
Citation: Wang, M.-D.; Duan, F.-F.;

Hua, X.; Cao, L.; Xia, W.; Chen, J.-Y. A

Novel Albumin-Related Nutrition

Biomarker Predicts Breast Cancer

Prognosis in Neoadjuvant

Chemotherapy: A Two-Center

Cohort Study. Nutrients 2023, 15,

4292. https://doi.org/10.3390/

nu15194292

Received: 2 September 2023

Revised: 29 September 2023

Accepted: 4 October 2023

Published: 8 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

A Novel Albumin-Related Nutrition Biomarker Predicts Breast
Cancer Prognosis in Neoadjuvant Chemotherapy:
A Two-Center Cohort Study
Meng-Di Wang 1,†, Fang-Fang Duan 2,† , Xin Hua 1,† , Lu Cao 1, Wen Xia 2,* and Jia-Yi Chen 1,*

1 Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai 200025, China; wmd01f28@rjh.com (M.-D.W.); hx12914@rjh.com.cn (X.H.)

2 The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,
Sun Yat-sen University Cancer Center, Guangzhou 510060, China

* Correspondence: xiawen@sysucc.org.cn (W.X.); cjy11756@rjh.com.cn (J.-Y.C.)
† These authors contributed equally to this work.

Abstract: Background: Recently, there has been a growing focus on the prognostic significance of
nutrition-related biomarkers. We attempted to explore the association between a novel albumin-
related nutrition marker called “lymphocyte × albumin (LA)” and disease-free survival (DFS) in
breast cancer patients undergoing neoadjuvant chemotherapy (NAC). Methods: In total, 711 non-
metastatic breast cancer patients who underwent NAC at two medical centers were retrospectively
analyzed. We performed least absolute shrinkage and selection operator (LASSO) Cox regression
analysis as well as multivariate Cox regression analyses to identify the variables associated with
DFS and to establish a predictive nomogram. Results: The nomogram incorporated four variables
based on the multivariate analysis of DFS in the training cohort: LA, ypN stage, ypT stage, and
hormone receptor status. In comparison with the traditional TNM staging system, the nomogram
demonstrated superior discrimination, calibration ability, and clinical usefulness in both the training
set and internal and external validation sets. Furthermore, patients stratified into different risk
groups resulted in significant differences in DFS. Conclusions: LA is an independent prognostic
biomarker, and LA-based prognostic nomogram offers a more precise assessment of DFS for breast
cancer patients treated with NAC, potentially serving as a valuable tool for personalized prognostic
predictions.

Keywords: breast cancer; neoadjuvant chemotherapy; inflammatory–nutritional biomarker; prognosis;
nomogram

1. Introduction

Globally, breast cancer is the most frequently diagnosed malignancy and the leading
cause of cancer death among women [1]. Approximately 2.3 million new cases of breast
cancer are diagnosed each year, and 685,000 people die from it [1]. In the treatment of breast
cancer, neoadjuvant chemotherapy (NAC) has brought new hope with breakthroughs in
effective treatment. Nowadays, the clinical advantages of NAC are not only to achieve
tumor down-staging and breast conservation surgery, but also to provide an opportunity for
in vivo drug-sensitivity testing [2]. While researchers have validated the efficacy of NAC,
the presence of high intertumoral heterogeneity leads to diverse outcomes for individual
breast cancer patients [3]. Recurrence and metastasis may still occur in breast cancer patients
who have undergone curative surgery and received neoadjuvant/adjuvant therapy [4].
Therefore, the discovery of reliable prognostic biomarkers holds paramount significance in
developing risk stratification methods and planning appropriate treatment in advance for
patients, ultimately leading to maximal improvements in survival outcomes.
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In newly diagnosed breast cancer patients, traditional clinicopathological factors
such as lymph node metastases, tumor size, and grade have been utilized to provide
individual prognostic information. However, it is widely acknowledged that relying
solely on these factors for personalized therapeutic guidance is insufficient. Combining
multigene gene tests, biomarkers such as estrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor-2 (HER2), and traditional pathological clinical
prognostic factors can establish better prognostic models [5,6]. Although several gene
expression assays, including Oncotype DX, MammaPrint, EndoPredict, Prosigna/PAM50,
and Breast Cancer Index (BCI), have been validated to define prognosis more accurately
and recommended to clinical practice in recent decades, the costs of these tests are quite
expensive in many countries [7,8]. Therefore, the exploration of simple, affordable, and
accurate prognostic biomarker assays has become a research hotspot.

An increasing amount of evidence highlights the interconnection of inflammation,
nutrition, and breast cancer, impacting the processes of initiation, progression, and metasta-
sis [9,10]. In recent years, many inflammatory and nutritional prognostic indices, including
the lymphocyte-to-monocyte ratio (LMR) [11,12], prognostic nutrition index (PNI) [13,14],
nutritional risk index (NRI) [15], and pan-immune-inflammation value (PIV) [16,17], have
emerged as potential prognostic factors for breast cancer. These prognostic indices possess
several advantages, including cost-effectiveness, quick accessibility, ease of calculation,
reproducibility, and widespread availability. They can be readily obtained from pretreat-
ment blood tests, which are routinely conducted for nearly all cancer patients. The novel
albumin-related nutrition biomarker “LA”, which was defined as lymphocyte × albumin,
was firstly introduced in rectal cancer patients [18]. From a theoretical perspective, LA
shares similarities with PNI, yet LA offers the advantage of easier calculation and simpler
utilization for patient stratification [19]. However, there remains insufficient evidence to
determine whether the above-mentioned indices can be applied as a whole to breast cancer
patients receiving NAC. Accordingly, we specifically designed the present study to address
these particular concerns.

2. Materials and Methods
2.1. Patients

In our study, we retrospectively screened 1252 patients with breast cancer who received
neoadjuvant therapy at two hospitals: 936 patients at Sun Yat-sen University Cancer Center
(SYSUCC) from January 2012 to July 2020 and 316 patients at Ruijin Hospital from January
2010 to January 2016. The following criteria were used for inclusion: (1) Patients with
non-metastatic breast cancer aged ≥18 years who received NAC. (2) Before NAC, all
patients underwent ultrasound-guided diagnostic core needle biopsy of the primary tumor.
Additionally, for lymph nodes suspected to be positive on ultrasound examination, the
nodal status was determined by fine needle aspiration. (3) All patients underwent rigorous
clinical imaging examinations (e.g., ultrasound, CT, MRI, etc.) before NAC and were
ultimately diagnosed with stage I-III breast cancer. (4) Patients’ laboratory data before
NAC were available. (5) Follow-up and clinical pathology information for the patients
were complete. The following criteria were used for exclusion: (1) Patients with bilateral
or inflammatory breast cancer. (2) Male patients. (3) Patients who were treated solely
with neoadjuvant endocrine therapy. (4) Patients who completed the NAC but had not
undergone surgery. (5) Patients with inflammatory diseases or chronic/acute inflammation,
including autoimmune diseases. (6) Patients with a history of malignancies at other sites.
Finally, a total of 711 patients were analyzed in the present study. Specifically, 500 patients
from Sun Yat-sen University Cancer Center were allocated into training and internal
validation cohorts randomly, with a ratio of 4:1. Concurrently, an additional 211 patients
from Ruijin Hospital were assigned to the external validation set. The patient inclusion
process and the study design are shown in Figure 1. The Research Ethics Committee of Sun
Yat-sen University Cancer Center and Ruijin Hospital approved the present retrospective
study, and confidentiality was maintained for the data of all patients.
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Figure 1. Study design flowchart. Abbreviations: LASSO, least absolute shrinkage and selection
operator; DFS, disease-free survival; ROC, Receiver Operating Characteristic Curve; DCA, decision
curve analysis; NRI, net reclassification index; IDI, integrated discrimination improvement; C-index,
Harrell’s concordance index.

2.2. Data Collection and Classification

We collected the following variables from the electronic medical records of all partici-
pants: age; menopausal status; pre-treatment histological types; pre-treatment histological
grade; T stage before NAC (cT Stage); N stage before NAC (cN Stage); T stage after surgery
(ypT Stage); N stage after surgery (ypN Stage); TNM stage after surgery (ypTNM Stage);
pathologic complete response (pCR); HR status; HER2 status; Ki-67; lymphovascular inva-
sion; type of primary surgery; and NAC regimens. Immunohistochemical analysis (IHC)
was applied to determine the ER and PR statuses, with a positive classification for hormone
receptors (HRs) being assigned when the cells staining ER- or PR-positive exceeds 1%.
If the gene amplification ratio by fluorescence in situ hybridization was greater than 2.2
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or the expression level intensity on IHC was 3+, the HER2 status was considered to be
positive. The cutoff value for Ki67 level was based on 14% of tumor cells showing nuclear
staining [20]. The absence of invasive carcinoma in both regional lymph nodes and breast
tissue could be recognized as pCR, with the allowance of residual ductal carcinoma in situ
(DCIS) within the breast tissue [21]. pCR was assessed by reviewing the final pathological
reports of all patients. According to the American Joint Committee on Cancer—Tumor,
Node, and Metastases (AJCCTNM) staging system 8th edition, at the end of the follow-up,
all patients were restaged.

The body mass index (BMI) and primary laboratory data were collected within two
weeks before NAC (at first diagnosis before any treatment). LA was computed using the
formula provided below: LA = lymphocyte count × serum albumin concentration (g/L).
Weight (kg) divided by the square of height (m) was the formula used to calculate BMI. The
LA and BMI were computed using Microsoft Excel. The optimal cutoff value for LA was
49.06 in the training cohort by using maximally selected rank statistics [22] (Figure S1).

2.3. Follow-Up and Endpoints

Telephone follow-up or outpatient electronic records were used to monitor patients’
medical conditions regularly. In cases where patients had passed away, the cause and date
of death were also recorded during the follow-up process. For the first two years, patients
had evaluations every three months. From year 2 to year 5, they had evaluations every six
months, and subsequently once a year. Routine breast and abdominal ultrasonography or
computed tomography, monitoring of menstrual status, and hematological and laboratory
examinations were all included in the assessments. Additionally, annual bone scans and
X-rays were conducted.

DFS was the study’s primary endpoint. It was calculated by measuring the time in
months that had passed between the date of curative surgery and the first event, which
could be either disease recurrence or death, whichever came first. Overall survival (OS),
the secondary endpoint, was calculated by measuring the number of months between the
date of curative surgery and the occurrence of death due to any cause. For patients who
did not experience any recurrence or mortality events during the follow-up period, the
date of their last follow-up was the study’s endpoint.

2.4. Statistical Analysis

Due to the absence of data for constructing prognostic models, prior sample size
calculations were not conducted. Nevertheless, there were 711 participants enrolled in the
study, and the total number of events was 205. In the multivariate models, this resulted in
an excess rate of 10 events per variable, indicating an adequate level of statistical power for
the evaluation [23]. Laboratory data from SYSUCC and Ruijin Hospital were normalized
and batched using the limma R package. For continuous variables, the median was used for
presentation. Meanwhile, categorical variables were displayed using both frequencies and
percentages. Either Pearson’s chi-square test or Fisher’s exact test were used to compare
these variables. Statistical significance was defined as a two-tailed p-value < 0.05. The
optimal cutoff value of LA was determined using the “maxstat” package in the R software
version 4.2.2, employing maximally selected rank statistics with survival status as the
endpoint. The Kaplan–Meier method was used to construct survival curves, and the log-
rank test was used to compared them. The proportional hazards assumption test was
conducted based on the Schoenfeld residuals. Univariate and multivariate analyses were
performed employing the Cox proportional hazards model to derive hazard ratios (HRs)
and 95% confidence intervals (CIs). Specifically, in the univariate analysis, variables with
p-values below 0.05 were included in the multivariate analysis to identify independent
risk factors. Given the potential for multicollinearity in the training set, we employed
the “glmnet” package in R software to perform least absolute shrinkage and selection
operator (LASSO) Cox regression analysis in order to identify the most significant factors.
In the LASSO Cox model, we applied an L1 penalty to precisely reduce certain regression
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coefficients to 0. Additionally, we conducted a 10-fold cross-validation to determine
the optimal value of log(λ), which is a tuning parameter used to control the degree of
shrinkage. To identify independent prognostic factors for DFS, all factors that have non-
zero coefficients in the LASSO analysis will be integrated into the multivariable Cox
regression analysis.

Only the factors that demonstrated statistical significance with a p-value < 0.05 in the
multivariate analyses were chosen to construct the prognostic model in the training set.
In R software, this model was visually depicted as a nomogram through the utilization
of the “rms” package. The model’s discrimination ability was assessed through Harrell’s
concordance index (C-index), time-dependent C-index curve, and time-dependent receiver
operating characteristic (ROC) curve. The calibration performance was assessed using
calibration curves, while the internal validity of the prediction models was examined
using the bootstrap method. Through the application of decision curve analysis (DCA),
the practical value of the prognostic model was evaluated [24]. The assessment of clinical
benefits and the utility of the nomogram model in comparison to the traditional AJCC-TNM
staging system was performed using the net reclassification index (NRI) and integrated
discrimination improvement (IDI). These measures further illustrated the superior risk
prediction and usefulness of our models [25,26]. It signifies a positive enhancement if
NRI and IDI are greater than 0, suggesting that the new model’s predictive capability
has improved in comparison to the old model. Conversely, it signifies a negative change
if NRI and IDI are less than 0, indicating a reduction in the predictive accuracy of the
new model [27]. To illustrate the differences in survival time, population distribution,
and research indicators between high- and low-risk groups, a risk plot was utilized for
visualization [27,28]. R software (http://www.R-project.org; accessed date: 8 November
2022 version 4.2.2) and SPSS 26.0 (IBM Corporation, Armonk, NY, USA) were used to
conduct the statistical analyses.

3. Results
3.1. Patient Characteristics

In this study, 500 breast cancer patients who met the specified inclusion and exclusion
criteria and were scheduled to receive NAC prior to surgery at SYSUCC between January
2012 and July 2020 were enrolled. In a ratio of 4:1, the entire set of cases was randomly split
into two groups: the training cohort, consisting of 400 cases, and the internal validation
cohorts, consisting of 100 cases. The baseline clinicopathological characteristics are pre-
sented in Table 1. Although some significant differences existed in ypT stage between the
groups, they were generally comparable. Upon diagnosis, the median age for all patients
was 48.0 years, and over two-thirds of them were premenopausal women. The groups did
not show any significant variations in terms of BMI. Most of the enrolled patients were
pathologically diagnosed with invasive ductal carcinoma (IDC), HR-positive (65.80%), and
lymphovascular invasion (61.00%), and 420 (84.00%) patients had a Ki-67 index value ≥ 14.
There were 216 cases (43.20%) of HER-2-positive patients among the total population. More
than 80% of the patients received NAC regimens containing both anthracycline and taxane.
According to the AJCC-TNM classification system eighth edition, the patients’ clinical stag-
ing was predominantly at stage II–III. In the overall population, as for the postoperative
pathological staging, ypT1–T2 stage (65.60%) and ypN0–N1 stage (67.80%) were the most
common. Eighty-six cases (17.20%) achieved pCR. Based on the optimal LA cut-off value of
49.06, 51 (12.80%) in the training set and 13 (13.00%) patients in the internal validation set
were assigned to the low-LA groups (<49.06). Correspondingly, 349 patients (86.20%) and
87 patients (87.00%) were classified into the high-LA group (≥49.06). Table S1 shows that
there was no significant correlation between LA and different clinicopathological factors in
the training cohort.

http://www.R-project.org
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Table 1. Patient clinical characteristics and demographics between the training and internal valida-
tion cohorts.

Variables Total
(n = 500)

Training Set
(n = 400)

Internal
Validation Set

(n = 100)
p

Age (years)
median (IQR) 48 (40, 56) 48 (40, 56) 46 (39, 55) 0.152
≤50 298 (59.60%) 236 (59.00%) 62 (62.00%) 0.665
>50 202 (40.04%) 164 (41.00%) 38 (38.00%)
BMI (kg/m2)
median (IQR) 23.0 (21.3, 25.0) 23.0 (21.4, 25.0) 22.8 (20.7, 24.9) 0.121
≤25 378 (75.6%) 302 (75.5%) 76 (76.0%) 1.000
>25 122 (24.4%) 98 (24.5%) 24 (24.0%)
Menopausal status
Pre-menopausal 306 (61.20%) 244 (61.00%) 62 (62.00%) 0.945
Post-menopausal 194 (38.80%) 156 (39.00%) 38 (38.00%)
Histological types
IDC 466 (93.20%) 372 (93.00%) 94 (94.00%) 0.101
ILC 14 (2.80%) 11 (2.80%) 3 (3.00%)
Others 17 (3.40%) 16 (4.00%) 1 (1.00%)
Missing data 3 (0.60%) 1 (0.20%) 2 (2.00%)
Histological grade
I 8 (1.60%) 5 (1.20%) 3 (3.00%) 0.217
II 231 (46.20%) 192 (48.00%) 39 (39.00%)
III 156 (31.20%) 124 (31.00%) 32 (32.00%)
Missing data 105 (21.00%) 79 (19.80%) 26 (26.00%)
cT Stage
T1 21 (4.20%) 19 (4.80%) 2 (2.00%) 0.176
T2 288 (57.60%) 225 (56.20%) 63 (63.00%)
T3 111 (22.20%) 95 (23.80%) 16 (16.00%)
T4 80 (16.00%) 61 (15.20%) 19 (19.00%)
cN Stage
N0 20 (4.00%) 14 (3.50%) 6 (6.00%) 0.186
N1 75 (15.00%) 56 (14.00%) 19 (19.00%)
N2 290 (58.00%) 241 (60.20%) 49 (49.00%)
N3 115 (23.00%) 89 (22.20%) 26 (26.00%)
ypT Stage
Tis/T0 98 (19.60%) 75 (18.80%) 23 (23.00%) 0.790
T1 135 (27.00%) 107 (26.80%) 28 (28.00%)
T2 193 (38.60%) 156 (39.00%) 37 (37.00%)
T3 45 (9.00%) 37 (9.20%) 8 (8.00%)
T4 29 (5.80%) 25 (6.20%) 4 (4.00%)
ypN Stage
N0 215 (43.00%) 159 (39.80%) 56 (56.00%) 0.008
N1 124 (24.80%) 108 (27.00%) 16 (16.00%)
N2 86 (17.20%) 75 (18.80%) 11 (11.00%)
N3 75 (15.00%) 58 (14.50%) 17 (17.00%)
pCR
No 414 (82.80%) 335 (83.80%) 79 (79.00%) 0.328
Yes 86 (17.20%) 65 (16.20%) 21 (21.00%)
HR status
Negative 171 (34.20%) 135 (33.80%) 36 (36.00%) 0.759
Positive 325 (65.80%) 263 (66.30%) 62 (64.00%)
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Table 1. Cont.

Variables Total
(n = 500)

Training Set
(n = 400)

Internal
Validation Set

(n = 100)
p

HER2 status
Negative 272 (54.40%) 220 (55.00%) 52 (52.00%) 0.161
Positive 216 (43.20%) 173 (43.20%) 43 (43.00%)
Missing data 12 (2.40%) 7 (1.80%) 5 (5.00%)
Ki-67 (%)
median (IQR) 30 (20, 50) 30 (20, 53) 30 (20, 40) 0.274
≤14 69 (13.80%) 52 (13.00%) 17 (17.00%) 0.466
>14 420 (84.00%) 340 (85.00%) 80 (80.00%)
Missing data 11 (2.20%) 8 (2.00%) 3 (3.00%)
Lymphovascular invasion
No 305 (61.00%) 238 (59.50%) 67 (67.00%) 0.369
Yes 187 (37.40%) 155 (38.80%) 32 (32.00%)
Missing data 8 (1.60%) 7 (1.80%) 1 (1.00%)
Type of primary surgery
Mastectomy 450 (90.00%) 363 (90.80%) 87 (87.00%) 0.351
BCS 50 (10.00%) 37 (9.20%) 13 (13.00%)
NAC regimens
Anthracycline + taxane 443 (88.60%) 352 (88.00%) 91 (91.00%) 0.504
Others 57 (11.40%) 48 (12.00%) 9 (9.00%)
LA
Low 66 (13.20%) 51 (12.80%) 13 (13.00%) 1.000
High 434 (86.80%) 349 (86.20%) 87 (87.00%)

Abbreviations: IQR, inter-quarter range; BMI, body mass index; IDC, invasive ductal carcinoma; ILC, invasive
lobular carcinoma; pCR, pathologic complete response; HR, hormone receptors; BCS, breast conserving surgery;
HER2, human epidermal growth factor receptor-2; NAC, neoadjuvant chemotherapy.

3.2. Prognostic Value of LA

The median follow-up in the entire cohort was 41 months (95% CI: 38.80–45.00 months).
In the training cohort, 140 recurrence or death events were observed. The internal validation
cohort experienced 20 such events, and the external validation cohort had 45 of them. In
our study, “Number at risk” represents the remaining number of patients exposed to the
outcome risk at the corresponding time point. Generally, at the 1-year and 2-year time
points, the low-LA group exhibited a higher rate of recurrence or death events. In Figure 2,
significantly longer DFS in the high-LA group than in the low-LA group (Figure 2a, hazard
ratio [HR] = 1.99, 95% CI: 1.30–3.06, log-rank test p = 0.001; Figure 2b, HR = 2.98, 95% CI:
1.08–8.22, log-rank test p = 0.026; Figure 2c, HR = 2.77,95% CI: 1.40–5.48, log-rank test
p = 0.002) was shown in the Kaplan–Meier curves, whether in the training cohort, internal
validation cohort, or external validation cohort.

Additionally, we attempted to explore the association between LA and OS. As shown
in Figure 2d,e, in both the training cohort and the internal validation cohort, the OS of the
low-LA group was significantly worse than that of the high-LA group (Figure 2d, HR = 2.75,
95% CI: 1.22–6.19, log-rank test p = 0.011; Figure 2e, HR = 21.78, 95% CI: 2.26–209.60, log-
rank test p < 0.001). However, possibly influenced by sample size and follow-up duration,
the survival curves exhibited a similar trend, but the p-value failed to reach statistical
significance in the external validation cohort (Figure 2f, HR = 1.81, 95% CI: 0.68–4.78,
log-rank test p = 0.229).
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3.3. Development of the Prognostic Model

Table S2 displays the univariable analysis of DFS via Cox regression analysis in
the training cohort. cT Stage, ypN Stage, ypT Stage, pCR, LA, and HR status are the
factors of statistical significance (p < 0.05). We used the LASSO Cox regression model to
address the problem of multicollinearity upon regression in the training cohort (Figure 3a,b).
Subsequently, at the optimal lambda value with minimal bias, we identified four indicators
associated with DFS, each having non-zero coefficients. These indicators included ypT
stage, ypN stage, HR status, and LA, all of which were incorporated into the multivariate
Cox regression model. In the multivariable modeling, the proportional hazards diagnostic
tests confirmed that the assumption of proportional hazards was met (Figure S2). Finally,
multivariable Cox regression analysis demonstrated that LA had the capability to predict
DFS independently (HR = 2.00, 95% CI: 1.29–3.11, p = 0.002). Furthermore, negative
hormone receptor status, larger ypT stage, and elevated ypN stage were all found to
be independent predictors of adverse DFS for breast cancer patients who underwent
NAC. Furthermore, we visually depicted the aforementioned multivariate Cox regression
outcomes using a forest plot (Figure 3c). Afterwards, a novel prognostic model based on
those aforementioned four independent prognostic factors was established and visually
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represented as a nomogram for predicting the 1-, 3-, and 5-year DFS of breast cancer
patients with NAC (Figure 4a). A corresponding score was assigned to each prognostic
factor, and by summing up the scores associated with all the prognostic factors, the total
score for each individual was determined. The total score was then located on the survival
rate scale to predict the 1-, 3-, and 5-year DFS rate of the patients before the implementation
of subsequent adjuvant therapy. It was evident that higher total scores in patients were
associated with a decreased probability of individual DFS.
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Figure 3. Significant factors determination using LASSO Cox and multivariate Cox regression
model. (a) A coefficient profile plot of 15 factors associated with DFS in the training set. The bottom
horizontal axis represented the log lambda (λ) values of the independent variable, the top horizontal
axis indicated the number of variables with non-zero coefficients, and the vertical axis represented
the coefficients of the independent variable. Different-colored curves represented different variables,
with each curve depicting the trajectory of the coefficient variation for each independent variable. The
black dotted vertical line (left), positioned at the λ value where the bias was minimized, indicated the
optimal model fitting point with four non-zero coefficients. The red dotted vertical line (right) was
located at one standard error to the right of the minimum lambda value. (b) Four non-zero coefficient
variables selected through ten-fold cross-validation via optimal lambda. Dotted vertical lines were
placed at the optimal log(λ) values determined by both the minimum criteria and one standard error.
(c) Multivariate Cox regression analysis on the four variables selected through Lasso Cox regression
presented in a forest plot. Abbreviations: HR, hormone receptors; CI, confidence interval.
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Figure 4. Nomograms for prognostic model development and calibration. (a) A nomogram to predict
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internal validation, (c) and external validation (d) cohorts.

3.4. Assessment of Predictive Performance of the Prognostic Model

Strong discriminatory performance was demonstrated by the generated prognostic
model with a C-index of 0.69 (95% CI: 0.64–0.74) for the training cohort, 0.66 (95% CI:
0.51–0.81) for the internal validation cohort, and 0.80 (95% CI: 0.74–0.87) for the external
validation cohort. As shown in Figure 4b–d, the calibration curves of the 1-, 3-, and
5-year DFS probability nomograms exhibited strong agreement between the predicted and
observed survival probabilities across the training, internal, and external validation sets. To
assess the prognostic accuracy of this customized DFS prognostic model, time-dependent
ROC analysis was conducted. Across the training, internal, and external validation cohorts,
our predictive nomogram for individualized DFS, as depicted in Figure 5a–c, showed
superior performance compared to the traditional TNM stage. In addition, we also plotted
time-dependent C-index curves, which further confirmed the above results (Figure 5d–f).
Furthermore, we conducted an accuracy comparison between the nomogram and the
TNM stage using IDI and NRI in the training, internal, and external validation cohorts
(Table 2). While in different cohorts, both NRI and IDI were greater than 0, indicating a
positive improvement, suggesting that the nomogram demonstrated superior predictive
accuracy in prognosis when compared to the conventional staging system. Through DCA,
a notable improvement in the net benefit of the proposed model when compared to the
AJCC tumor staging system was observed in the training, internal, and external validation
cohorts (Figure 6). Compared to the AJCC staging system, these results highlight that the
new nomogram model holds greater clinical utility in accurately predicting individual
survival outcomes.
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Table 2. NRI and IDI of the nomogram and AJCC TNM staging system in the DFS survival prediction
for breast cancer patients received NAC.

Index
Training Cohort Internal Validation Cohort External Validation Cohort

Estimate 95% CI p Estimate 95% CI p Estimate 95% CI p

The nomogram vs. cTNM Staging
NRI
1-year DFS 0.65 0.21–0.96 0.71 −0.43–1.55 1.33 0.62–1.57
3-year DFS 0.55 0.22–0.81 0.45 −0.23–1.22 1.26 0.75–1.50
5-year DFS 0.64 0.25–0.93 0.80 −0.20–1.40 0.83 0.33–1.24
IDI
1-year DFS 0.10 0.05–0.19 <0.001 0.05 −0.02–0.41 0.244 0.10 0.03–0.27 <0.001
3-year DFS 0.16 0.09–0.23 <0.001 0.04 −0.03–0.27 0.192 0.21 0.11–0.38 <0.001
5-year DFS 0.18 0.10–0.27 <0.001 0.11 −0.08–0.41 0.168 0.17 0.07–0.31 <0.001
The nomogram vs. ypTNM Staging
NRI
1-year DFS 0.60 0.28–0.90 0.51 −0.37–1.54 0.99 −0.05–1.37
3-year DFS 0.60 0.18–0.84 0.17 −0.23–1.11 0.63 −0.16–1.26
5-year DFS 0.68 0.07–0.88 0.14 −0.28–1.34 0.25 −0.19–0.91
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Table 2. Cont.

Index
Training Cohort Internal Validation Cohort External Validation Cohort

Estimate 95% CI p Estimate 95% CI p Estimate 95% CI p

IDI
1-year DFS 0.08 0.04–0.14 <0.001 0.05 −0.02–0.39 0.196 0.06 0.00–0.18 0.052
3-year DFS 0.10 0.05–0.17 <0.001 0.04 0.00–0.30 0.052 0.14 0.04–0.27 <0.001
5-year DFS 0.11 0.03–0.19 0.016 0.10 −0.06–0.37 0.128 0.12 0.04–0.23 <0.001
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3.5. Performance of the Nomogram in Risk Stratification of Patients

In the training cohort, the prognostic nomogram model was utilized to compute a
score for each patient, and the patients were categorized into either a low-risk or a high-risk
group based on their median score (Figure 7a). In Figure 7b, it is indicated that individuals
with high-risk scores have a greater likelihood of experiencing disease progression or
death compared to those with low-risk scores. Similarly, breast cancer patients in the
high-risk group exhibited markedly inferior DFS compared to those in the low-risk group,
as illustrated by the Kaplan–Meier survival curve in Figure 7c (p < 0.001). Then, the internal
and external validation cohorts were also separately split into a high-risk group and a
low-risk group based on the median score of each cohort. In both internal and external
validation cohorts, it was further confirmed that patients belonging to the high-risk group
experienced worse DFS outcomes (Figures S3 and S4).
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4. Discussion

This study represents, to the best of our knowledge, the first investigation into the
prognostic significance of a novel nutritional biomarker, LA, in breast cancer patients under-
going NAC. In breast cancer patients who underwent NAC and mastectomy, multivariable
Cox regression analysis demonstrated that pre-NAC LA had the ability to predict DFS,
leading to the development of a novel and user-friendly nomogram model for predicting
DFS. This model incorporates LA and three other significant clinicopathological variables
(ypN stage, ypT stage, hormone receptor status). In comparison with the TNM staging sys-
tem, the nomogram demonstrated superior discrimination, calibration ability, and clinical
usefulness in all the datasets, including the training set as well as the internal and external
validation sets. The validation in both internal and external patient cohorts supported
the generalizability of the nomogram. Given the limited accuracy of prognosis predic-
tion in breast cancer patients undergoing NAC solely based on traditional TNM staging,
the LA-based nomogram model emerges as a reliable, cost-effective, readily accessible,
non-invasive, and easily applicable alternative. It holds the potential to offer personalized
prognostic recommendations for this heterogeneous patient population.

The importance of inflammation–nutrition-related biomarkers in predicting the prog-
nosis of breast cancer patients undergoing neoadjuvant therapy has become a research
hotspot in recent years [17,29–31]. Chen et al. found that the systemic immune-inflammation
index serves as a crucial prognostic factor for breast cancer patients, offering a reliable
means to predict the survival in those receiving NAC. Patients with a higher SII value
experienced shorter OS and DFS [30]. In 2021, Ahmet Bilgehan Şahin et al. introduced a
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biomarker for systemic immune-inflammation score known as the pan-immune inflam-
mation value (PIV). This marker, which takes the neutrophil, platelet, monocyte, and
lymphocyte into account, has been demonstrated to be a better predictor of response to
chemotherapy and survival of breast cancer patients who have undergone NAC. Patients in
the lower PIV group exhibited remarkably improved DFS and OS [17]. Zhu et al. pointed
out that the systemic inflammation response index (SIRI) could predict survival in breast
cancer patients who underwent NAC independently. Patients with higher SIRI scores
experienced significantly shorter DFS and OS [31]. Another previous study demonstrated
that the prognostic nutritional index (PNI) served as a valuable prognostic indicator for
breast cancer patients undergoing NAC. Higher PNI values indicated longer DFS and
OS in breast cancer patients [29]. In rectal cancer patients with stage II/III disease who
underwent radical resection, Yamamoto et al. identified a novel prognostic marker, “lym-
phocyte × albumin (LA),” which was significantly associated with patient survival. Lower
levels of LA were indicative of poorer recurrence-free survival and OS [18]. Additionally,
Yamamoto et al. also proposed that LA could potentially function as a prognostic marker
for individuals diagnosed with colorectal cancer [19]. In lung cancer patients, Chen et al.
confirmed lower LA levels compared to a healthy control group, and as the disease ad-
vanced, LA levels demonstrated a declining trend. Consequently, LA arises as a prospective
supplementary biomarker for the diagnosis of lung cancer and may partially signify the
progression of the disease [32]. Theoretically, our novel prognostic marker “LA” shares
similarities with PNI; however, LA offers the advantage of being a more straightforward
calculation, which can provide opportunities for further clinical practice. Compared to
previous single-center studies with relatively small sample sizes, we confirmed the in-
dependent association of higher LA values with longer DFS in a cohort of 711 patients
undergoing NAC for breast cancer derived from two different medical centers. In addition,
we also constructed prognostic nomograms based on LA in the training group, which had
a greater predictive ability for DFS than traditional TNM staging, and validated that this
prognostic nomogram better predicted individual survival in the both the internal and
external validation group.

Although the underlying causal effects of the association between LA and prognosis
remain unclear, several hypotheses can be proposed. Lymphocytes are potent executors
of the host’s anti-tumor immunity and immune surveillance functions. Higher peripheral
blood lymphocyte counts indicate the endogenous anti-tumor capacity of the body, with
CD8+ T lymphocytes being the primary effector cells of the anti-tumor immune response.
Cytotoxic CD8+ T lymphocytes not only directly kill tumor cells through perforin and
granzyme pathways or the Fas/Fas ligand (FasL) pathway but also indirectly eliminate
tumor cells by secreting cytokines such as IFN-γ and TNF-α [33]. Elevated levels of
lymphocytes in peripheral blood reflect the inherent anti-tumor capability of the immune
system and have been linked to favorable prognoses in breast cancer [34–36]. Human
serum albumin, primarily produced and secreted by the liver, is the most abundant protein
in plasma [37]. As early as the mid-20th century, researchers discovered that tumors
are capable of capturing plasma proteins and utilizing their degradation products for
proliferation [38]. Serum albumin exhibits a higher turnover rate within tumor tissues,
which serves as an important source of energy and nutrients that support tumor growth.
In late-stage cancer patients, serum albumin synthesis is suppressed by malnutrition and
inflammation. As a component of the body’s inflammatory response triggered by the tumor,
the production of proinflammatory cytokines (such as IL-6) may be a contributing factor to
the lower serum albumin concentration. On the other hand, the tumor necrosis factor could
potentially enhance the permeability of the microvasculature, thereby facilitating the greater
passage of albumin across the capillaries. As a consequence, in cancer patients, measuring
the levels of serum albumin in the blood can reflect the severity of the disease, the nutritional
status, the disease progression, and the prognosis [39,40]. It is widely acknowledged that
serum albumin level independently plays a significant role in predicting survival outcomes
in various types of cancers, such as lung, pancreatic, gastric, hepatocellular, and breast
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cancer [37,39,40]. These results suggested that LA might be a useful indicator of both the
immunological response, as shown by the lymphocyte count, and the nutritional condition,
as indicated by the serum albumin levels [18,19]. Our findings confirm that in breast cancer
patients who underwent NAC, a heavy tumor burden may lead to a reduction in LA, which
has been linked to a poorer prognosis.

The results of this study indicated that ypN staging, rather than cN staging, is an indepen-
dent predictor for DFS. Among patients undergoing NAC, a progressively higher pathological
lymph nodal involvement (ypN) correlates with a sustained escalation in the risk of DFS
events. These findings are consistent with previous research results [41–43]. Additionally,
based on the results of Harrell’s C-index, time-dependent ROC curve, and time-dependent
C-index curve, ypTNM staging demonstrated better performance compared to cTNM.
Therefore, post-NAC pathological staging may be more important in predicting patients’
survival risk compared to the initial clinical staging. Initial clinical staging may better
reflect the initial tumor burden, while pathological staging reflects the effectiveness of NAC
and the subsequent good control of local and distant diseases, indicating the concept of
response-adaptive therapy [43].

However, there are some limitations worth noting in the present work. Firstly, it is a
retrospective study, which may introduce potential biases in the data selection and analysis.
Secondly, even though this study employed strict inclusion and exclusion criteria, it is
important to recognize that serum markers can be influenced by various other factors;
thus, it is essential to exercise caution when interpreting the results of our study. Despite
being a two-center study, more large and well-designed studies should be performed to
address these concerns. Hence, in the future, we intend to gather additional data for
dynamic analysis to yield more comprehensive results. Additionally, we are in the process
of planning further prospective studies to validate these findings.

5. Conclusions

In conclusion, the present study demonstrated that the novel nutrition–inflammation
marker LA could serve as an independent prognostic indicator for the DFS time of breast
cancer patients undergoing NAC. A low pre-treatment LA is associated with poorer survival
compared to a high LA level. Moreover, the LA-based prognostic nomogram not only
showed satisfactory discrimination and consistency but also displayed superior predictive
capabilities in comparison to the conventional staging system. It holds the potential to offer
personalized prognostic recommendations for breast cancer patients treated with NAC.
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