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Abstract: Hyperuricemia is influenced by diet and can cause gout. Whether it is a potential risk factor
for cardiovascular disease (CVD) remains controversial, and the mechanism is unclear. Similar to
CVDs, gout attacks occur more frequently in the morning and at night. A possible reason for this is
the diurnal variation in uric acid (UA), However, scientific data regarding this variation in patients
with CVD are not available. Thus, we aimed to investigate diurnal variations in serum levels of UA
and plasma levels of xanthine, hypoxanthine, and xanthine oxidoreductase (XOR) activity, which
were measured at 18:00, 6:00, and 12:00 in male patients with coronary artery disease. Thirty eligible
patients participated in the study. UA and xanthine levels significantly increased from 18:00 to 6:00
but significantly decreased from 6:00 to 12:00. By contrast, XOR activity significantly increased both
from 18:00 to 6:00 and 6:00 to 12:00. Furthermore, the rates of increase in UA and xanthine levels
from night to morning were significantly and positively correlated. In conclusion, UA and xanthine
showed similar diurnal variations, whereas XOR activity showed different diurnal variations. The
morning UA surge could be due to UA production. The mechanism involved XOR activity, but other
factors were also considered.

Keywords: uric acid; xanthine; xanthine oxidoreductase; purine metabolism; cardiovascular disease;
sleep-disordered breathing

1. Introduction

Diet and sleep play important roles in the development of cardiovascular disease
(CVD) [1,2]. Disordered dietary habits lead to hypertension, dyslipidemia, and diabetes,
which are obvious risk factors for CVDs [3–10]. Excessive intake of a purine-rich diet
causes hyperuricemia [11,12]. Other factors, such as obesity due to poor diet and increased
alcohol consumption, also increase the incidence of hyperuricemia [13,14]. Some large
epidemiological investigations have established a correlation between hyperuricemia and
cardiovascular risk in the general populace [15,16]. This correlation has also been observed
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among individuals diagnosed with hypertension [17]. Some investigations have asserted
that serum uric acid (UA) levels is an independent risk factor for CVD [18]. In contrast,
other studies have deduced that there is merely an association between serum UA levels
and additional risk factors, such as hypertension, renal issues, elevated lipoprotein levels,
and the utilization of diuretic agents [19]. Thus, Hyperuricemia has been reported to be a
predictor of CVD; however, whether it is an independent risk factor remains controversial.
Previous studies have suggested an association between sleep and UA. For instance,
patients with obstructive sleep apnea, which is associated with an increased risk of CVD
and overall cardiovascular mortality [20,21], tend to have higher serum UA levels [22].
Our previous study showed that the severity of nocturnal hypoxia is positively correlated
with xanthine oxidoreductase (XOR) activity, which is involved in purine metabolism
(Figure 1). Hypoxia enhances oxidative stress through XOR activity and increases UA
production, which suggests a relationship between sleep and UA [23]. Hyperuricemia is
the most important risk factor for the development of gout. The development of gout is
influenced by several risk factors, including increased age, genetic predisposition, and
diet [24]. In addition, elevated UA levels can arise from both increased production and
reduced excretion of UA [25]. Furthermore, gout attacks are more common at night and at
dawn [26], when the incidence of CVD is also common [27,28]. Diurnal variation in UA
is one of the mechanisms involved. The diurnal variation in serum UA levels in normal
subjects, patients with diabetes, and patients with multiple sclerosis not only increases
from night to morning but also decreases from morning to noon [29,30]. Elucidation
of the mechanisms underlying such diurnal variations may help prevent the onset of
hyperuricemia, gout, and possibly CVD. However, no scientific data regarding diurnal
variations in UA levels in patients with CVD are available. In addition, to understand the
detailed mechanisms of such diurnal variations in serum UA levels, investigations of other
metabolites of the XOR pathway are important. Therefore, we aimed to investigate diurnal
variations in serum levels of UA and plasma levels of xanthine, hypoxanthine, and XOR
activity in purine metabolism in male patients with coronary artery disease (CAD).
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Figure 1. Purine metabolism. ADP—adenosine diphosphate; AMP—adenylic acid; APRT—adenine
phosphoribosyltransferase; ATP—adenosine triphosphate; GDP—guanosine diphosphate;
GMP—guanosine monophosphate; GTP—guanosine triphosphate; HPRT—hypoxanthine phos-
phoribosyltransferase; IMP—inosinic acid; PRPP—phosphoribosyl diphosphate; XOR—xanthine
oxidoreductase.
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2. Materials and Methods
2.1. Patients

This is a prospective observational study enrolling male patients with CAD. They were
admitted for elective percutaneous coronary intervention at Juntendo University Hospital
between June 2016 and November 2017. In this study, we established inclusion criteria
that restricted participation to male patients, as UA levels vary significantly between males
and females and UA levels also exhibit sex-specific differences as a CAD risk marker [31].
We excluded patients who were currently receiving treatment for hyperuricemia, taking
medications that affect serum UA levels (such as diuretics), and patients with a history of
treated sleep apnea, heart failure, chronic pulmonary disease, cancer, or chronic kidney
disease (CKD). The Ethics Committee of Juntendo University Hospital approved the study
protocol (Approval no.15-179), which abides by the Declaration of Helsinki. Informed
consent was obtained from all individuals.

2.2. Height, Weight, and Blood Pressure

The calculation of body mass index involved dividing the square of height in meters by
weight in kilograms. Blood pressure was measured using a fully automated oscillometric
sphygmomanometer when the patients woke up. Hypertension was defined as being under
treatment with antihypertensive agents or having systolic blood pressure ≥ 140 mmHg
and/or diastolic blood pressure ≥ 90 mmHg. CKD was defined as an estimated glomeru-
lar filtration rate < 60 mL/min/1.73 m2 [32]. Dyslipidemia was defined as triglyceride
levels ≥ 150 mg/dL, low-density lipoprotein cholesterol levels ≥ 140 mg/dL, high-density
lipoprotein cholesterol levels ≤ 40 mg/dL, or under treatment with lipid-lowering agents.
Diabetes mellitus was defined as hemoglobin A1c (National Glycohemoglobin Standard-
ization Program) levels ≥ 6.5% and fasting blood glucose levels ≥ 126 mg/dL or under
treatment with oral antidiabetic agents or insulin.

2.3. Blood Samples

We measured the serum levels of UA and plasma levels of xanthine, hypoxanthine,
and XOR activity at three time points: 18:00, 6:00, and 12:00. In detail, samples of all
patients were taken on consecutive days at 18:00 on the third day and at 6:00 and 12:00 on
the fourth day of admission. Additionally, samples were taken before each meal. Serum
levels of total cholesterol, triglycerides, and high-density lipoprotein cholesterol were
measured using standard enzymatic methods, and low-density lipoprotein cholesterol
levels were calculated using the Friedewald formula (non-high-density lipoprotein choles-
terol level−triglycerides/5). Plasma glucose, hemoglobin A1c, and creatinine levels were
measured using standard methods.

2.4. Hypoxanthine and Xanthine

The plasma levels of purine degradation products, hypoxanthine, and xanthine were
measured according to the following method: one hundred microliters of plasma samples
was mixed with 300 µL of methanol containing [13C3, 15N] hypoxanthine and [13C2, 15N2]
xanthine as internal standards. The mixtures were centrifuged at 3000× g for 15 min at
4 ◦C. Subsequently, 30 µL of the supernatant was transferred to new tubes, diluted with
120 µL of distilled water, and analyzed using liquid chromatography–triple quadrupole
mass spectrometry (LC/TQMS). The concentrations of hypoxanthine and xanthine in the
plasma were quantified from calibration curves obtained using calibration standards [33].

2.5. XOR Activity

The XOR activity assay was conducted using a stable isotope-labeled substrate and
LC/TQMS (Sanwa Kagaku Kenkyusho Co., Ltd., Inabe, Japan) [34]. In detail, plasma
aliquots were collected and promptly stored at −80 degrees Celsius until analysis. Plasma
XOR activity was determined using a combination of [13C2,15N2]xanthine and LC/TQMS
as previously described [34]. This assay demonstrated linearity in the calibration curve
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within the range of 4 and 4000 nmol/L (R2 > 0.995), with a lower limit of quantitation of
4 nmol/L. This lower limit corresponds to an XOR activity of 6.67 pmol/h/mL of plasma.

2.6. Statistical Analysis

In this study, for continuous variables, values are presented as mean ± standard
deviation or median (interquartile range), and for nominal variables, they are expressed as
numbers (%). Due to the skewed nature of XOR activity, all statistical analyses employed
the natural log-transformed XOR activity (log XOR). The sample size calculation relied on
data from the initial five subjects, as no prior relevant studies were available. These data
revealed mean values and standard deviations of changes in UA levels as 0.1 mg/dL and
0.19, respectively. With a significance level of 0.05 and 80% power, the calculated sample
size was 30. A paired t-test was used to compare the UA, xanthine, hypoxanthine, and XOR
activities at 18:00, 6:00, and 12:00. The Bonferroni correction was used after the paired t-test.
Repeated-measures analysis of variance (ANOVA) was used to assess diurnal variation
at three time points (18:00, 6:00, and 12:00). The percentage changes in UA, xanthine, and
hypoxanthine from 18:00 to 6:00 and 6:00 to 12:00 are expressed as ∆UA (18:00–6:00), ∆UA
(6:00–12:00), ∆xanthine (18:00–6:00), ∆xanthine (6:00–12:00), ∆hypoxanthine (18:00–6:00),
and ∆hypoxanthine (6:00–12:00), respectively. Pearson correlation analysis was used to
compare ∆UA, ∆xanthine, and ∆hypoxanthine values. Analyses were performed using
JMP (version 5.0; SAS Institute, Cary, NC, USA).

3. Results
3.1. Baseline Patient Characteristics

Overall, 30 patients were enrolled in this study. Table 1 shows the baseline patient char-
acteristics. The mean age was 67.6 years, and the mean body mass index was 24.5 kg/m2.
The prevalence rates of hypertension, dyslipidemia, diabetes mellitus, and current smoking
were 73%, 90%, 53%, and 27%, respectively. A total of 53% were taking angiotensin-
converting enzyme inhibitor/angiotensin II receptor blocker, 70% were taking β blockers,
and 93% were taking statins.

Table 1. Characteristics of participants.

n = 30
Age, years 67.6 ± 8.2

BMI, kg/m2 24.5 ± 3.6
Hypertension, n (%) 22 (73)
Dyslipidemia, n (%) 27 (90)

Diabetes mellitus, n (%) 16 (53)
Current smoker, n (%) 8 (27)

Creatinine, mg/dL 0.74 ± 0.12
eGFR, mL/min/1.73 m2 83.4 ± 18.4

Medications
ACEis/ARBs, n (%) 16 (53)
β blockers, n (%) 21 (70)

Statins, n (%) 28 (93)
The values are the means ± s.d. ACEi—angiotensin-converting enzyme inhibitor; ARB—angiotensin II receptor
blocker; BMI—body mass index; eGFR—estimated glomerular filtration rate.

3.2. Diurnal Variations in Serum UA and Plasma Xanthine, Hypoxanthine, and XOR Activity

Serum UA levels significantly increased from 18:00 to 6:00 (5.27 ± 0.92 mg/dL to
5.41 ± 0.98 mg/dL, p = 0.012) but significantly decreased from 6:00 to 12:00 (5.41 ± 0.98 mg/dL
to 5.31 ± 0.94 mg/dL, p = 0.018) (Figure 2). UA showed diurnal variation between
18:00 and 12:00 (p for ANOVA = 0.010). Similarly, plasma xanthine levels significantly
increased from 18:00 to 6:00 (0.46 ± 0.15 mg/dL to 0.74 ± 0.23 mg/dL, p < 0.001) but signif-
icantly decreased from 6:00 to 12:00 (0.74 ± 0.23 mg/dL to 0.52 ± 0.18 mg/dL, p < 0.001)
(Figure 3). Plasma xanthine levels showed diurnal variation between 18:00 and 12:00 (p for
ANOVA < 0.001). Plasma hypoxanthine levels did not significantly change between 18:00
and 12:00 or between 12:00 and 6:00 (1.72 ± 0.61 mg/dL to 1.86 ± 0.69 mg/dL, p = 0.923)
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(1.86 ± 0.69 to 1.61 ± 0.53 mg/dL, p = 0.113), and no diurnal variation was observed
(Figure 4). On the other hand, plasma XOR activity significantly increased both from
18:00 to 6:00 (47.91 ± 39.57 mg/dL to 82.42 ± 116.0 mg/dL, p = 0.009) and 6:00 to 12:00
(82.42 ± 116.0 mg/dL to 128.29 ± 123.57 mg/dL, p < 0.001) (Figure 5). XOR activity showed
a diurnal variation between 18:00 and 12:00 (p for ANOVA < 0.001).
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Figure 2. Serum UA levels. Serum UA levels significantly increased from 18:00 to 6:00
(5.27 ± 0.92 mg/dL to 5.41 ± 0.98 mg/dL, p = 0.012) and significantly decreased from 6:00 to 12:00
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Figure 4. Plasma hypoxanthine levels. Plasma hypoxanthine levels did not change significantly
between 18:00 and 12:00 or between 12:00 and 6:00 (1.72 ± 0.61 mg/dL to 1.86 ± 0.69 mg/dL,
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(47.91 ± 39.57 mg/dL to 82.42 ± 116.0 mg/dL, p = 0.009) and from 6:00 to 12:00 (82.42 ± 116.0 mg/dL
to 128.29 ± 123.57 mg/dL, p < 0.001). Dots outside the boxplots are outliers which are 1.5 times the
interquartile range less than the first quartile or 1.5 times the interquartile range greater than the
third quartile.

3.3. Formatting of Mathematical Components’ Correlation between ∆UA and ∆xanthine and
∆hypoxanthine

As the diurnal variations in UA and xanthine were similar, we evaluated the asso-
ciation between ∆UA and ∆xanthine and ∆hypoxanthine at the respective time points
(18:00–6:00 and 6:00–12:00). From 18:00 to 6:00, a significant positive association was found
between ∆UA and ∆xanthine (r = 0.42, p = 0.020) and ∆hypoxanthine (r = 0.37, p = 0.040)
(Table 2). From 6:00 to 12:00, no association was found between ∆UA and ∆xanthine or
∆hypoxanthine (Table 3). The association between ∆Xanthine and ∆hypoxanthine was
significantly positively correlated in both time periods from 18:00 to 6:00 (r = 0.73, p < 0.001)
and 6:00 to 12:00 (r = 0.47, p < 0.01).

Table 2. The correlation coefficients between ∆UA and ∆xanthine and ∆hypoxanthine from 18:00
to 6:00.

∆UA ∆xanthine ∆hypoxanthine

Coefficient p Coefficient p Coefficient p

∆UA - - 0.42 0.02 0.37 0.04
∆xanthine 0.42 0.02 - - 0.73 <0.001

∆hypoxanthine 0.37 0.04 0.73 <0.001 - -
UA—uric acid. —-not indicated as the same items are compared.

Table 3. The correlation coefficients between ∆UA and ∆xanthine and ∆hypoxanthine from 6:00
to 12:00.

∆UA ∆xanthine ∆hypoxanthine

Coefficient p Coefficient p Coefficient p

∆UA - - 0.19 0.31 −0.27 0.15
∆xanthine 0.19 0.31 - - 0.47 <0.01

∆hypoxanthine −0.27 0.15 0.47 <0.01 - -
UA—uric acid. —-not indicated as the same items are compared.

4. Discussion

The present study demonstrates that serum UA, plasma xanthine, and XOR activity
showed diurnal variation in male patients with CAD. Our previous study showed that UA
levels significantly increased from night to morning in male patients with CAD. In addition,
we demonstrate that UA levels significantly decreased from 6:00 to 12:00 in this study.
Previous studies have reported that UA levels show similar diurnal variations in healthy
subjects, patients with diabetes, and patients with multiple sclerosis. In healthy individuals,
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UA oscillates with gradually increasing concentrations throughout the night, peaking in
the morning [35]. In another study on healthy subjects and patients with diabetes, the
mean serum urate level between 08:00 and 09:00 was higher than that observed between
17:00 and 18:00 [29]. In patients with multiple sclerosis, blood samples were taken at 3 h
intervals over a 24 h period, and UA levels were measured, showing a peak from night to
morning and a fall from morning to evening [30]. Our findings in male patients with CAD
are also consistent with these results.

Furthermore, xanthine showed a diurnal variation similar to UA. By contrast, hy-
poxanthine showed no diurnal variation. To the best of our knowledge, this study is
the first to demonstrate diurnal variations in xanthine. UA is the end product of purine
metabolism in humans. Purine metabolism is a complicated mechanism consisting of the
de novo pathway, salvage pathway, and degradation (Figure 1). In the de novo pathway,
phosphoribosyl diphosphate is synthesized from ribose 5-phosphate and converted to
inosinic acid (inosine monophosphate, IMP) through a 10-step reaction. IMP is converted
to adenosine monophosphate (AMP) and guanylic acid (guanosine monophosphate, GMP).
AMP forms adenosine, which is then deaminated to inosine. Inosine is then converted
to hypoxanthine by purine nucleoside phosphorylase. XOR converts hypoxanthine to
xanthine. GMP forms guanosine, which is subsequently degraded to guanine by purine
nucleoside phosphorylase and converted to xanthine by deamination with guanine deam-
inase. Xanthine is then oxidized by XOR to form the end product UA. Thus, xanthine
is converted from hypoxanthine by oxidation with XOR and guanine by deamination
with guanine deaminase. The salvage pathway reuses the purine bases and nucleosides
obtained from the degradation of AMP and GMP to synthesize new deoxyribonucleic
acid and ribonucleic acid. Hypoxanthine and guanine are converted to IMP and GMP
by hypoxanthine phosphoribosyltransferase, whereas adenine is converted to AMP by
adenine phosphoribosyltransferase and reused to synthesize new deoxyribonucleic acid
and ribonucleic acid molecules. Hypoxanthine is salvaged, and xanthine is degraded from
guanine in addition to hypoxanthine.

In summary, the UA and xanthine levels were significantly elevated from night to
morning, and the rate of increase was positively correlated. These results suggest that the
increase in serum UA levels from night to morning may be due to increased UA production.
Although both decreased from morning to noon, no correlation was found with the rate of
decrease. In healthy men, peak urinary UA excretion has been reported to occur between
08:00 and 10:00 and between 22:00 and 24:00 [36]. Therefore, the decrease from morning
to noon may be related to both production and excretion. Furthermore, we suspect that
the salvage pathway via the kidneys is the reason for the non-similar results for xanthine
and hypoxanthine.

Based on the results for serum UA and plasma xanthine levels and the mechanism of
purine metabolism, we expected XOR activity to show similar diurnal variations. However,
the XOR activity was significantly elevated from night to morning and was also significantly
elevated from morning to noon. XOR is a rate-limiting enzyme in purine metabolism, which
mainly catalyzes the conversion of hypoxanthine to xanthine and UA with the concomitant
generation of superoxide. XOR activity is increased by hypoxia and various cytokines, such
as pro-inflammatory cytokines and tumor necrosis factor [37,38]. In our previous study,
XOR activity significantly increased from night to morning in patients with CAD, and the
rate of increase in XOR activity was associated with the severity of nocturnal hypoxia. In
a hypoxic environment, adenosine triphosphate synthesis is stagnant, thus promoting its
decomposition into adenosine diphosphate or AMP, increasing hypoxanthine and xanthine
levels, and promoting UA production [39] (Figure 1). Another study on the marine alga
Gonyaulax reported that XOR activity is 15 times higher in light than in darkness [40].
Therefore, the increase in XOR activity from night to morning is consistent with previous
reports and with the idea that UA production is enhanced at night.

Furthermore, XOR activity increased from morning to noon in the present study.
Sun et al. and Kanemitsu et al. reported that XOR activity increases from late light to early
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dark in rats and in the livers of mice [41,42]. However, both studies indicated that the
XOR activity tends to decline after the early dark period. Sun et al. reported a positive
correlation between XOR expression and clock genes, indicating a potential functional
interplay between the clock gene machinery and purine catabolism [41]. Kanemitsu et al.
demonstrated that the anti-hyperuricemic effect of an XOR inhibitor is enhanced by its
administration on the day before hepatic XOR activity increased [42]. Few reports are
available on circadian variations in XOR activity in animals but not in humans. To the
best of our knowledge, this is the first report on its variation in patients with CAD. The
morning-to-noon increase in XOR activity in the present study has not been previously
reported and differs from the results obtained in rats and mice; therefore, further studies
are needed.

This finding suggests that UA production is involved in the increase in UA levels
from night to morning. Although XOR activity is speculated to be involved as one of
the mechanisms, other triggering factors besides XOR activity may be present. The de-
crease in UA and xanthine from morning to noon, despite an increase in XOR, suggests
that the morning-to-noon variation reflects both production and excretion. Gout attacks
occur more frequently during the night and early morning. Based on the results of this
study, one possible reason for this may be increased UA production during the night and
early morning. Therefore, for clinical application, it is expected that gout attacks can be
suppressed by inhibiting XOR activity from night to morning, i.e., by oral administration
of XOR inhibitors before sleep. This finding warrants further clinical research.

The present study has several limitations. First, it was a single-arm observational
study. This study was conducted only on patients with CAD, and it is necessary to study
healthy subjects as a control group. Second, this study was conducted at a single center,
and the study population was relatively small in size. However, it is noteworthy that we
took measures to determine the appropriate sample size through power analysis, utilizing
data from our pilot study involving the initial five subjects. We believe that our findings
are reasonable based on previous studies. Third, the inclusion criteria for this study were
restricted to male patients only. This decision was influenced by the significant difference
in the prevalence of CAD between males and females. Furthermore, female patients with
CAD are often older, and a large number of cases is needed to account for age-related
bias. Therefore, this study was limited to males. Future studies including females are
needed, as the results of this study cannot be applied to females. Fourth, we did not
assess UA excretion. Approximately two-thirds of UA is excreted by the kidneys, with
the remaining one-third eliminated through the gastrointestinal tract. Future research
endeavors should focus on investigating both the production and excretion pathways,
utilizing blood, urine, and stool samples. This comprehensive approach will help to further
elucidate the mechanisms of diurnal variation in UA, xanthine, and XOR activity. Fifth, we
collected samples at only three time points: 18:00, 6:00, and 12:00. These were not equally
spaced, and time effects can occur; however, previous reports of diurnal variation in UA
have shown a peak at 6:00 and a minimum at 18:00. In addition, to reduce the influence
of meals as much as possible, we collected samples at three time points in all patients, at
18:00, 6:00, and 12:00, prior to each meal. Finally, the UA intake was not measured. All
patients consumed hospital food; therefore, we considered nutrients and calories within
the margin of error. Since individual differences exist in food intake, these differences
should be discussed in the results and how they can be interpreted from the perspective
of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

5. Conclusions

Serum UA and plasma xanthine levels showed diurnal variations in patients with
CAD. Although XOR activity showed diurnal variation, it was different from that of UA
and xanthine. The increase in UA from night to morning was speculated to be due to UA
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production, whereas the decrease in UA from morning to noon was speculated to be due to
both production and excretion.

Furthermore, increased XOR activity from night to morning has been reported to be
related to clock genes in addition to hypoxia, which contributes to increased UA production.
Gout attacks, which occur more frequently at night and at dawn, may be prevented by
suppressing XOR activity before it increases.
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