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Nowadays, it has been amply demonstrated how an appropriate diet and lifestyle
are essential for preserving wellbeing and preventing illnesses [1,2]. Dietary bioactive
substances are natural constituents present in food that provide health benefits. These
compounds can be defined as substances capable of modulating biological activities and
important physiological functions [3–5]. It is known that the consumption of dietary bioac-
tive compounds, especially phytochemicals, contribute to decreasing the risk of chronic
disorders, such as cancer and cardiovascular and neurodegenerative diseases [6–10].

In the last few years, the study of the efficacy of these natural bioactive compounds
has attracted the increasing interest of researchers. In this regard, this Special Issue in
Nutrients entitled “Dietary Bioactive Compounds: Implications for Oxidative Stress and
Inflammation”, which includes a review and 12 original articles, provides an insight on
current knowledge about the nutraceutical effects of different bioactive compounds present
in foods or their related byproducts on some pathologies, with a special focus on their
antioxidant and anti-inflammatory properties.

In particular, the role of various bioactive-rich extracts on gastrointestinal disor-
ders [11] have been further discussed, as documented by three papers that deal with
the effects of a number of natural extracts in pathologies affecting the digestive system.

Lo et al. [12] studied the potential treatment of ulcerative colitis (UC) with the oral
administration of ethanol extracts from rice bran and whole-grain adlay seeds, in mice
with dinitrobenzene sulfonic acid (DNBS)-induced UC. Their results indicated that rice
bran ethanol extract reduces UC-induced damage in the colon along with inflammation
and oxidative stress in DNBS-induced UC mice. Moreover, whole-grain adlay seed ethanol
extract is able to modulate colonic inflammation and clinical symptoms in UC mice. Addi-
tionally, both of the extracts reversed DNBS-induced alterations in T-helper-cell-associated
cytokines and glutathione in the colon. Unfortunately, in this paper, the composition of the
ethanol extracts was not defined; thus, the main bioactive compound(s) in rice bran and
whole-grain adlay seeds responsible for their activities was not identified.

Chen et al. [13] explored the effect of Shibi tea (EST) on liver injury in an in vivo
mouse study. EST is a non-Camellia tea prepared by the infusion of dried Adinandra nitida
leaves, which are rich in flavonoids and especially in Camellianin A (CA) [14]. In this
work, for the first time, the benefit of EST and CA in liver injury was investigated, with the
authors exploiting the hepatoprotective effects of EST and CA extracts in a carbon tetrachlo-
ride (CCl4)-induced acute-liver-injury mouse model. Additionally, the anti-inflammatory,
anti-apoptosis, and antioxidative effects of EST and CA in repairing acute liver injury
were explored, with the authors analyzing the regulation of the oxidative stress signaling
pathways and the expression of inflammatory cytokines and phosphorylated nuclear fac-
tors. The results highlight that EST and CA display anti-inflammatory, anti-apoptosis, and
antioxidative properties, and could be promising agents in the prevention of liver injuries.

Liu et al. [15] evaluated the role of C-phycocyanin (CPC) and Lycium barbarum polysac-
charides (LBP) on aspirin-induced gastric damage in rat gastric mucosal (RGM-1) cells.
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The primary active compounds, CPC and LBP, found in Spirulina platensis and wolfberry,
respectively, possess antioxidative, anti-inflammatory, and immunoregulatory proper-
ties [15,16]. Therefore, the aim of this study was to use these food ingredients to contrast
the gastric damage caused by the (i.e., acetyl salicylic acid) chronic administration of as-
pirin, for anti-inflammatory or cardiovascular purposes [17]. The evaluation of CPC and
LBP at a high dose of 500 µg/mL demonstrated a promising ability to attenuate aspirin-
gastric injury in gastric RGM-1 cells. CPC and LBP affected the activation of ERK and
JNK signaling pathways, increasing the expression of the anti-inflammatory interleukin
10 (IL-10) and modulating proinflammatory markers (NF-κB, caspase 3, Bax protein). In
particular, CPC and/or LBP exhibited anti-inflammatory effects by inhibiting activation of
the ERK signaling pathway, while LBP reduced apoptosis by decreasing activation of the
JNK signaling pathway in gastric RGM-1 cells with aspirin-induced epithelial damage.

In other diseases, such as skin disorders, the health benefits of bioactive compounds
contained in natural extracts were exploited [18–21]. In fact, many studies discussed the
role of natural extracts in skin disorders and in particular in atopic dermatitis (AD) [22–24].
In this Special Issue, Bae et al. [25] exploited the effect of Daphnopsis costaricensis extract
on an in vivo AD lesion model. This paper outlines the impact of the D. costaricensis EtOH
extract (DCE) on AD-like lesions in a mouse model induced with oxazolone (OX). The
findings indicate that DCE significantly improved AD-like pathology by reducing ear
epidermal thickness and mast cell infiltration. Additionally, eleven compounds, with a
flavonoid-like structure, were isolated and identified in extract, through the use of 1D
and 2D NMR and HR-MS data. These compounds have been evaluated for their anti-
inflammatory and anti-allergic activities, demonstrating that 7,8-dimethoxyflavone and
7,2′-dimethoxyflavone were able to inhibit IL-4 overproduction and mast cell degranulation
in vitro (in a rat basophilic leukemia cell line, RBL-2H3 cells). Therefore, DCE could be
useful in the treatment of AD.

Beyond the nutraceutical properties widely demonstrated of a lot of foods, recently
the study of agri-food wastes, as a source of bioactive compounds, has also received
growing interest [26–29]. Moreover, these wastes are related to an authentic environmental
drawback, and consequently waste disposal becomes a challenge in the agri-food industrial
economy [30–33]. Different residues, such as pomace, leaves, wastewaters, peels, stems or
flowers are discarded and a real effort is being placed on the valorization of food chain
byproducts [34]. The re-use of agrifood wastes as an a renewable, abundant and low-cost
source for the production of high value products, is presently being exploited. In this
Special Issue, seven papers explored the important valorization of food byproducts, giving
a wide point of views on this in-trend topic.

Two papers investigated the valorization of two main byproducts of extra virgin
olive oil (EVOO) production: olive mill wastewater (OMWW) and olive leaves. The
nutraceutical proprieties of EVOO are already well known and confer a leading role to
EVOO in the health benefits of the Mediterranean diet [35]. Despite dietary benefits, EVOO
production has a great impact in terms of sustainability due to the difficult management
of its related wastes such as olive leaves and OMWW [36–40]. These discards contain
phenolic compounds endowed with nutraceutical properties and they are a promising
font of bioactive compounds. Therefore, correct waste management, which considers all
potential paths for a circular economy of the olive oil supply chain, is crucial.

Cuffaro et al. [41] reported the study of improved nutraceutical properties of EVOO ex-
tract by adding different percentages of olive leaf extracts (OLE). In this study, a promising
EVOO extract enriched by 8% OLE was selected. This extract contained important nutraceu-
tical polyphenols such as oleocanthal, oleacein and oleuropein in similar quantities, as
reported by HPLC analysis. The 8% OLE-EVOO extract showed increased antioxidant and
antiradical properties (evaluated by in vitro assays (DPPH, ABTS and FRAP)) with respect
to the EVOO extract, evidencing a potential effect in reducing oxidative stress. Moreover,
its anti-inflammatory activity was evaluated in terms of cyclooxygenase (COX) enzyme
inhibition. The 8% OLE-EVOO extract displayed four-fold improved COX-1 inhibition
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and two-fold COX-2 inhibition (COX-1 IC50 = 475 µg/mL; COX-2 IC50 = 383 µg/mL) with
respect to the EVOO extract (COX-1 IC50 = 1.90 mg/mL; COX-2 IC50 = 900 µg/mL).

The same research group studied the potential beneficial effect of bioactive polyphe-
nols in OMWW extracts [42]. The aim of this study was to point out a possible nutraceutical
valorization of this byproduct, exploiting its biological properties. Similarly to EVOO [43],
the composition of OMWW varied depending on the olive cultivar and extraction sys-
tem. This study assessed multiple samples of three-phase extraction OMWWs obtained
from two cultivars of olives, Leccino (CL) and Frantoio (CF), collected in October (CF1
and CL1) and November (CF2 and CL2). The polyphenolic profile (18 polyphenols) of
OMWW extracts was defined using quali-quantitative analysis performed by LC-MS/MS,
revealing high amount of tyrosol and hydroxytyrosol in all the samples, and oleacein in the
October samples, rarely found in OMWW. Furthermore, the antioxidant profile and the
anti-inflammatory effect in terms of COX 1 and COX2 inhibition were evaluated, resulting
in significantly low values of IC50 COX-2 inhibition for oleacein-rich extracts (ranging
0.080 mg/mL).

Similarly to EVOO, the beer industry is environmentally affected by the difficult man-
agement of byproducts [44–47], especially brewers’ spent grain (BSG). BSG is the most
abundant byproduct of the brewing industry, composed mainly of dietary fiber (50%),
proteins (30%), and bioactive compounds, such as hydroxycinnamic acids [48–50]. In this
Special Issue, Gutierrez-Barrutia [51] investigated how extrusion process, a thermome-
chanical procedure characterized by high temperature and pressure for a short period
of time, influences the bioaccessibility of BSG nutrients (glucose and amino acids) and
non-nutrients (phenolic compounds). The study revealed that the extrusion process did
not affect glucose bioaccessibility or gluten digestibility, favoring amino acid release during
digestion. On the other hand, significantly improved gastrointestinal and colonic bioacces-
sibility of BSG phenolic compounds was achieved in extruded BSG. Moreover, extruded
BSG intestinal digests inhibited glucose transport through increased α-glucosidase and
α-amylase inhibition, compared to untreated BSG. Additionally, extruded BSG intestinal
digests inhibited intracellular ROS formation and showed anti-inflammatory properties,
unlike untreated BSG. Therefore, the extrusion process improved the nutritional value and
biological properties of BSG, so the extruded BSG has the potential to be a sustainable and
promising ingredient with positive properties that could be useful in both the prevention
and treatment of various non-communicable diseases.

The valorization of byproducts affects not only food production, but also fruit col-
lection [52,53] such as cherry, tangerine and chestnut, and edible mushrooms [54,55].
This Special Issue explored all these different fields of applications thanks to the various
reported studies.

Nunes et al. [56] discussed the anti-inflammatory and antimicrobial potential of differ-
ent extracts from the stems, leaves and flowers of Prunus avium L., a cultivar of Portuguese
cherry from the Fundão region [57,58]. The hydroethanolic extracts of leaves and stems
and the aqueous infusion of flowers were effective in reducing inflammation in terms
of a decreased level of NO production on a lypopolisacharide (LPS)-stimulated mouse
macrophage (RAW 264.7) cell line. Furthermore, the aqueous infusions of all by-products,
especially cherry flowers, demonstrated scavenging activity against NO radicals. Moreover,
the leaf extracts showed an antimicrobial effect against most of the tested bacteria.

Tangerine peel (Citrus reticulatae Pericarpium, CRP) is the main byproduct in the culti-
vation of tangerine [59–61]. Dried tangerine peel is a traditional Chinese medicine already
studied for its nutraceutical properties. Its main components are volatile oils and flavonoids
such as hesperidin, naringenin, nobiletin, and tangeretin [61]. Here, Wang et al. [62]
discussed the protective effect of Tangerine peel extract in endothelial dysfunction and
vascular inflammation related to diabetes on AMPK activation in a rat model. CRP extract
was orally administered for 4 weeks at 400 mg/kg/day in high-fat diet/streptozotocin
(HFD/STZ)-induced diabetic rats. After treatment, the rats successfully reversed all the
diabetic symptoms, resulting in a normalized blood pressure and plasma lipid profile, as
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well as plasma levels of liver enzymes in diabetic rats. The CRP extract also suppressed
vascular inflammatory markers, inducing AMPK activation in the aortas of diabetic rats.
Therefore, administering tangerine peel extract chronically can safeguard arteries from
vascular inflammation and endothelial dysfunction in diabetic rats.

Flammulina velutipes (FV) is an edible mushroom presenting nutritional and medicinal
values. FV mycorrhizae is a poorly studied by-product of FV representing an important
source of bioactive compounds [63,64]. In their study, Luo et al. [65] investigated, at first,
the composition of FV mycorrhizae, and secondly its effects on lipid metabolism and inflam-
mation in perirenal adipose tissue (PAT), which is still unknown. The composition of FV
mycorrhizae comprehend multifarious nutritive components among them polysaccharide,
amino acids and derivatives, and organic compounds. HFD supplemented with 4% FV
mycorrhizae (HFDFV) caused the attenuation of HFD-induced lipid disorders, reducing
HFD-induced oxidative stress and pro inflammatory cytokines, both in the liver and perire-
nal adipose tissue (PAT) of mice. These results indicated the promising application of FV
mycorrhizae as a functional food and herbal medicine in the treatment of obesity.

Piazza et al. [66] described, for the first time, the nutraceutical potential of Castanea
sativa Mill. leaf extracts in gastritis caused by Helicobacter pylori (H. pylori) infection. The
authors evaluated the polyphenolic profile in Castanea sativa Mill. leaf extracts, with a
particular focus on ellagitannins [67,68], a nutraceutical polyphenol class with potential
gastroprotective properties. Castalagin and vescalagin were identified and quantified in
hydroalcoholic leaf extracts using LC–MS. Thus, the anti-inflammatory and antibacterial
activity of leaf extracts, in comparison with pure castalagin, were investigated in a model
of human gastric epithelium (GES-1) infected by H. pylori. The leaf extract and pure
ellagitannins inhibited IL-8 release (IC50 ≈ 28 µg/mL and 11 µM, respectively), partially
attenuating NF-κB signaling and reducing bacterial growth and cell adhesion. These results
were also confirmed by transcriptional studies in which castalagin was able to decrease
genes involved in inflammatory pathways (NF-κB and AP-1) and cell migration (Rho
GTPase). These observations suggested that Castanea sativa Mill. leaves could be adopted
to produce sustainable and bioactive extracts.

As seen in the various studies reported in this Special Issue and also in the numerous
papers present in the literature, bioactive compounds include a plethora of molecules,
such as phenolics, carotenoids, vitamins, minerals, and fibers, ubiquitously expressed in
fruits, vegetables, grains and legumes [53]. Usually, the most representative polyphenols in
food are phenolic acids, flavonoids and anthocyanins [69,70]. Anthocyanins are a class of
flavonoids offering various health benefits, and are responsible for the blue, purple, and
red pigments detected in different type of fruits and vegetables [71,72]. These polyphenols
exert a wide range of nutraceutical activities, including antioxidant and anti-inflammatory
properties, associated with cardioprotection, anti-carcinogenicity or neuroprotection [71].
Among the more than 1000 types of anthocyanins present in the literature, Malvidin is
one of the most studied. In this Special Issue, Merecz-Sadowska et al. [73] collected and
reviewed the reported studies in the literature investigating the role of malvidin and its
related glucosides in different cell, animal and human models. Besides their colorant
capacity, malvidin and its related glycosides revealed a widespread range of beneficial
properties promoted by antioxidant and anti-inflammatory mechanisms. In addition, these
molecules showed the ability to counteract the onset and progression of several diseases
whose pathogeneses are linked to oxidative stress. These findings suggest a potential future
application for malvidin and its glycosides as ingredients of functional food, able to offer
both aesthetic and nutritional advantages.

Despite the extensive studies demonstrating the health effects of bioactive compounds,
such as polyphenols, in humans, one of the major drawbacks in the development of single
polyphenols or polyphenol-rich natural extracts, as functional ingredients or dietary sup-
plements, is related to their pharmacokinetic profile, compromised by their poor aqueous
solubility, intensive metabolism, and low systemic absorption [74–76]. Only a few studies
have considered the aspects of bioavailability and metabolism [77–79]. However, most of
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these have reported in vitro models of pure compounds in which the matrix effects were
not considered [69,80,81].

In this context, innovative strategies could be developed to deliver pure polyphenols
or natural extracts rich in bioactive compounds [82,83]. One of the alternative delivery
methods, able to increase the solubility of active substances by bypassing metabolism,
is represented by electrospun nanofibres incorporating bioactive substances [84–86]. In
this Special Issue, Paczkowska-Walendowska et al. [87] reported the development of
P. cuspidati radix extract nanofibers as an innovative approach in solid dispersion for
the buccal delivery system. At first, the authors optimized the extraction process in
order to obtain the best extract in terms of richness in bioactive compounds, especially
stilbenes such as resveratrol and polydantins. The selected P. cuspidati radix extract was
incorporated in nanofibers based on polyvinylpyrrolidone/cyclodextrin (PVP/HPβCD)
using an electrospinning technique, affording nanofibers the six-fold improved solubility of
resveratrol and polydantins compared to pure standards. Thus, the electrospun nanofibers
may be easily applied within the oral cavity, immediately releasing the incorporated
bioactives. These results, along with the intrinsic antioxidant and anti-inflammatory
properties of P. cuspidati extract, indicate that the buccal delivery system might be an
alternative strategy to improve the bioavailability of bioactives.

In conclusion, the set of studies collected in the Special Issue “Dietary Bioactive
Compounds: Implications for Oxidative Stress and Inflammation” have explored differ-
ent aspects of dietary bioactive compounds. The application of different nutraceutical
extracts rich in bioactive compounds on gastrointestinal injury and skin disorder have
been analyzed. Furthermore, the actual trend topic of agrifood wastes has been widely
explored here, with studies analyzing the potentiality of nutraceutical extracts of different
byproducts of the food industry (EVOO and beer), fruits (sweet cherry, chestnuts and
tangerine) and mushrooms. Moreover, an insight on anthocyanins, an important class of
bioactive compound, was proposed. Additionally, aspects related to metabolism and the
bioavailability of bioactive compounds have been attended to in proposition of the use
of nanofibers.

All these papers highlight that dietary bioactive compounds endowed with antioxidant
and anti-inflammatory properties could be beneficial for health and should be further
studied to develop functional foods or food supplements.
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