ IL-10, ↓ autophagy,
↓ IL-6, TNF-α, ↓ NLRP3, IL-1β, ↓

p-tau, caspase 1

[68]

UroA CX3CR1-
Cre mice

MPTP 15 mg/kg/d, i.p.
4 times a day every2 h i.g. 20 mg/kg b.w./day for

7 days
anti-

inflammation

↓motor deficits, ↑ TH,
↓ caspase 1, NLRP3,
↓ astrogliosis

[14]
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Table 2. Cont.

Uros Animal Pharmacological or
Genetic Interventions

Route of
Administration

Treatment
(Dosage and Time) Effects Findings Refs.

UroB Male ICR mice
(7 weeks, 2–37 g)

LPS
5 mg/kg/d, i.p. i.p. 50 mg/kg b.w./day

for4 days
anti-

inflammation
↓microglia activation, ↓ NADPH,
Akt, JNK, ERK, ↑ AMPK, HO-1 [58]

UroA male C57BL/6J mice
(8–10 weeks)

6-OHDA
9 µg i.p. 10 mg/kg b.w./day for

7 days
improved

mitochondria function

↓ neurotoxicity, mitochondria
damage, OXPHOS, ↑ PGC-1α,

TFAM, ↑ SIRT1
[63]

UroA mice STZ 75 mg/kg/d i.p.
for 3 days i.p. 2.5 mg/kg b.w./day

for 8 weeks

anti-Aβ,
improved

mitochondria function

↓ APP, BACE1, p-tau, Aβ(1–42),
TGM2 [61]

UroA
UroB

mUroA
mUroB

C. elegans transgenic AD
C. elegans (CL4176) feeding 10 µg/mL

pretreatment for 20 h anti-Aβ ↑ C. elegans survival and mobility [69]

UroA
UroA +
EGCG

hAbKI mice
(3 months)

humanized
homozygous Aβ

knockin (hAbKI)
AD mice

i.p.

UroA 2.5 mg/kg b.w.,
EGCG 25 mg/kg b.w.,
3 times per week for 4

months

anti-Aβ,
improved

mitochondria function

↑mitochondrial fusion, synaptic,
↓ Aβ(1–40) and Aβ(1–42), ↑

mitophagy, autophagy genes,
↓mitochondrial fission genes,
mitochondrial dysfunction, ↑

dendritic spines, ↓ fragmented
mitochondria number, ↑

mitochondrial length,
mitophagosomal formations

[65]

UroA
male C57BL/6J mice

(5 weeks,
18–22 g)

STZ 30 mg/kg
b.w./day i.p. for 4 days i.g. 200 mg/kg b.w.

anti-brain
aging,
anti-

inflammation

↓ hyperglycemia, ↑ learning and
memory, ↓ IL-6, IL-1β, TNF-α,

IL-1β, COX-2, iNOS-2,
↑ IL-10, ↓ NLRP3

[70]

Abbreviations: i.p.: intraperitoneal, s.c.: subcuta, i.g.: intragastrical, b.w.: body weight, AchE: acetylcholinesterase, MAO: monoamine oxidase, SOD: superoxide dismutase, CAT:
catalase, GSH-Px: glutathione peroxidase, AGEs: advanced glycation end products, NADPH: triphosphopyridine nucleotide, TEAC: Trolox-equivalent antioxidant capacity, SIRT1:
silent information regulator of transcription 1, TNF-α: tumor necrosis factor-α, iNOS: inducible nitric oxide synthase, IL-6: interleukin-6, IL-1β: interleukin-1β, IL-1: interleukin-1,
COX-2: cyclooxygenase-2, Bcl-2: B-cell lymphoma-2, LTP: long-term potentiation, NLRP3: negative regulation of NLR family pyrin domain containing 3, MDA: malondialdehyde,
BACE1: β-site APP cleaving enzyme-1, OCR: oxygen consumption rate, TH: tyrosine hydroxylase, HO-1: heme oxygenase 1, TFAM: transcription factor A, STZ: streptozotocin, TGM2:
transglutaminase type 2.
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Table 3. Clinical studies of Uro precursors on brain aging.

Source Subjects Clinical Trial
Procedure

Treatment
(Dosage and Time) Effects Fundings Refs

Pomegranate juice

Age: 54–72 years;
Cognition and memory:

age-related memory decline; Other heath
state: no neurological, psychiatric and major

medical conditions

Randomized,
placebo

controlled,
double blind trial

Dosage:
240 mL/day of pomegranate
juice (n = 15) or placebo drink

(n = 13)
Time: 4 weeks

anti-age-related
memory decline

↑ fMRI activity during
verbal and visual memory

tasks, ↑memory ability,
↑ plasma antioxidant status

[42]

Pomegranate juice

Age: 50–75 years;
Cognition and memory:

age-related memory decline;
other heath state: no cerebrovascular disease,
neurological or physical illnesses associated

with cognitive deterioration

Randomized,
placebo

controlled,
double blind trial

Dosage:
236.5 mL/day of pomegranate
juice (n = 98) or placebo drink

(n = 102)
Time: 48 weeks

anti-age-related
memory decline

↑ visual memory,
↑ visual learning and recall,

↑ verbal memory,
words recall

[49]

Nuts

Age: 55–80 years;
Cognition and memory: healthy;

other heath state: no diabetes, smoking,
hypertension, dyslipidemia, overweight and

cardiovascular disease

Randomized,
placebo controlled

trial

Dosage:
MedDiet + EVOO 1 L/week

(n = 224);
MedDiet + nuts 30 g/day
(n = 166); or low-fat diet

(n = 132)
Time: 6.5 years

anti-age-related
memory decline

↑ orientation to time and
place, ↑ registration,

attention and calculation, ↑
recall, language, and visual

construction,
↑ visuospatial abilities,

working memory, attention,
↑ abstract thinking,

language comprehension

[71]

Walnuts

Age: 63–79 years;
Cognition and memory: healthy;

other heath state: no
neurodegenerative disease, stroke, head
trauma, brain surgery, psychiatric illness,

depression, obesity, diabetes, hypertension
and chemotherapy

Randomized
controlled trial

Dosage: Walnuts 30–60 g/day
(n = 336) or control diet

(abstention from walnuts)
(n = 321)

Time: 2 years

anti-age-related
memory decline

↑ global cognition and
perception [51]

Strawberry

Age: 60–75 years;
Cognition and memory: age-related motor

and cognitive decline;
other heath state: BMI (18.5–29.9), no

psychological or psychiatric disorders and
chronic disease

Randomized,
placebo controlled,
double blind trial

Dosage:
Strawberry

24 g/day (n = 18) or placebo
(n = 19)

Time: 45 or 90 days

anti-age-related
memory decline

↑ words recalled,
verbal learning [72]
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Table 3. Cont.

Source Subjects Clinical Trial
Procedure

Treatment
(Dosage and Time) Effects Fundings Refs

Mixture of
berries

Age: 50–70 years;
Cognition and memory: healthy;

other heath state:
no metabolic

disorders, food allergies and, gastrointestinal
disorder

Randomized
cross-over trial

Dosage:
mixture of berries

(150 g blueberries, 50 g
blackcurrant, 50 g elderberry,

50 g lingonberries, 50 g
strawberry, and 100 g

tomatoes/day) (n = 20);
or placebo drink

(n = 21)
Time: 5 weeks

anti-age-related
memory decline

↑ verbal working memory, ↑
selective attention,

↓ total- and LDL cholesterol,
↑ insulin concentrations

[73]

Grape and
blueberry extract

Age: 60–70 years;
Cognition and memory: age-related memory

decline;
other heath state:

BMI (20–30)

Randomized,
placebo

controlled,
double blind trial

Dosage: grape and blueberry
extract 600 mg/day (n = 91)

or placebo
(n = 98)

Time: 6 months

anti-age-related
memory decline

↑ verbal episodic,
↑ recognition memory,
↑ working memory

[74]

Blueberry and
blueberry extract

Age: 65–80 years;
Cognition and memory: age-related memory

decline;
other heath state:

no metabolic
disorders and

diabetes

Randomized,
placebo

controlled,
double blind trial

Dosage: blueberry 500
mg/day

(n = 28); blueberry 1000
mg/day

(n = 29); blueberry extract 111
mg/day

(n = 28); or placebo
(n = 27)

Time: 6 months

anti-age-related
memory decline

↑ word recognition,
↑ total number of sequences
correctly recalled, ↓ systolic

blood pressure

[75]

Blueberry

Age: >65 years;
Cognition and memory: age-related memory

decline
other heath state: healthy

Pilot,
single-blind,
one-arm trial

Dosage: blueberry
444 mL/day (weighing

54–64 kg);
532 mL/day (weighing

54–64 kg);
621 mL/day (weighing

77–91 kg); (n = 9)
Time: 12 weeks

anti-age-related
memory decline;
antidepressant

↑ paired associate learning,
↑ word list recall,

↓ depressive symptoms,
↓ fasting glucose levels

[50]
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Table 3. Cont.

Source Subjects Clinical Trial
Procedure

Treatment
(Dosage and Time) Effects Fundings Refs

Blueberry

Age: <65 years;
Cognition and memory: healthy

other heath state: no
contraindications to fMRI

Randomized,
placebo

controlled,
double blind trial

Dosage: blueberry
30 mL/day
(n = 12) or

placebo drink
(n = 14)

Time: 12 weeks

anti-age-related
memory decline

↑ brain perfusion and
activation, ↑ psychomotor
function, visual processing,
executive function, verbal

and spatial memory

[52]

Blueberry

Age: 62–80 years;
Cognition and memory: age-related memory

decline;
other heath state:

no diabetes,
kidney disease, liver disease, hematological

coagulation disorder

Randomized,
parallel groups, placebo

controlled,
double blind trial

Dosage: fish oil
(1.6 g EPA + 0.8 g DHA/day)

(n = 15);
blueberry 25 g/day (n = 16);
fish oil + blueberry 24 g/day
(n = 17); or placebo (n = 17)

Time: 24 weeks

anti-age-related
memory decline

↑ psychomotor speed,
working memory,
↑ lexical access,

↑ long-term memory

[53]

Frozen blueberry

Age: 60–75 years;
Cognition and memory: healthy;

other heath state: BMI (18.5–29.9), no
smoking or use of medications

Randomized,
placebo controlled,
double blind trial

Dosage:
frozen blueberry 24 g/day
(n = 19) or placebo (n = 19)

Time: 90 days

anti-age-related
memory decline

↑ executive function,
↑ long-term memory, short

term memory,
↑ spatial cognition, and

attention

[76]

Frozen blueberry

Age: 68–92 years;
Cognition and memory: age-related memory

decline;
other heath state: no serious psychiatric

disorder,
substance abuse, and claustrophobia

Randomized,
placebo controlled,
double blind trial

Dosage:
frozen blueberry
25 g/day (n = 8)

or placebo
(n = 8)

Time: 16 weeks

anti-age-related
memory decline

↑ working memory,
accuracy,

↑ blood oxygen level
dependent activation

[77]

Frozen blueberry

Age: >68 years;
Cognition and memory: age-

related memory decline;
other heath state: no dementia, serious
psychiatric condition, substance abuse

Randomized,
placebo controlled,
double blind trial

Dosage:
frozen blueberry 24 g/day

(n = 16) or placebo 20 g/day (n
=21)

Time: 16 weeks

anti-age-related
memory decline

↑ lexical access for semantic
information,

↑ speed of processing and
working memory,

↑ verbal and nonverbal
long-term memory

[78]

Abbreviations: fMRI: functional magnetic resonance imaging, BMI: body mass index, EVOO: extra-virgin olive oil, MedDiet: Mediterranean diet, LDL: low-density lipoprotein, EPA:
eicosapentaenoic acid, DHA: docosahexaenoic acid.
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4. Mechanisms of Action

The beneficial effects of Uros on brain function during aging are associated with multi-
target actions that involve relieving chronic oxidative stress and inflammation, promoting
mitophagy and mitochondrial function, inhibiting amyloid-β (Aβ) and tau pathology, and
regulating tryptophan (Trp) metabolism. The mechanisms are summarized in Figure 1.
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Figure 1. Outline of effects of UroA on brain aging (actions and mechanisms). The mechanisms of
UroA on aging brain mainly focus on promoting mitophagy and mitochondrial function and relieving
neuroinflammation. Other mechanisms include mitigating oxidative stress, inhibiting Aβ and tau
pathology, and regulating Trp metabolism. Although UroA has been shown to activate anti-aging
signaling pathways such as AMPK, SIRTs, and mTOR in vivo, the direct or key targets of UroA have
not been fully elucidated.

4.1. Antioxidant Activity in CNS

As the brain consumes more than one-fifth of the total oxygen, the oxidative stress
exerted by reactive oxygen species (ROS) and related degeneration is particularly severe in
the brain owing to aging. Damage to neural cells occurs when ROS production overwhelms
the antioxidant defense mechanisms. Endogenous antioxidant defenses in the brain are
relatively low compared to those in other vital organs [79,80]. This makes the protection of
antioxidants, which can pass through the BBB, particularly important for the progression
of brain aging. Although ETs and EA cannot cross the BBB, Uros are potent antioxidants
with good BBB permeability [36,69].

First, UroA and UroB are evidenced as direct radical scavengers (details listed in
Table 4) [54,57]. Furthermore, cell models have shown that UroA and UroB protected
neuron-like cells from direct H2O2-induced damage, including PC12 cells, SK-N-MC cells,
SH-SY5Y cells, and Neuro-2a cells, in which they effectively inhibited ROS formation and
lipid peroxidation [17,20,54,55,57,81]. Moreover, Uros can boost endogenous antioxidant de-
fenses in neuronal cells and brains of aged mice. Data from an array of studies have shown
that UroA and UroB increased the activity of antioxidant enzymes, including catalase, super-
oxide dismutase, glutathione reductase, and glutathione peroxidase [58,82]. UroA increases
the expression of cytoprotective peroxiredoxins 1 and 3 in Neuro-2a cells [54]. A study
on UroB demonstrated that pretreatment with UroB significantly decreased the mRNA
expression of nicotinamide adenine dinucleotide phosphate oxidase subunits (p47phox and
gp91phox) and increased the antioxidant hemeoxygenase-1 expression via nuclear factor
erythroid-2 related factor 2/antioxidant response element signaling in lipopolysaccharide
(LPS)-treated BV2 cells [58].
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Table 4. IC50 of Uros and corresponding references on synthetic and oxygen free radicals.

Sample Superoxide
Radical 1 DPPH Radical Peroxyl

Radicals 2 ABTS Radical Hydroxyl
Radical

UroA 5.01 ± 5.01 µM 152.66 ± 35.01 µM 13.1 µM --- ---
Gallic acid 0.26 ± 0.21 µM 3.10 ± 3.11 µM --- --- ---

Ascorbic acid --- 14.81 ± 14.90 µM --- --- ---
Pomegranate extracts --- --- 0.49 µM --- ---

UroB 495.32 ± 3.28 mM 295.41 ± 2.36 mM --- 316.18 ± 1.85 mM 306.28 ± 4.61 mM
Ascorbic acid 874.39 ± 1.48 mM 446.25 ± 1.78 mM --- 526.24 ± 3.18 mM 540.16 ± 2.52 mM

IC50 is expressed as mean ± SD, and data for peroxyl radicals are expressed as µmol Trolox equivalents per mg
of sample. 1 UroA scavenges superoxide radicals generated by the xanthine/xanthine oxidase system. 2 The
capacity of UroA to scavenge peroxyl radicals was measured by the oxygen radical antioxidant capacity (ORAC).

Additionally, Uros are inhibitors of several oxidases (pro-oxidant enzymes) that can
promote ROS formation. It is shown that Uros inhibited the activity of monoamine oxidase
(MAO), which is responsible for the metabolism of monoamine neurotransmitters such
as serotonin and dopamine [54,57,83]. A recent study demonstrated that Uros (A, B, and
C) were selective inhibitors of human MAO-A (rather than MAO-B), and UroB was the
strongest inhibitor with the IC50 of 0.88 ± 0.24 µM (the IC50 of UroA and UroC was
5.88 ± 0.69 µM and 29.6 ± 1.8 µM, respectively), whereas EA had no effect on MAO-A [83].
Clinically, MAO inhibitors may alleviate the symptoms of depression and Parkinson’s
disease (PD). Therefore, these findings may suggest the potential benefits of Uros for related
disorders. Saha et al. reported that UroA significantly inhibited heme peroxidase activity,
including myeloperoxidase and lactoperoxidase in in vitro and in vivo models [84], which
may provide a better understanding of the peroxidase inhibitory and anti-inflammatory
activities of UroA.

The antioxidant effects of Uros are beyond the traditional antioxidant activities of
their precursors. ETs and EA are typical antioxidants, which are mainly attributed to
their potent free radical scavenging activity, including a wide variety of ROS and reactive
nitrogen species [85,86]. As the bioavailability of ETs and EA is poor, the high antioxidant
capacity of dietary ETs and EA may be important and restricted mostly to local actions
in the GI tract [25,87]. González-Sarrías et al. suggested a lower neuroprotective activity
of Uros against oxidative stress-induced cell death than that of their precursors [20,59]. It
appears that Uros are not as potent antioxidants as their precursors, at least in vitro, and
may systemically exert their antioxidant activity. Recently, we found that UroA (5, 10 µM)
treatment significantly increased protein kinase A (PKA)/cAMP-response element binding
protein (CREB)/brain derived neurotrophic factor (BDNF) neurotrophic signaling pathway
in H2O2-treated SH-SY5Y cells, and pretreatment with PKA inhibitor H89 abolished the
protective effects of UroA in H2O2-treated SH-SY5Y cells [56]. These results indicated that
PKA/CREB/BDNF neurotrophic signaling pathway might involve the neuroprotective
effect of UroA against oxidative stress.

4.2. Mitigation of Neuroinflammatioin

Chronic inflammation caused by innate immune cells such as glia is thought to play a
key role in brain aging and related diseases. Glial activation and the release of inflammatory
molecules such as proinflammatory cytokines are hallmarks of chronic inflammation in the
brain. Mitigating neuroinflammation is one of the most important mechanisms underlying
the health benefits of Uros.

It has been well documented that UroA and UroB significantly attenuated the inflam-
mation induced by LPS in mouse microglia BV2 cells, including inhibiting the production
of NO and the expression of inducible nitric oxide synthase (iNOS) and cyclo-oxygen-
ase-2 (COX-2), regulating the levels of proinflammatory cytokines such as interleukin
(IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and anti-inflammatory cytokines such as
IL-10 [19,21,58,60,88]. In addition to LPS, Lee et al. reported that UroB significantly in-
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hibited lipoteichoic acid (LTA)- and polyinosinic-polycytidylic acid (poly(I:C))-induced
inflammation in BV2 cells, which are known as toll-like receptor (TLR) 2 and TLR3 agonists,
respectively [58]. These results suggested that the anti-inflammatory effect of UroB is
not confined to LPS stimulation. Moreover, UroA can induce M2 polarization from the
M1 state in microglia and other macrophage-like cells which can subsequently inhibit
pro-inflammatory cytokines generation and promote neuroprotection [59,89]. Animal stud-
ies have shown that the administration of UroA and UroB could significantly improve
behavioral deficits and neuroinflammation in D-galactose-induced aged mice, transgenic
APP/PS1 mice, LPS-brain-injected mice, and 1-methyl-4-pheny1-1,2,3,6-tetrahydropyridine
(MPTP)-induced PD mice, including decreasing the level of pro-inflammatory cytokines in
the brain and inhibiting the activation of microglia and astrocytes in the hippocampus and
cortex [14,17,22,57,58]. In addition, UroA was evidenced to reduce the expression and activ-
ity of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in
LPS-treated BV2 cells and mouse models (APP/PS1 mice and MPTP-treated mice) [30,68].

Multiple proteins and signaling pathways such as adenosine monophosphate (AMP)-
dependent kinase (AMPK), mitogen-activated protein kinase (MAPK), nuclear factor-κB
(NF-κB), and silent information regulator of transcription 1 (SIRT1) are considered to
participate in the anti-inflammatory effects of Uros [58,68,88–94]. The NF-κB pathway
is the best-studied inflammatory signaling pathway and is thought to be critical for the
synthesis and effects of pro-inflammatory cytokines. An experiment in LPS-induced BV2
cells showed that UroA and UroB significantly inhibited NF-κB p65 expression and nuclear
translocation in a dose-dependent manner and that UroB displayed more potent inhibitory
activity than UroA [60]. AMPK, a central regulator of energy and metabolism involved in
the pathophysiology of aging and age-related diseases, plays an important role in chronic
inflammation. AMPK activation exerts anti-inflammatory effects by regulating cytokine
synthesis and multiple inflammatory signaling pathways, such as NF-κB and MAPK
pathways [95–97]. Moreover, AMPK signaling regulates NLRP3 inflammasome formation
and activation during aging [98]. In addition to its established role in inflammation,
AMPK activation has recently been implicated in promoting microglial M2 polarization,
thereby relieving brain inflammation [99]. Experiments in cell and animal models have
indicated that AMPK activation is tightly involved in the anti-inflammatory effects of
Uros. In LPS-treated BV2 cells, UroB increases AMPK phosphorylation and decreases the
phosphorylation of its downstream molecules Akt, JNK, and ERK [58,60]. In APP/PS1
mice, Zhuo et al. found that UroA treatment significantly upregulated AMPK signaling
and downregulated NF-κB and MAPK signaling in the cortex and hippocampus, which
was responsible for the improvement of memory and neuroinflammation [22]. SIRT1, a
histone deacetylase, plays a key role in regulating neuroinflammation and the release
of pro-inflammatory cytokines [100–103]. SIRT1 activation inhibits NF-κB signaling by
involving deacetylation of the p65 subunit [104]. A study on UroA showed that treatment
with UroA (5 and 10 µM) significantly increased the level (nuclear) and the activity (cell) of
SIRT1 in BV2 cells, and the anti-inflammatory effect of UroA was abolished in the presence
of EX527, a SIRT1 inhibitor, suggesting that the activation of SIRT1 is required for the
anti-inflammatory effect of UroA [21].

Additionally, to compare the anti-inflammatory effect of UroA and its precursors,
Ashley et al. investigated the difference between whole red raspberry polyphenols (RRW)
and UroA in BV-2 cells under 3 h, 12 h, and 24 h inflammatory conditions (LPS and ATP
treatment). The results demonstrated that RRW only inhibited the inflammation induced by
3 h of LPS stimulation, whereas UroA inhibited the inflammation caused by LPS treatments
(3, 12, and 24 h). Moreover, the anti-inflammatory effects of RRW and UroA were both
mediated by downregulation of the JNK/c-Jun pathway [59].

4.3. Promotion of Mitophagy and Mitochondrial Function

The brain possesses high mitochondrial activity to meet its relatively high energy
demands. Mitochondrial dysfunction, including the abnormalities of mitochondrial bioen-
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ergetics, mitochondrial biogenesis, and autophagy in neurons, accumulate during aging.
An increasing number of studies have indicated that the maintenance of mitochondrial
homeostasis is particularly important for brain function in the elderly and may be a po-
tential therapeutic strategy for age-related neurodegenerative diseases. Accumulating
evidence suggests that UroA is an important regulator of mitochondrial homeostasis, par-
ticularly a robust mitophagy inducer, which seems to be one of the crucial mechanisms
underlying its health benefits against aging [61,105]. Ryu et al. were the first to report that
UroA extended the lifespan of C. elegans and improved muscle function in mice through
mitophagy activation [106]. Recently, an increasing number of clinical trials have confirmed
the impact of UroA on mitophagy in humans. Results from two clinical trials in elderly
individuals demonstrated that supplementation with UroA at doses of 500 mg and 1000 mg
daily for 4 weeks or 4 months significantly improved mitophagy and mitochondrial bio-
genesis in skeletal muscles [37]. Moreover, another recent clinical trial in middle-aged
adults showed that supplementation with UroA increased mitophagy proteins and reduced
inflammation [38]. Fang et al. conducted a systematic study on the promotion of mitophagy
by UroA and found that mitophagy induction underlies the multiple actions of UroA in
the brain, including the improvement of cognition and memory deficits, the alleviation of
chronic neuroinflammation, and the inhibition of Aβ and tau pathology [68,107]. In vitro
study demonstrated that UroA increased the levels of a series of mitophagy-related pro-
teins, including phosphatase and tensin homolog deleted on chromosome ten induced
kinase 1 (PINK1), Parkinson’s disease-related-1, beclin-1, Bcl-2-like protein 13, activating
molecule in BECN1-regulated autophagy protein 1, and serine/threonine-protein kinase
ULK1 (ULK1) in human neuronal SH-SY5Y cells. Moreover, UroA inhibited the phospho-
rylation of tau (p-tau) in a mitophagy-dependent manner, and the inhibitory effect was
diminished in PINK1 or ULK1 knockdown cells. Consistently, in vivo studies showed that
UroA activated neuronal mitophagy and reduced mtROS levels and mitochondrial damage
in the hippocampus and prefrontal cortex of APP/PS1 mice, and mitophagy induction
was also required for memory improvement of UroA in tau transgenic C. elegans and
mice [68]. More recently, a study in humanized homozygous Aβ knockin (hAbKI) mice of
late-onset AD demonstrated that UroA administration for 4 months significantly improved
phenotypic behavior changes and mitochondrial dysfunction, including mitochondrial
bioenergetics, biogenesis, and mitophagy [65].

Similar to neuronal cells, UroA promotes mitophagy and improves mitochondrial
dysfunction in microglial cells. Treatment with the autophagy inhibitor 3-methyladenine
abolished the effect of UroA on mitochondrial dysfunction and inflammation in LPS-treated
BV2 cells [14,21]. Studies in animals demonstrated that mitophagy in microglial cells
decreased by 60% in the hippocampus of AD mice, whereas UroA treatment normalized
the decreased mitophagy, thereby increasing the phagocytic efficiency of microglia and the
removal of Aβ plaques [68]. Similarly, UroA reduced the elevated expression and activity of
NLRP3 and related neuroinflammation in AD mice by inducing mitophagy in the microglia.
Moreover, using Atg5flox/flox:CX3CR1-Cre mice to block microglial mitophagy in vivo,
the improvement in behavioral deficits and neuroinflammation induced by UroA in PD
mice was diminished [14].

However, studies on the autophagy and mitophagy of UroA have also yielded con-
flicting results. Research conducted by Esselun et al. revealed that UroA did not affect mi-
tophagy in SH-SY5Y-APP695 cells but moderately promoted mitochondrial biogenesis [62].
Another recent study indicated UroA induced robust neuronal mitophagy but did not
increase neuronal macroautophagy in transgenic nematodes [68]. Additionally, Ahsan et al.
demonstrated that UroA activated autophagy but not mitophagy in ischemia/reperfusion
injured neuronal cells and mice [108].

Studies have indicated that UroA activated autophagy and mitophagy by regulat-
ing several key signaling molecules, including AMPK, peroxisome proliferator-activated
receptor-gamma coactivator-1-alpha (PGC-1α), and SIRT, and inhibition of the mammalian
target of rapamycin (mTOR). These signaling pathways stimulate mitophagy and mito-
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chondrial biogenesis and are regulated by Uros. As discussed in the anti-inflammatory
section, AMPK is one of the most important targets in aging and has been well documented
in age-related mitochondrial dysfunction [109–111]. The downregulation of AMPK activity
during aging impairs metabolic regulation, increases oxidative stress, and reduces au-
tophagic clearance [98]. Activated AMPK increases PGC-1α level, which directly increases
mitochondrial biogenesis [112]. The key autophagy/mitophagy effectors, such as SIRT,
mTOR, and ULK1, are all downstream molecules of AMPK signaling [113–115]. Moreover,
SIRT can deacetylate and activate liver kinase B1 (LKB1), an upstream kinase that activates
AMPK [116]. Recent studies have demonstrated that Uros activate AMPK activity in a
variety of cell types in vitro, including microglia, macrophages, and nucleus pulposus
cells [22,58,117], as well as in multiple tissues in vivo, including the brain, muscle, and
pancreas [92,118,119], indicating that Uros may be an AMPK activator. Therefore, AMPK
may be a crucial target underlying the beneficial effects of Uros on aging, which requires
further investigation.

Additionally, UroA activates SIRT1 and SIRT3. UroA stimulates SIRT3 promoter
activity in Caco-2 cells [120] and increases ATP and NAD+ levels, leading to activation
of the SIRT1-PGC-1α pathway in murine muscle [121]. Moreover, Chen et al. reported
that UroA improved impaired autophagy in D-galactose-induced mice by upregulating
SIRT1 signaling and downregulating mTOR signaling, and these effects appear to be
mediated by the activation of miR-34a [17]. Treatment with both SIRT1 inhibitor EX527
and autophagy inhibitor chloroquine abolished the neuroprotective effect of UroA in
APPSwe-transfected ReNcell VM human neural cells, as well as the anti-inflammatory
effect of UroA in LPS-treated BV2 cells [21]. SIRT1 increases mitofusin 2 (Mfn2) and
Parkin levels during mitophagy activation [122,123], and UroA has been shown to increase
Mfn2 and Parkin expression in humans after 4 weeks of administration [37]. In addition,
UroA activates autophagy by inhibiting endoplasmic reticulum (ER) stress in cell and
mouse models of ischemic neuronal injury [62]. In summary, mitophagy deficiency and
subsequent mitochondrial dysfunctions are early and pivotal events in brain aging and
neurodegenerative diseases, and mitophagy or autophagy induction seems to be a crucial
mechanism in the effects of Uros.

4.4. Inhibition of Aβ and Tau Pathology

Abnormal accumulation of Aβ and neurofibrillary tangles of p-tau protein are hall-
mark features of AD. It has been well documented that Aβ deposition in the brain occurs
approximately two decades before the onset of the disease. Several studies have shown that
Uros inhibited Aβ deposition and p-tau generation during brain aging [22,61,68,69]. The
thioflavin T (ThT) binding assay in vitro showed that UroA, UroB, methyl-UroA (mUroA),
and mUroB inhibited Aβ fibrillation including Aβ fibril content, β-sheet formation, and
peptide oligomerization, whereas only mUroB reversed the neurotoxicity and muscular
paralysis in the Aβ1–42-induced C. elegans model of AD [69]. A more recent study in vitro
demonstrated that UroA inhibited Aβ1–42-induced toxicity in human neuroblastoma BE(2)-
M17 cells [64]. In transgenic APP/PS1 AD mice, immunohistochemistry and ELIAS results
demonstrated that UroA treatment significantly decreased Aβ1–40 and Aβ1–42 plaques in
the cortex and hippocampus [22]. Moreover, UroA administration for 4 months signif-
icantly reduced the levels of Aβ1–40 and Aβ1–42, and improved inflammation, synaptic
structure, and function in the brain of hAbKI AD mice [65]. In a further study conducted by
Fang et al., UroA treatment restored memory impairment in both Aβ nematodes expressing
pan-neuronal human Aβ1–42 (CL2355) protein and tau nematodes expressing pan-neuronal
tau fragments (BR5270) [68]. Aβ plaque formation is a result of imbalance between Aβ

clearance and its production from amyloid precursor protein (APP), and cleavage of APP
by β-site APP cleaving enzyme-1 (BACE-1) is responsible for Aβ production. Although
the precursors of Uros, such as EA and punicalagin, have been reported to inhibit the
activity of BACE1 [124,125], UroA was shown to decrease only the expression of BACE1
in mice, and the effects of UroA on APP expression are inconsistent [61,62]. Additionally,
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microglia play a crucial role in the clearance of extracellular Aβ plaques [126,127]. In a
study by Fang, UroA administration enhanced the removal of insoluble Aβ1–42 and Aβ1–40
proteins in the hippocampus of APP/PS1 mice by increasing the phagocytic efficiency of
microglia, whereas no significant effect on the levels of APP cleavage intermediates was
observed, suggesting that APP proteolysis may not be the target of UroA. Furthermore, the
study also revealed that UroA treatment inhibited the phosphorylation of tau at Thr181,
Ser202/Thr205, and Ser262 in tau-overexpressing human SH-SY5Y cells. Consistently,
UroA administration inhibited p-tau and improved memory impairment in the 3×Tg AD
mice [68]. More recently, Tu et al. showed that dual-specific tyrosine phosphorylation-
regulated kinase 1A (DYRK1A) is the main target of UroA in its anti-AD effect. UroA
significantly inhibited the activity of DYRK1A, which led to the de-phosphorylation of tau
and further stabilized microtubule polymerization [128].

Hyperglycemia and diabetes are risk factors for neurodegeneration and critical con-
tributors to amyloidogenesis. Uros were shown to improve diabetes-associated neurode-
generation. Lee et al. systematically studied and reported that UroA attenuated the
amyloidogenesis and neurodegeneration in a diabetes model. Their experiments in vitro
showed that pretreatment with UroA significantly decreased high glucose-induced Aβ1–42
formation, as well as APP and BACE1 expression in both SH-SY5Y cells and human
iPSC-derived neuronal differentiated cells. Furthermore, the experiments in vivo showed
that UroA injection at dose of 2.5 mg/kg for 8 weeks improved cognitive impairment in
streptozotocin-induced diabetic mice and decreased the levels of Aβ1–42, APP, BACE1,
and p-tau (Ser262 and Ser396) in the prefrontal cortex and hippocampus [61]. In addition,
Chen et al. reported that UroB supplementation improved learning and memory impair-
ment by inhibiting the accumulation of advanced glycation end products in the brain of
aged mice [57]. Xiao et al. found that UroA relieved diabetes-associated cognitive impair-
ment and neuroinflammation by alleviating intestinal barrier dysfunction via N-glycan
biosynthesis pathway [70].

4.5. Regulation of Trp Metabolism

Recent studies have indicated that the regulation of Trp metabolism may be a novel
mechanism underlying the health benefits of UroA against brain aging. Trp metabolism is
an important communication strategy in the “microbiome–gut–brain” axis, in which both
host and gut microbiota are involved. Trp metabolites can serve as neurotransmitters and
signaling molecules in CNS. Although it is well known that Trp is used for the synthesis of
serotonin, a large majority of Trp (>95%) is metabolized by the kynurenine (Kyn) pathway,
thus producing bioactive metabolites with distinct activities in CNS. In humans, the activity
of Kyn pathway increases with age [129]. Several lines of evidence suggest that the im-
balance in Trp metabolism is associated with various neurodegenerative and neurological
diseases [130,131]. Trp metabolites can control the pathogenic activities of microglia and as-
trocytes via aryl hydrocarbon receptors (AhRs), and further inhibit neuroinflammation and
neurodegeneration [132,133]. A recent study showed that oral administration of EA and
UroA for 8 weeks significantly regulated the microbial composition and Trp metabolism
in DBA/2J mice fed with a high-fat and high-sucrose diet. Both UroA and EA supple-
mentation reduced the Kyn pathway, and UroA significantly decreased the level of indole
sulfate in serum [134]. Additionally, UroA elevated Trp hydroxylase-2 transcription, the
rate-limiting enzyme in Trp metabolism to serotonin, and subsequently increased serotonin
production in differentiated rat serotonergic raphe cells [135]. Therefore, the regulation of
UroA on Trp metabolism may be an important mechanism underlying its beneficial effect,
but this has not been clarified and deserves further research.

4.6. Others

Uros have been evidenced to exert neuroprotection by direct action on estrogen recep-
tors (ERs) [136,137] and AhRs [138] in the brain. They are considered as “enterophytoe-
strogens”, which are microflora-derived metabolites with estrogenic and/or antiestrogenic
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activities [139,140]. Furthermore, UroA has demonstrated high selectivity on ERα and
has recently been reported to regulate ERα-dependent gene expression in endometrial
cancer cells [141]. AhRs are ligand-activated transcription factors involved in multiple
physiological and pathological processes. In addition to indirectly regulating AhRs through
Trp metabolites, UroA has been evidenced as a human-selective AhR antagonist [142,143],
which is considered to mediate its anti-inflammatory activity. Additionally, UroA can
alleviate BBB dysfunction [144].

Although these studies have clarified the effects of Uros from different aspects, they
are relatively isolated from each other. The key targets and intracellular signaling path-
ways underlying the effects of Uros on aging brain remain to be elucidated. Recently,
pharmaceutical studies have been conducted on Uros. Several natural and synthetic Uro
analogs exhibit inhibitory effects on various enzymes, including cholinesterases, MAO-
B, and cyclooxygenases [145,146]. Therefore, Uros may be multi-target agents against
neurodegenerative and neurological diseases.

5. Knowledge Gaps

First, clinical evidence for Uros or UroA on age-related cognitive decline or neurode-
generative diseases is still unclear. UroA has been designated as GRAS by FDA in 2018
and sold as an ingredient of anti-aging products in USA. Growing clinical evidence has
demonstrated that precursors of Uros including pomegranate, blueberry, and walnut sup-
plementation significantly improved age-related brain dysfunctions (Table 3). The specific
advantages of UroA in preventing brain aging is mainly based on (i) good safety and toler-
ance, (ii) favorable blood–brain barrier permeability and selective brain distribution, (iii) the
accumulating evidence from preclinical studies, (iv) the different capacities for producing
Uros between individuals and the decreased capacities in the elderly, and (v) overcoming
limitations and deficiencies of microbiome-based treatment. Therefore, clinical trials of
UroA supplementation on cognitive and memory decline in the elderly should be carried
out as soon as possible, which seem to be the crucial obstacle on the way to its application.

Second, the pharmacokinetic features of UroA (pharmacokinetic research of Uros is
mainly focused on UroA) in the brain have not been clarified. UroA is easily absorbed
after oral administration and mainly metabolized to UroA glucuronide, UroA sulfate, and
mUroA. Studies in rodents have shown that UroA and mUroA are detectable in the brain
after administration of UroA or pomegranate juice [147]. The Uro metabolites identified
in the brain are summarized in Table 5. A recent study depicted a more detailed profile
of UroA in the brain, in which the concentration of UroA increased slowly after 0–3 h of
oral administration (UroA, 200 mg/kg) and reached the maximum concentration (Cmax)
at approximately 28 ng/g and 35 ng/g in the cortex and hippocampus, respectively, after
4 h (Tmax) of oral administration. In contrast, the Cmax and Tmax of UroA in plasma
were 15 ng/mL and 2 h, respectively [148]. This study is the first to report that UroA was
detectable in the specific brain regions (cortex and hippocampus) and remained at high
levels for hours after a single oral administration. However, more detailed pharmacokinetic
parameters should be determined and investigated.

Third, the therapeutic targets and molecular mechanisms underlying the effects of
UroA against brain aging remain to be elucidated. Although UroA has been found to
activate anti-aging signaling pathways such as AMPK, SIRTs, and mTOR in vivo, the direct
actions of UroA on these targets are currently unclear.
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Table 5. Summary of Uros metabolites identified in the brain.

Animals Route of
Administration Treatment Brain Tissue

Identified
Metabolites

in Brain

Plasma
Concentratio Refs

male C57BL/6 mice
(7 months, 25–30 g) i.g.

UroA
0.3 mg/mouse,

single administration
brain tissues mUroA: 8 ng/g --- [147]

male C57BL/6 mice
(6 weeks)

i.g. UroA 200 mg/kg b.w.,
single administration

cortex UroA: 28 ng/g 15 ng/mL [148]hippocampus UroA: 35 ng/g

male rats
(12 weeks, 288 ± 20 g) i.v.

Polyphenol metabolites
(12.5 µg UroA + 5.3 µgUroB)
2.7 µmol/rat/day for 2 days

brain tissues
UroA: 2.2 ng/g
UroB: 0.5 ng/g

--- [41]

male albino
Wistar rats

(6 weeks, 250–300 g)
i.g.

Pomegranate juice
500 mg/kg b.w./day

for 10 days
brain tissues UroA: 1.68 ±

0.25 ng/g
18.75 ±

3.21 ng/mL [36]

male albino
Wistar rats

(6 weeks, 250–300 g)
i.g.

Pomegranate juice
500 mg/kg b.w./day

for 45 days
brain tissues UroA: 2.068 ±

0.274 ng/g --- [149]

Abbreviations: i.v.: intravenous, i.g.: intragastrical, b.w.: body weight.

Fourth, the biotransformation of Uros in vitro is essential for their further application.
Although there are anti-aging products containing high purity UroA of chemical synthesis
on sale, biotransformation may greatly improve producing efficiency. This process is a
two-step bioconversion. In the first step, the conversion of ETs to EA has been clarified and
achieved in vitro [150]. Elucidating the second step and achieving the transformation of
EA into Uros in vitro could yield promising application.

Fifth, it has been reported that UroA can attenuate diabetes-associated cognitive im-
pairment by ameliorating intestinal barrier dysfunction [70]. However, the impact of UroA
supplementation on gut microbiota ecology is unclear. The role of UroA supplementation
on the gut microbiota composition and other neuroactive metabolites, e.g., SCFAs need
further investigation.

Last, recent studies in animals and cells indicated that the combination of UroA with
other food functional factors such as docosahexaenoic acid (DHA) and egpigallocatechin
gallate (EGCG) produced significantly synergistic effects against brain aging and AD [64,65].
The combined treatments may have referential value for UroA to develop into related
functional food and drugs. However, the synergistic efficacy and mechanisms warrant
further elaboration.
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