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Abstract: Background and aims: Obesity is a public health problem. The usual treatment is a
reduction in calorie intake and an increase in energy expenditure, but not all individuals respond
equally to these treatments. Epigenetics could be a factor that contributes to this heterogeneity. The
aim of this research was to determine the association between DNA methylation at baseline and
the percentage of BMI loss (%BMIL) after two dietary interventions, in order to design a prediction
model to evaluate %BMIL based on methylation data. Methods and Results: Spanish participants
with overweight or obesity (n = 306) were randomly assigned to two lifestyle interventions with
hypocaloric diets: one moderately high in protein (MHP) and the other low in fat (LF) for 4 months
(Obekit study; ClinicalTrials.gov ID: NCT02737267). Basal DNA methylation was analyzed in white
blood cells using the Infinium MethylationEPIC array. After identifying those methylation sites
associated with %BMIL (p < 0.05 and SD > 0.1), two weighted methylation sub-scores were constructed
for each diet: 15 CpGs were used for the MHP diet and 11 CpGs for the LF diet. Afterwards, a total
methylation score was made by subtracting the previous sub-scores. These data were used to design
a prediction model for %BMIL through a linear mixed effect model with the interaction between
diet and total score. Conclusion: Overall, DNA methylation predicts the %BMIL of two 4-month
hypocaloric diets and was able to determine which type of diet is the most appropriate for each
individual. The results of this pioneer study confirm that epigenetic biomarkers may be further used
for precision nutrition and the design of personalized dietary strategies against obesity.

Keywords: BMI loss; epigenetic score; precision nutrition; hypocaloric diet; predictive model

1. Introduction

Obesity is considered one of the main factors of morbidity due to malnutrition, and it
is observed how incidences increase over the years. Obesity and overweight are defined
as an excessive or abnormal accumulation of fat that can be detrimental to health. It is
classified by body mass index (BMI). It is determined as overweight when presenting a
BMI of 25 to 29.9 kg/m2, and obesity is defined as when a person has a BMI of 30 kg/m2 or
more [1].

The pathogenesis of obesity is due to a metabolic condition of disturbed adipocyte
function and low-grade systemic inflammation, and this can induce epigenetic changes
that perpetuate inflammation [2]. Among the most studied epigenetic mechanisms is
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DNA methylation (mDNA) [3], which is considered to be a key part of the pathogenesis
and clinical manifestations of obesity [4]. Methylation marks are chemical modifications
of the structure and function of DNA, in which there is no variation in the genetic code
but, rather, in the expression of the genes. Epigenetic mechanisms make the DNA code
available or unavailable for translation into gene products [5]. DNA methylation occurs
when a methyl group is added to the 5′ carbon at the cytosine base-binding sites on the
CpG dinucleotides of DNA. In general, in the genome of a differentiated cell, there may
be regions that are both methylated and unmethylated [6]. It has previously been shown
that methylation can influence the development of obesity but also the response to dietary
weight loss treatments [7,8]. This is due to the different complex metabolic mechanisms in
which methylation may be involved [9]. It has been observed that methylation modulates
molecular mechanisms associated with adipogenesis [10,11]. It has also been demon-
strated that methylation in genes related to hunger and satiety mechanisms contribute to
the development of obesity [12], and the same happens when methylation is present in
genes that have a function in the thermogenesis of adipose tissue that regulates energy
expenditure [13]. It has been shown that epigenetic changes can be a transgenerational
inheritance [14]; however, these epigenetic changes are modifiable in response to lifestyle
and environment [15], as has been shown when studying the interaction of epigenetics
and diet [16,17]. Therefore, the integration of epigenetics is considered relevant for the
management and prevention of obesity [18]. The use of precision nutrition is proposed,
since it contemplates metabolic phenotyping through high-performance omics technologies
such as epigenomics [19] and takes into account lifestyle factors such as exercise, alcohol
consumption, and general nutritional and metabolic status [20]. For this reason, it has been
seen that, if the nutritional plans are adapted according to the characteristics and needs
of each individual or in groups of people who have similar characteristics, there are more
satisfactory results for treating chronic diseases [21]. Within this perspective, the aim of
this research was to determine the association between basal DNA methylation and the
percentage of BMI loss after a dietary intervention, in order to design a model that, based
on a methylation score, predicts the percentage of BMI loss with two different types of diets.

2. Materials and Methods
2.1. Study Population

The population selected in this research was from the Obekit study, in which 314 Span-
ish individuals with overweight and obesity were initially recruited. The study lasted from
October 2015 to February 2017 and was carried out in the Metabolic Unit of the Nutrition
Research Center of the University of Navarra.

The inclusion criteria were participants with an age range of 18–67 years old and
participants with overweight (BMI: 25–29.9 kg/m2) or with obesity (BMI: 30–40 kg/m2).
Major exclusion criteria were type 1 diabetes mellitus, pregnant or breastfeeding women,
cardiovascular disease, cancer, and eating and cognitive disorders. Of the 314 subjects
initially recruited, 8 did not meet the inclusion criteria. The intervention began with 306 par-
ticipants, who were randomly assigned to two types of hypocaloric diets: 146 participants
with a moderately high-protein diet (MHP) and 160 participants with a low-fat diet (LF).
The intervention lasted 4 months (Figure 1). Finally, 233 participants completed the dietary
intervention, but only 201 were considered to have good adherence to the diets.

All research procedures were carried out following the ethical principles of the Decla-
ration of Helsinki of 2013 [22]. The study protocol was approved by the Research Ethics
Committee of the University of Navarra (ref. 132/2015). This trial was registered at clinical-
trials.gov (ID. NCT02737267; https://clinctrals.gov/ct2/show/NCT02737267?term=NCT0
2737267&amp;cond=obekit&amp;draw=2&amp;rank=1, accessed on 29 March 2017). All
participants gave their written informed consent before their inclusion in the study.

https://clinctrals.gov/ct2/show/NCT02737267?term=NCT02737267&amp;cond=obekit&amp;draw=2&amp;rank=1
https://clinctrals.gov/ct2/show/NCT02737267?term=NCT02737267&amp;cond=obekit&amp;draw=2&amp;rank=1
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2.2. Study Design

Using the Obekit study database, the variables of interest for this research were se-
lected from the 306 participants. General data such as sex; date of birth; and pathological
history such as dyslipidemia, hypertriglyceridemia, hypercholesterolemia, and arterial
hypertension were taken. The biochemical and anthropometric variables of visit 1, con-
sidered the baseline visit, and visit 3, which corresponded to the post-intervention visit,
were selected.

2.3. Nutritional Intervention

The nutritional intervention lasted 4 months. The diets used for the study had a 30%
calorie restriction. The individual energy requirements of each participant were estimated
at the beginning, calculating their energy expenditure at rest and during physical activity,
to prescribe the hypocaloric diets in a random manner. The macronutrient distribution
for the moderately high-protein (MHP) diet was 40% carbohydrate, 30% protein, and
30% fat, and for the low-fat (LF) diet, it was 60% carbohydrate, 18% protein, and 22%
fat. Both the LF and MHP diets were designed on the basis of a food exchange system.
Participants received detailed information from trained dietitians on portion sizes, dietary
patterns/eating schedules, and food preparation techniques.

2.4. Anthropometric and Biochemical Determinations

All participants underwent standardized procedures to measure body weight, height,
waist circumference, and hip circumference, and body mass index (BMI) was calculated
using the formula weight (kg) divided by height in squared meters [23]. Body composition
was estimated by bioimpedance (Tanita SC-330, Tanita Corp, Tokyo, Japan) and by DEXA
or dual-energy X-ray absorptiometry (Lunar Prodigy, General Electric, Fairfield, MA, USA).

Blood samples were drawn after 12 h of fasting to obtain serum and plasma samples
for biochemical determinations at the beginning and at the end of the intervention. Serum
glucose, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides
(TG), uric acid, and transaminases were assessed using an automated analyzer (Pentra
C200, HORIBA Médica, Kyoto, Japan). Low-density lipoprotein cholesterol (LDL-C) levels
were estimated using the Friedelwald formula: total cholesterol − HDL-C − (TGs/5) [24].
Insulin, leptin, adiponectin, C-reactive protein, and TNF-α levels were quantified using
commercial ELISA kits (insulin and leptin, Mercodia; Biovendor human adiponectin, ELISA;
CRP and TNFα, R&D Systems, Minneapolis, MN, USA). Insulin resistance was estimated
using the homeostatic model assessment-insulin resistance index (HOMA-IR) according
to the formula fasting insulin (mU/L) × plasma glucose (mmol/L)/22.5. Serum oxidized
LDL (oxLDL) levels were measured by a solid-phase two-site competitive ELISA (Mercodia
AB, Uppsala, Sweden).

2.5. DNA Isolation and Bisulfite Conversion

Blood samples taken at the beginning of the study were centrifuged at 4 ◦C for 15 min
to obtain plasma and isolate the buffy coat fraction. DNA extraction was performed with
the “MasterPure” DNA purification kit for blood version II (Epicentre Biotechnologies,
Madison, WI, USA), and it was quantified with a spectrophotometer (Nanodrop, Thermo
Scientific, Wilmington, DE, USA) and stored at −80 ◦C. In a second step, 500 ng of DNA
was treated with sodium bisulfite using the EZ-96 DNA methylation kit (Zymo Research
Corporation, Irvine, CA, USA), to convert unmethylated cytosine residues to uracil, while
methylated cytokines remained unchanged.

2.6. Array Analysis

The levels of methylated DNA were evaluated using the “Infinium MethylationEPIC
BeadChip” kit (Illumina, San Diego, CA, USA), which includes 850,000 methylation sites.
Samples were scanned with an “Illumina HiScanSQ” system, and image intensities were
extracted with “GenomeStudio v1.9” methylation software (Illumina, CA, USA). The
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within-array quantile subset normalization (SWAN) method was used to improve the
results obtained from the platform, reducing technical variation within and between arrays.
The ComBat method was used to adjust for batch effects and remove technical variation. In
addition, DNA methylation was corrected for cellular composition (granulocytes, mono-
cytes, B cells, CD8+ cytotoxic cells, CD4+ T-helper cells, and natural killer cells) using
Houseman’s algorithm [25].

2.7. Design of the BMI Percentage Loss Prediction Model Based on the MHP and LF Diets’
Methylation Data

Figure 2 shows the different steps performed to design the prediction model based on
DNA methylation data from the beginning of the intervention. Summarizing, the CpGs
that presented a significant (p < 0.05) Spearman’s correlation with BMI loss for each of the
diets were selected. Two weighed sub-scores (one per diet) were built by using the sum of
the previously selected CpG sites and multiplying them by the beta coefficients obtained
in each of the multiple linear regressions of the MHP diet and the LF diet. To obtain the
total score for each individual, the MHP diet sub-score was subtracted from the LF diet
sub-score.
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Then, a linear mixed effect model was used to predict, based on the total methylation
score of each individual, which diet would be the best for the volunteers. This model was
designed with the percentage of BMI loss as the dependent variable and the total score,
diet (MHP/LF), and the interaction term between the total score and the diet as a fixed
effect. And, finally, information from the different CpGs included in the methylation score
was obtained from different sources, including Illumina and “UCSC Genome Browser
on Human (GRCh37/hg19)”. The biological functions of the genes were searched in the
database “GeneCards the human gene database”.
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2.8. Statistical Analysis

Variables were expressed as the mean ± SEM (standard error of the mean). To charac-
terize the basal anthropometric and biochemical data of the general population, the p-value
of the comparison of basal means was calculated using the Student’s t-test for independent
samples between diets MHP and LF. Chi-square was used to calculate the p-values for cate-
gorical variables such as sex. The differences in the anthropometric and biochemical data of
the general population were calculated with the p-values of the differences obtained from
the baseline and post-intervention data using the Student’s t-test for dependent samples
for each of the diets. The Student’s t-test for independent samples was used to calculate
the p-value of the comparison of the post-intervention changes of both diets, high-protein
(MHP) and low-fat (LF).

2.9. Statistical Analysis for the Prediction Model

For the selection of CpG sites obtained in the methylation array, the CpG sites that
presented >0.1 standard deviations were chosen. Then, a Spearman’s correlation analysis
was performed with the CpG sites correlating their methylation with the percentage of BMI
loss and selecting for each diet those that presented p < 0.05.

The algorithm “furnival-Wilson leaps and bounds” (vselect in Stata) [26] was used
to obtain the best combinations in the multiple linear regression of the percentage of BMI
loss with the methylation sites for the MHP diet and LF diet. With the CpG sites obtained
by the algorithm, a multiple linear regression was performed to be able to establish the
association of the CpG sites with the BMI percentage loss and to be able to use the values
of the beta coefficients to construct the weighted methylation sub-scores for each diet and
the total methylation score. This total methylation score was used for the design of the BMI
percentage loss prediction model, which was performed using a linear mixed effect model.
The prediction model was plotted by applying marginals with the diet and the minimum
to maximum values of the total methylation score. A Z-test was used to evaluate the
distribution of subjects in the prediction model. Statistical analyses were performed with
Stata MP 14 (StataCorp LLC, College Station, TX, USA; http://www.stata.com, accessed
on 1 February 2023).

3. Results

The results show the basal and post-intervention anthropometric and biochemical
characteristics of the population with the MHP and LF diet.

3.1. Anthropometric and Biochemical Data at Baseline

Statistical analysis of the baseline anthropometric and biochemical data of the 201 par-
ticipants who were divided into two dietary intervention groups, 93 on the MHP diet and
108 on the LF diet (Figure 1), was performed. Table 1 shows the variables used, the mean,
standard error for each diet, and the p-value of the comparison of the baseline means. At
the beginning, the population did not present statistically significant differences in the
anthropometric and biochemical parameters according to the type of diet assigned, except
for the circulating levels of TNF-α (p = 0.006). The mean values of the baseline variables
were similar in both dietary groups. Energy intake did not show significant differences by
intervention dietary groups.

3.2. Anthropometric and Biochemical Values after the Dietary Intervention and BMI Loss
Prediction Model for the MHP and LF Diets Based on DNA Methylation Data

Of the 306 participants, 73 subjects did not complete the dietary intervention, and
32 participants had low adherence to the diets, obtaining post-intervention data from
201 participants: 93 on the MHP diet and 108 on the LF diet (Figure 1).

The statistical analyses of the changes in the anthropometric and biochemical variables
in response to dietary treatment after 4 months of intervention are shown in Table 2. All
variables showed a significant improvement regardless of the type of diet, demonstrating

http://www.stata.com
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that the two diets were effective in reducing the anthropometric and biochemical parameters
(except for the aspartate aminotransferase (Ast) and TNF-α values, which did not decrease
significantly in dietary groups MHP and LF, as well as adiponectin, which did not decrease
in the group with the LF diet).

Table 1. Baseline anthropometric and biochemical data from the groups with a moderately high-
protein (MHP) and a low-fat (LF) diet.

MHP (n = 93) LF (n = 108) p

Gender (male/female) n (% male) 28 (30%) 33 (31%) 0.945
Age 52 ± 1 54 ± 1 0.277

BMI (kg/m2) 31.2 ± 0.3 32.1 ± 0.3 0.062
Body weight (kg) 86.6 ± 1.4 88.7 ± 1.1 0.256

Waist circumference (cm) 101 ± 1 102 ± 0 0.463
Hip circumference (cm) 111 ± 1 112 ± 1 0.225

Lean mass dxa (g) 47585 ± 1009 48646 ± 939 0.442
Fat mass dxa (g) 36190 ± 734 37250 ± 752 0.317

Visceral fat mass dxa (g) 1362 ± 91 1486 ± 79 0.301
Diastolic pressure (mmHg) 78. ± 1 79 ± 1 0.399
Systolic pressure (mmHg) 130 ± 2 128 ± 1 0.511

Total energy (Kcal) 1509 ± 24.1 1514 ± 19.5 0.863
Glucose (mmol/L) 5 ± 0.5 5 ± 0.1 0.317

Insulin (mU/l) 7.7 ± 0.5 8.1 ± 0.4 0.703
Leptin (ng/mL) 34.2 ± 2.4 38.1 ± 2.9 0.325

Adiponectin (µg/mL) 11.1 ± 0.4 11.5 ± 0.4 0.577
HOMA-IR 1.8 ± 0.1 1.9 ± 0.1 0.726

Cholesterol (mg/dL) 214 ± 3 218 ± 3 0.534
HDL-cholesterol (mg/dL) 53 ± 1 55 ± 1 0.301

Triglycerides (mg/dL) 98 ± 4 103 ± 5 0.505
LDL-c (mg/dL) 1400 ± 3 141 ± 3 0.911

ox-LDL (mg/dL) 44 ± 1 46 ± 1 0.303
Alt (IU/L) 24.3 ± 1.7 23.1 ± 1.1 0.506
Ast (IU/L) 22.5 ± 1.2 21.5 ± 0.6 0.468

Uric acid (mg/dL) 5.1 ± 0.1 5.2 ± 0.1 0.433
C- Reactive protein (mg/L) 2.7 ± 0.2 3.1 ± 0.3 0.551

TNF-α (pg/mL) 0.9 ± 0.3 0.8 ± 0.3 0.006
Values correspond to the mean ± SEM. BMI: body mass index, HOMA-IR: insulin resistance index. HDL:
high-density lipoprotein, LDL: low-density lipoprotein, ox-LDL: oxidized low-density lipoprotein, Alt: alanine
aminotransferase, Ast: aspartate aminotransferase, and TNF-α: tumor necrosis factor alpha. p < 0.05 highlighted
in bold was considered statistically significant. The mean of the sex was calculated with chi-square. The p-value
of the comparison of the baseline means between the MHP diet and LF was calculated using the Student’s t-test
for independent samples.

The analysis of the changes after the dietary intervention showed that the HDL-
cholesterol in the participants with the LF diet presented a significantly greater increase
than in the participants with the MHP diet (p = 0.059). Participants with the MHP diet
showed a lower decrease in lean mass than participants with the LF diet (p = 0.023).

A prediction model based on basal DNA methylation data was designed to determine
the percentage of BMI loss for each individual. The two types of diets and the CpG sites
with methylation levels at the baseline best associated with BMI reduction were used
as predictors.

A selection of methylation sites was made from the 201 participants who completed
the dietary intervention and had good adherence to the diets (Figure 1). For this, the mean
and standard deviation of the ~850,000 CpG sites of the “Illumina MethylationEPIC” methy-
lation array, which had been adjusted in a previous step for blood cell composition, were
calculated. In order to use CpG sites that had sufficient dispersion among the participants,
only 1233 CpG sites with a standard deviation >0.1 were used for further analysis.

Spearman’s correlation was performed between methylation of the selected 1233 CpG
sites and the percentage of BMI loss for each of the diets after 4 months of intervention, se-
lecting those CpG sites that presented a significant correlation with p < 0.05. Tables 3 and 4
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show the significant CpG sites for each diet (34 for the MHP diet and 20 for the LF diet)
(Figure 3). In addition, scatter plots were made between methylation of these significant
CpG sites and the change in BMI (Supplementary Figure S1 for the MHP diet and Supple-
mentary Figure S2 for the LF diet).

Table 2. Anthropometric and biochemical changes that occurred with the interventions with each of
the two diets (MHP and LF) after 4 months and the differences between them.

MPH Diet (n = 93) LF Diet (n = 108)
Comparison of the

Differences between the
MHP Diet and the LF Diet

Mean ± SEM p 1 Mean ±SEM p 2 Mean ± SEM p 3

∆ BMI (kg/m2) −3.1 ± 0.1 <0.001 −3.2 ± 0.1 <0.001 0.2 ± 0.1 0.261
∆ Body weight (kg) −8.4 ± 0.3 <0.001 −9.1 ± 0.3 <0.001 0.5 ± 0.5 0.272

∆ Waist circumference (cm) −8.9 ± 0.4 <0.001 −9.4 ± 0.3 <0.001 0.5 ± 0.6 0.351
∆ Hip circumference (cm) −6.2 ± 0.3 <0.001 −6.7 ± 0.3 <0.001 0.5 ± 0.5 0.295

∆ Lean mass dxa (g) −1221 ± 130 <0.001 −1662 ± 140 <0.001 441 ± 193 0.023
∆ Fat mass dxa (g) −6841 ± 357 <0.001 −7103 ± 299 <0.001 262 ± 463 0.572

∆ Visceral fat mass dxa (g) −454 ± 42 <0.001 −487 ± 36 <0.001 33 ± 55 0.555
∆ Diastolic pressure (mmHg) −3.7 ± 0.9 <0.001 −4.1 ± 1.1 <0.001 0.2 ± 1.4 0.863
∆ Systolic pressure (mmHg) −12.3 ± 1.3 <0.001 −10.1 ± 1.1 <0.001 −2.1 ± 1.7 0.213

∆ Total energy (Kcal) 415 ± 16 <0.001 428 ± 11 <0.001 −13 ± 21 0.521
∆ Glucose(mmol/L) −0.7 ± 0.5 <0.001 −0.2 ± 0.4 <0.001 −0.5 ± 0.5 0.296

∆ Insulin (mU/l) −2.8 ± 0.4 <0.001 −2.6 ± 0.3 <0.001 −0.2 ± 0.6 0.694
∆ Leptin (ng/mL) −16.2 ± 2.1 <0.001 −19.1 ± 1.9 <0.001 2.9 ± 2.8 0.301

∆ Adiponectin (µg/mL) 0.4 ± 0.2 0.047 0.1 ± 0.2 0.748 0.3 ± 0.3 0.311
∆ HOMA-IR −0.7 ± 0.1 <0.001 −0.7 ± 0.1 <0.001 −0.6 ± 0.1 0.701

∆ Cholesterol (mg/dL) −17.8 ± 2.5 <0.001 −22.1 ± 2.5 <0.001 4.2 ± 3.6 0.247
∆ HDL-c (mg/dL) −2.7 ± 0.7 0.001 −4.8 ± 0.8 <0.001 2.1 ± 1.1 0.059

∆ Triglycerides (mg/dL) −19.7 ± 4.1 <0.001 −15.1 ± 3.6 <0.001 −4.6 ± 5.4 0.389
∆ LDL-c (mg/dL) −11.1 ± 2.1 <0.001 −14.2 ± 1.9 <0.001 3.1 ± 2.8 0.281

∆ ox-LDL (mg/dL) −8.1 ± 0.9 <0.001 −8.6 ± 1.2 <0.001 0.5 ± 1.6 0.722
∆ Alt (IU/L) −3.9 ± 1.8 0.003 −3.6 ± 0.9 <0.001 −0.3 ± 1.9 0.867
∆ Ast (IU/L) −0.6 ± 1.6 0.686 −1.0 ± 0.6 0.074 0.4 ± 1.6 0.787

∆ Uric acid (mg/dL) −0.1 ± 0.1 0.013 −0.2 ± 0.1 <0.001 0.1 ± 0.1 0.087
∆ C- Reactive protein (mg/L) −0.9 ± 0.2 <0.001 −1.0 ± 0.2 <0.001 0.1 ± 0.3 0.738

∆ TNF-α(pg/mL) 0.03 ± 0.01 0.079 0.013 ± 0.02 0.511 −0.04 ± 0.02 0.098

Values correspond to the baseline mean and mean changes after caloric restriction treatment ± SEM. BMI: body
mass index. HOMA-IR: insulin resistance index. HDL: high-density lipoprotein, LDL: low-density lipoprotein,
ox-LDL: oxidized low-density lipoprotein, and Alt: alanine aminotransferase. Ast: aspartate aminotransferase.
TNF-α: tumor necrosis factor alpha. p < 0.05 highlighted in bold was considered statistically significant. 1 Values
from the comparison of the baseline and post-intervention means of the group assigned with the MHP diet;
1 p-value of the changes was calculated using the Student’s t-test for dependent samples. 2 Values from the
comparison of the baseline and post-intervention means of the group assigned to the LF diet; 2 p-value of the
changes was calculated using Student’s t-test for dependent samples. 3 Mean values of post-intervention changes
in the MHP and LF diets; 3 p-value of the comparison of post-intervention changes of the MHP and LF diets was
calculated using the Student’s t-test for independent samples.

Table 3. Spearman’s correlations between methylation of the significant CpG sites (p < 0.05) and
percent of BMI loss with the MHP diet.

CpG Sites Annotated Gene Rho p

cg00124993 MIR886 −0.212 0.041
cg00308130 −0.218 0.035
cg01097406 −0.238 0.022
cg03447554 −0.243 0.019
cg04481923 MIR886 −0.229 0.027
cg06478886 −0.212 0.041
cg06536614 MIR886 −0.211 0.042
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Table 3. Cont.

CpG Sites Annotated Gene Rho p

cg07104639 MACROD2 0.207 0.046
cg07782112 −0.208 0.045
cg08745965 MIR886 −0.222 0.032
cg09768983 0.224 0.031
cg10841563 −0.233 0.024
cg11460778 0.217 0.036
cg14317533 −0.214 0.039
cg15263617 GPCPD1 0.239 0.021
cg15837280 −0.265 0.010
cg17052675 −0.245 0.018
cg17764313 MCM2;MCM2 −0.237 0.022
cg18678645 MIR886 −0.207 0.046
cg18797653 MIR886 −0.210 0.043
cg19053046 HLA-DPB1 0.221 0.033
cg19148731 LOXL3 −0.214 0.039
cg19504605 ZFP41 −0.204 0.049
cg20315590 HMCN1 −0.215 0.038
cg20684491 0.301 0.003
cg21054447 0.207 0.046
cg22355889 ELMOD1;LOC643923;ELMOD1 0.207 0.046
cg23377942 WWOX;WWOX −0.206 0.048
cg23899408 HOOK2;HOOK2 −0.224 0.031
cg24433124 −0.223 0.031
cg24658778 SYNE1;SYNE1 −0.269 0.009
cg25340688 MIR886 −0.227 0.028
cg26896946 MIR886 −0.239 0.021
cg27149073 SDHAP3 0.222 0.032

Spearman’s correlations between methylation of the significant CpG sites and the percentage of BMI loss of the
201 subjects. p-value < 0.05 was considered significant, resulting in n = 34 CpG sites for the MHP diet.

Table 4. Spearman’s correlations between methylation of the significant CpG sites (p < 0.05) and
percent of BMI loss with the LF diet.

Sitios CpG Annotated Genes Rho p

cg00481382 NEDD1;NEDD1;NEDD1;NEDD1 0.250 0.009
cg03188948 −0.192 0.046
cg04346459 NFYA;NFYA;LOC221442 0.204 0.034
cg07167872 PM20D1 0.196 0.042
cg11193064 SMAD6;SMAD6 −0.196 0.042
cg14050976 0.203 0.035
cg14222729 −0.236 0.014
cg14893161 PM20D1;PM20D1 0.194 0.043
cg15011943 HLA-DRB5 0.205 0.033
cg15572235 0.234 0.014
cg15695738 0.190 0.049
cg15837280 0.190 0.048
cg16078649 RNF39;RNF39 −0.262 0.006
cg16600909 0.220 0.022
cg17035276 −0.216 0.024
cg18493115 HCCA2;KRTAP5-4 −0.231 0.016
cg19424457 PIWIL1;PIWIL1 −0.210 0.029
cg20057198 −0.251 0.009
cg24433124 0.220 0.022
cg26967960 CAV3;CAV3 0.287 0.003

Spearman’s correlation of CpG sites with the percentage of BMI loss. p-value < 0.05 was considered significant,
resulting in n = 20 CpG sites for the LF diet.
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Figure 3. Flow chart for the selection of methylation sites (CpG) used for the prediction model.

To better predict the percentage of BMI loss with each of the diets, the “furnival-Wilson
leaps and bounds” algorithm (“vselect” in Stata) [26] was used. This algorithm makes it
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possible to select, among the previously identified CpG sites, those that are best associated
with the percentage of BMI loss to be used in a multiple linear regression model. The
algorithm recognized 19 out of 34 CpGs for the MHP diet and 14 out of 20 CpGs for the
LF diet. With these CpG sites, a multiple linear regression was performed for each of the
diets, using the percentage of BMI loss as the dependent variable and methylation of the
CpG sites as the independent variable. Then, those CpG sites that presented a p < 0.19 in
the latter multiple linear regression model were included in the next analytical step, which
was the sub-scores calculation (see Section 2.2). Also, collinearity was verified (>1, estat vif,
Stata), eliminating the CpGs that presented multicollinearity (n = 3).

With these requirements, 15 CpGs for the MHP diet and 11 CpGs for the LF diet were
identified. Table 5 shows the multiple linear regression values of the selected CpG sites for
the MHP diet prediction model, and Table 6 shows those for the LF diet prediction model
(Figure 3). The CpGs correlated with BMI loss for each diet do not show overlap.

Table 5. Multiple linear regression for MHP diet prediction model showing an association between
methylation of the CpG sites and BMI difference (p < 0.19).

MHP Diet (n = 93 Participants)

CpG Sites Beta Coefficient SEM p

cg22355889 9.818 2.3 <0.001
cg24433124 −5.813 1.7 0.002
cg14317533 −7.578 2.3 0.002
cg07104639 6.259 2.14 0.005
cg19148731 −7.880 2.2 0.001
cg01097406 −5.982 1.6 0.001
cg15263617 8.975 2.8 0.002
cg23377942 −4.191 2.3 0.075
cg25340688 −5.795 1.8 0.003
cg19053046 5.080 2.6 0.055
cg11460778 4.222 1.7 0.016
cg03447554 −4.080 1.9 0.035
cg09768983 3.989 2.5 0.125
cg20684491 4.803 1.9 0.015
cg20315590 −6.713 2.8 0.022

Multiple linear regression model using the percentage of BMI loss as the dependent variable and the CpG sites for
the MHP diet as independent variables. SEM: standard error. Beta values represent changes in results for the
increasing number of BMI percent loss units.

Table 6. Multiple linear regression for the LF diet prediction model showing an association between
methylation of the CpG sites and BMI difference (p < 0.19).

LF Diet (n = 108 Participants)

CpG Sites Beta Coefficient SEM p

cg15572235 7.570 2.8 0.010
cg19424457 −8.048 3.1 0.011
cg18493115 −6.267 3.1 0.048
cg00481382 5.789 2.8 0.047
cg16600909 5.380 3.5 0.129
cg15837280 5.830 3.0 0.058
cg03188948 −4.308 2.4 0.081
cg16078649 −4.163 2.6 0.121
cg15011943 4.649 3.3 0.169
cg07167872 3.986 1.7 0.027
cg14222729 −3.407 2.5 0.187

Linear regression model using the percentage of BMI loss as the dependent variable and the CpG sites for the LF
diet as independent variables. SEM: standard error. Beta values represent changes in results for the increasing
number of BMI percent loss units.
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3.3. Design of Weighted Sub-Scores That Contain the CpG Sites of Each Diet and the Calculation of
the Total Methylation Score for the Prediction Model

Weighted sub-scores were made for each diet, using the sum of the previously selected
CpG sites and multiplying them by the beta coefficients obtained in each of the multiple
linear regressions of the MHP diet and the LF diet (Table 7).

Table 7. Design of weighted sub-scores for the diet MHP, LF, and total score.

Score Calculating Formula

Sub-score MHP Diet

(cg22355889 * 9.82) + (cg24433124 * −5.81) + (cg14317533 * − 7.58)
+ (cg07104639 * 6.25) + (cg19148731 * −7.88) + (cg01097406 *
−5.98) + (cg15263617 * 8.97) + (cg23377942 * −4.19) + (cg25340688
* −5.79) + (cg19053046 * 5.08) + (cg11460778 * 4.22) + (cg03447554
* −4.08) + (cg09768983 * 3.98) + (cg20684491 * 4.80) + (cg20315590

* −6.71)

Sub-score LF Diet

(cg15572235 * 7.57) + (cg19424457 * −8.04) + (cg18493115 * −6.26)
+ (cg00481382 * 5.78) + (cg16600909 * 5.38) + (cg15837280 * 5.83) +
(cg03188948 * −4.30) + (cg16078649 * −4.16) + (cg15011943 * 4.64)

+ (cg07167872 * 3.98) + (cg14222729 * −3.40)

Total Methylation Score Sub-score MHP − Sub-Score LF

To obtain a total score for each individual that would allow to be included as a term
for the interaction with the diet variable, the MHP diet sub-score was subtracted from the
LF diet sub-score, as shown in Table 7.

A linear mixed effect model was used to predict, based on the total methylation score
of each individual, which diet will be the best for the volunteers based on the greatest
percentage of BMI loss. Therefore, a linear mixed effect model was designed with the
percentage of BMI loss as the dependent variable and total score, diet (MHP/LF), and the
interaction term between the total score and the diet as a fixed effect. Moreover, the IDs of
the participants were included as a random effect. The model was adjusted for sex and age.
Table 8 shows the independent variables, the beta coefficient with the standard error, and
the p-value. As it can be seen in the table, the model is not affected when adjusting for sex
and age, since none of these variables showed statistical significance.

Table 8. Linear mixed effect model for the prediction of the percentage of BMI loss.

Prob > Chi-Square ≤ 0.001
Participants (n = 201) Percentage of BMI Loss

Independent Variable Beta Coefficient ± SEM p-Values Z-Test

Age −0.001 ± < 0.001 0.943
Sex −0.006 ± 0.1 0.954

Diet (MHP or LF) −1.201 ± 0.1 <0.001
Total methylation score 0.202 ± 0.01 <0.001

Diet## total methylation score −0.208 ± 0.02 <0.001
Cons −7.952 ± 0.6 <0.001

Dependent variable percentage of BMI loss, fixed effect variable diet, total score, and interaction of the diet and
total score. Adjusted for age and sex. Diet## total score indicates the interaction between both variables. SEM:
standard error.

3.4. Representation of the Prediction Model

Based on the linear mixed effect model, a “diet x total score” interaction graph was
made showing the marginal percentage of BMI loss for each diet. As shown in Figure 4,
where the “X” axis represents the total methylation score and the “Y” axis shows the
percentage of BMI loss, the percentage of BMI loss with each diet is estimated (MHP in blue
and LF in red) according to the methylation score presented by the subjects before starting
the intervention. Thus, for methylation score values between −10 and −1, the error bars
that predict the percentage of BMI loss for each diet overlap, indicating that both diets are
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effective in losing similar BMI values. It should be noted that, between −13 and −10, the
overlap is less. Conversely, when an individual has a score that is between 2 and 11, the
error bars separate, suggesting that the methylation score is effective in predicting the type
of diet that is the best for weight loss in that individual.
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The statistical differences between the predictions of the percentage of BMI loss with
both diets for each individual were analyzed using the “Z”-test, which involves the standard
errors of each estimation of the score. A significant p (<0.05) allows prescribing the most
appropriate diet for each individual. However, if the p is not significant (p > 0.05), the two
diets have a similar effect, so they can be prescribed interchangeably.

With this test, it was observed that, of the 201 participants, we could not predict which
diet was better in 126 participants, but 75 participants could be advised on one diet being
better than the other based on BMI loss predictions. As shown in Figure 5, in which the “X”
axis represents the total score and the “Y” axis shows the p-value obtained in the Z-test,
the nonsignificant p-values (>0.05) are between the total methylation score values of −10
and −2. This is the population for which it is not possible to predict which diet is better
(n = 126). However, for the individuals who have a score between −13 and −11 or between
−1 and +11 (n = 75), a type of diet for losing weight can be recommended to them according
to their baseline methylation score value (p < 0.05).

Figure 6 shows how the 201 participants are distributed (“Y” axis) with respect to
the total methylation score (the “X” axis). The population (n = 126) that presents total
methylation score values between −10 and −2 is the population for which we cannot
predict which diet is better for BMI loss.



Nutrients 2023, 15, 5023 14 of 22Nutrients 2023, 15, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 5. Representation of the distribution of the p-value of the Z-test with respect to the total 
methylation score. “X” axis shows the total score. “Y” axis shows the p-value of the Z-test. A “p” 
value <0.05 was considered significant. From −10 to −1 of the score, a nonsignificant p is presented. 

Figure 6 shows how the 201 participants are distributed (“Y” axis) with respect to the 
total methylation score (the “X” axis). The population (n = 126) that presents total methyl-
ation score values between −10 and −2 is the population for which we cannot predict which 
diet is better for BMI loss. 

 
Figure 6. Representation of the population distribution with respect to the total methylation score. 
X” axis shows the total methylation score. Y” axis shows the number of participants. 

The baseline anthropometric and biochemical data of the population whose diet 
could be predicted to be better with the model were compared with the data of the popu-
lation whose diet could not be predicted. It was verified that the prediction was due to the 

0.
00

5

0.
01

2

0.
02

8 0.
06

0 0.
11

6

0.
20

5

0.
32

9

0.
47

7

0.
37

0

0.
23

6

0.
13

4

0.
06

8

0.
03

1

0.
01

3

0.
00

5

0.
00

2

0.
00

1

<0
.0

01

<0
.0

01

<0
.0

01

<0
.0

01

<0
.0

01

<0
.0

01

<0
.0

01

<0
.0

01

0.000

0.100

0.200

0.300

0.400

0.500

0.600

- 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 1 0 1 1

P 
VA

LU
E 

OF
 Z

 T
ES

T

TOTAL METHYLATION SCORE 

Figure 5. Representation of the distribution of the p-value of the Z-test with respect to the total
methylation score. “X” axis shows the total score. “Y” axis shows the p-value of the Z-test. A “p”
value <0.05 was considered significant. From −10 to −1 of the score, a nonsignificant p is presented.
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Figure 6. Representation of the population distribution with respect to the total methylation score.
“X” axis shows the total methylation score. “Y” axis shows the number of participants.

The baseline anthropometric and biochemical data of the population whose diet could
be predicted to be better with the model were compared with the data of the population
whose diet could not be predicted. It was verified that the prediction was due to the
percentage of methylation, since there were no differences in any of these variables between
the two population groups (p < 0.05) (Supplementary Table S1).
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3.5. Information on the Methylation Sites Selected for the Prediction Model

Tables 9 and 10 show the location of the CpGs selected for the MHP diet and the LF
diet, respectively. The chromosome and its coordinates, the gene, and the region within
the gene in which it is found, which is information obtained by the array “Illumina”, are
indicated in the tables. In the case of CpGs found in the intergenic zone, the closest gene
and its distance from the CpGs were searched in the UCSC Genome Browser on Human
(GRCh37/hg19). In addition, the polymorphisms associated with the selected methylation
sites and their minor allele frequency for both diets are shown in the Supplementary Tables
(Supplementary Table S2 for the MHP diet and Supplementary Table S3 for the LF diet).

Table 9. Information from the 15 methylation sites associated with the MHP diet selected for the
prediction model.

CpG Sites Chromosome Map INFO Gene 1 Gene Region 2

cg22355889 11 107461585 ELMOD1 TSS1500
cg07104639 20 15125595 MACROD2 Body
cg19148731 2 74780229 LOXL3 5′UTR
cg15263617 20 5574362 GPCPD1 Body
cg23377942 16 79042805 WWOX Body
cg25340688 5 135416398 MIR886 TSS200
cg19053046 6 33048254 HLA-DPB1 Body
cg20315590 1 186003041 HMCN1 Body
cg20684491 1 25596433 RSRP1 IGR (2476)
cg11460778 1 145385299 NBPF10 IGR (24,744)
cg03447554 11 43094025 API5 IGR (239,480)
cg09768983 4 183935060 DCTD IGR (143,816)
cg01097406 16 89675127 DPEP1 IGR (−4589)
cg24433124 6 30755968 LINC00243 IGR (−24,675)
cg14317533 2 127886316 CYP27C1 IGR (−55,096)

Information from methylation sites of the MHP diet prediction model by using the “Illumina MethylationEPIC
array”. The location on the chromosome, the related gene, and the region in which each CpG is found were
analyzed for each methylation site. Gene 1: information by Illumina, except for CpG sites located in intergenic
regions (IGR), where a search was performed in “UCSC Genome Browser on Human (GRCh37/hg19)” for the
closest gene. Gene region 2: 5′UTR: 5′ untranslated, TSS1500: transcription start site 1500, TSS200: transcription
start site 200, body: body, and IGR: intergenic region. In the case of the IGR, the distance between the CpGs and
the closest gene is shown in parentheses.

Table 10. Information from the 11 methylation sites associated with the LF diet selected for the
prediction model.

CpG Sites Chromosome Map INFO Gene 1 Gene Region 2

cg19424457 12 130822308 PIWIL1 TSS200
cg18493115 11 1643842 HCCA2 Body
cg00481382 12 97304412 NEDD1 5′UTR
cg16078649 6 30039466 RNF39 Body
cg15011943 6 32493917 HLA-DRB5 Body
cg07167872 1 205819463 PM20D1 TSS200
cg15572235 7 5183992 RBAK IGR (98,540)
cg16600909 1 173145001 TNFSF4 IGR (−7869)
cg15837280 5 135415258 TGFBI IGR (50,674)
cg03188948 7 1209495 ZFAND2A-DT IGR (9367)
cg14222729 2 731215 TMEM18 IGR (63,242)

Information from the methylation sites of the LF diet prediction model by using the “Illumina MethylationEPIC
array”. The location on the chromosome, the related gene, and the region in which each CpG is found was
analyzed for each methylation site. Gene 1: information by Illumina, except for CpG sites located in intergenic
regions (IGR), where a search was performed in “UCSC Genome Browser on Human (GRCh37/hg19)” for
the closest gene. Gene region 2: 5′UTR: 5′ untranslated, TSS200: transcription start site 200, body: body, and
IGR: intergenic region. In the case of the IGR, the distance between the CpG and the closest gene is shown in
parentheses.
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3.6. Biological Role of the Genes Related to the CpG Sites Selected for the Prediction Model

The biological role of the genes related to the CpG sites obtained in Section 3.2 was
studied. The biological functions of the genes were searched in the “GeneCards the human
gene database”. Those that present functions in metabolism, in the immune system, or
cellular function were chosen. As shown in Figure 7, the genes chosen for the MHP
diet were CYP27C1, MACROD2, LOXL3, DPEP1, GPCPD1, WWOX, HLA DPB, and API5.
Figure 8 shows the genes selected for the LF diet: PIWIL, HCCA2, TNFSF4, HLA-DRB5,
and PM20D.
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Figure 7. Biological role of genes that have functions in metabolism, the immune system, and cell
function and that contain the CpG sites selected for the MHP diet prediction model.
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4. Discussion

In this research project, the association between DNA methylation in the blood and the
reduction of the BMI percentage with an intervention with two types of diets, a moderately
high-protein diet (MHP) and a low-fat diet (LF), was studied in a Spanish population.
Likewise, the CpG sites which basal methylation was associated with the reduction of the
percentage of BMI after 4 months of dietary intervention were identified and then used
to construct a total methylation score that was included in a model together with the two
types of diets, and it adequately predicted the percentage of BMI loss.

4.1. Methylation Analyzed in Blood Samples Showing Association with the BMI

Thirty-four CpG sites for the MHP diet and twenty CpG sites for the LF diet were
identified in blood and were associated with the percentage of BMI loss. This relationship
of methylation sites with BMI has been observed in previous studies, such as in a clinical
trial in a multiethnic Asian population that identified the methylation of 116 CpG sites
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associated with BMI and the methylation of 8 CpG sites that were associated with waist
circumference [27]. On the other hand, in a longitudinal experimental study that was
performed in a US population, they associated more than 300 CpG sites in blood with the
BMIs of 480 adults [28]. Similarly, in a cross-sectional study linking blood methylation in
obesity-related genes, they affirmed the association between multiple CpG sites and the
BMI [29]. The CpG sites in these aforementioned studies differed from those identified
with this research, so it should be noted that CpG sites related to BMI may vary according
to ethnicity, population characterization, and BMI selection methods; however, it can be
said that methylation contributes to determining BMI.

4.2. Genes Related to CpG Sites Associated with the Percentage of BMI Loss for the MHP Diet and
for the LF Diet

Another finding of this investigation is the biological role of the genes with the
methylation sites in the blood associated with the percentage of BMI loss for both diets. Of
these genes, those with functions in the cell cycle, the immune system, and metabolism
were highlighted.

In an experimental study, they analyzed the epigenetic marks related to obesity and
studied the blood methylation of the MACROD2 gene, which was positively associated
with BMI levels, considering that the methylation of this gene may be involved in the
development of obesity [30]. In contrast, in the present investigation, blood methylation
of the MACROD2 gene showed a positive association with the percentage of BMI loss.
However, we analyzed the methylation of MACROD2 in the body region, while the other
study analyzed it in the TSS200 region. In a review study, methylation and gene expression
changes were investigated in subcutaneous adipose tissue of pregnant women with gesta-
tional diabetes, in which they found that the HLA-DRB5 gene was hypermethylated. The
authors concluded that changes in the methylation of this gene may represent adaptive fetal
and placental responses to glucose intolerance [31]. However, in the present investigation,
we found that blood methylation of the HLA-DRB5 gene was related to the reduction of the
percentage of BMI after a nutritional intervention. Likewise, in a clinical trial, other authors
analyzed the effect of methylation in the WWOX gene on osteosarcoma cell proliferation.
This study was performed in bone tissue affected by osteosarcoma and compared with
healthy bone tissue, and it demonstrated that WWOX methylation levels were increased in
patients with osteosarcoma [32].

Another study observed that in vitro gastric cancer cell lines infected with H. pylori
showed increased methylation in the WWOX gene [33]. In our study, the blood methylation
of the WWOX gene showed a negative correlation with the decrease in BMI percentage.
The subjects who had higher methylation levels showed lesser BMI percentage decreases.
Therefore, it seems that hypermethylation of this gene is associated with negative changes
in metabolic health.

It is important to highlight that, in the present investigation, the study of methylation
was analyzed in blood, and in some previously mentioned studies, the methylation of these
same genes was studied in target tissues, which demonstrates that blood tissue can serve
as a rather similar reflection of methylation status, as it has been analyzed in some studies
that compared methylation in a target tissue versus identifying methylation in blood, in
which methylation data were considered to be more specific if performed in the tissue of
interest for the investigation. But blood is a valid option that can provide fairly accurate
information on the methylation status whenever adjustments are made to the blood cell
composition, since it has the advantage of being a more accessible tissue, which can be
taken routinely [34,35].

4.3. Prediction Model

Currently, the usual management for overweight and obesity is done by calculating
energy expenditure, establishing daily nutritional requirements, and performing caloric
restriction, in addition to giving recommendations for lifestyle changes specific to each
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individual [36,37]. The main limitation of this routine management is that it does not take
into account the variability of each individual’s response to these interventions. Therefore,
we designed a prediction model based on methylation data from the studied population that
predicts the percentage of BMI loss with the MHP diet and the LF diet. With this pioneer
approach, we were able to predict, for many individuals, the most appropriate diet for
losing a higher percentage of BMI in a dietary intervention for obesity or overweight. This
could also help to increase the adherence to the intervention. Linear mixed models were
used to model the BMI loss, which included the interaction term between the methylation
score biomarker and the categorical variable encoding the two diets (MHP and LF). This
linear mixed effect model was designed with the percentage of BMI loss as the dependent
variable and the total score, diet (MHP/LF), and the interaction term between the total
score and the diet as a fixed effect. Since the biomarker–diet interaction term is essential to
deduce the relevant effects of the individualized treatment, we used the total methylation
score biomarker resulting from subtracting the methylation sub-scores obtained for each
diet (see Table 7). Finally, the model was adjusted for sex and age.

4.4. BMI Percentage Loss Prediction Model Based on the MHP and LF Diets’ Methylation Data

The model that predicts the percentage of BMI loss was made with a total methylation
score that was constructed considering the MHP diet methylation score, in which the
15 CpG sites that were better associated with the reduction of BMI percentage were selected
and 11 CpG sites for the LF diet. With this model, it was possible to predict with which diet
the highest percentage of BMI would be lost for 75 participants, corresponding to 37.3%
of the total population of this study. We consider that this total methylation score could
be used to predict which diet is more appropriate for each individual. If not significant,
the predictive model indicates that these subjects would lose a similar percentage of BMI
with both diets. In this case, and in order to increase the adherence to the treatment, the
individuals could choose by dietary preference.

The potential of DNA methylation to predict BMI loss has been described before, as
demonstrated in a study in which a prediction score was performed based on 83 CpG sites
that was associated with BMI; the result they obtained was a prediction that represented
29% of the variation in BMI in the population they studied [38]. This prediction model of
the percentage of BMI loss had no similarity in CpG sites and genes related to the CpG sites
that we identified for both diets. This may be due to the differences in the investigations,
such as different methods and selection parameters of the CpG sites. Another important
point is the variability in the data due to different sizes, population characteristics, and
experimental protocols. These are some of the reasons that may lead to differences in the
results between studies.

To conclude, it is important to mention that this pioneer prediction model can be
improved by adding other information, because the use of other variables for the prediction
of the decrease in anthropometric measurements with a dietary intervention has been
evidenced. For example, a useful weight loss prediction model using gut microbiota data
and urine metabolites in a nutritional intervention has been recently published [39]. The
use of polymorphisms as useful biomarkers to predict weight loss with a diet has also been
described in previous research [40,41]. In fact, the approach used in the present study is
similar to that employed in a previous publication of our group that used SNPs to predict
the responses to the same weight loss diets [42]. These studies evidence that the use of other
variables, such as genetics, microbiota, and metabolomics, could be useful in predicting
the reduction of anthropometric measures or the response to an intervention. Therefore, in
future studies, it would be interesting to integrate these variables into the epigenetic model
that has been carried out in this research. It is possible that a prediction model that includes
epigenetic, genetic, and/or metagenomic data will improve and may provide advantages
for their implication in precision nutrition.



Nutrients 2023, 15, 5023 20 of 22

4.5. Strengths and Limitations

One of the main strengths of this pilot research is that it was carried out within the
framework of a randomized clinical study in which more than 200 people were charac-
terized. A methylation array was used to analyze around 850,000 methylation sites in
each individual at baseline. Multiple methylation sites were identified as associated with
the reduction in BMI percentage after the intervention with the two types of diets, thus
demonstrating the impact that epigenetics has on the response and regulation of anthropo-
metric measures and suggesting that epigenetic markers can be very useful in the precision
dietary treatment of obesity. Furthermore, although a pilot study, it was a robust study,
since the association of CpG sites with the dietary intervention response was not affected by
potential confounding factors, as the model was adjusted for age, sex, and cell composition.

The designed epigenetic model successfully predicted the percentage of BMI loss with
each of the two diets (MHP and LF). For this model, blood was used as the study tissue,
which is an accessible, easy, minimally invasive tissue. Therefore, the designed methylation
score can be used as biomarkers in the future using blood samples. On the other hand, with
the results obtained, future research can be developed, and the model can also allow the
integration of new variables for improvement.

It is important to mention that the information obtained from the methylation data of
these subjects refers to the methylation situation at that moment and of the tissue that was
studied, but this information may vary with time and the tissue analyzed.

Another limitation of this pioneer study was the expression of the genes in which the
methylation sites identified in this research were located, as it was not analyzed.

It would be interesting to know if the changes in methylation have any real influence
on the expression levels. It should be taken into account that this research was carried
out in a Spanish population, mostly of Caucasian origin, so the data obtained cannot be
extrapolated to a demographically different population. It is important to point out that
several studies suggest that epigenetic marks are dependent on race, origin, and many
lifestyle factors, including perinatal factors, and there are many factors that influence
the degree of individual methylation, so that small differences in methylation can be
found between individuals. As DNA methylation somewhat shows a maternal inheritance,
another limitation is that we did not have twins in the study.

On the other hand, there are technological limitations that can influence methylation
values, as they are dependent on the equipment used; reagents; and sample handling
(blood preservation, cell isolation, DNA extraction, bisulfite treatment, etc.). For this reason,
it is difficult to compare between different studies.

5. Conclusions

This pioneer research demonstrates that DNA methylation is an individual character-
istic that can be used to have greater precision in the nutritional treatment of BMI reduction.
The model designed based on the methylation information through the linear mixed effect
model allows predicting the percentage of BMI loss and could be useful in determining
which diet is more adequate for weight loss for each individual.
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