Medical Nutrition Therapy in Critically Ill Patients with COVID-19—A Single-Center Observational Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fish, M.; Rynne, J.; Jennings, A.; Lam, C.; Lamikanra, A.A.; Ratcliff, J.; Cellone-Trevelin, S.; Timms, E.; Jiriha, J.; Tosi, I.; et al. Coronavirus disease 2019 subphenotypes and differential treatment response to convalescent plasma in critically ill adults: Secondary analyses of a randomized clinical trial. Intensive Care Med. 2022, 48, 1525–1538. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Putowski, Z.; Czok, M.; Liberski, I.S.; Krzych, J. Basics of Mechanical Ventilation for Non-Aneasthetists. Part 2: Clinical Aspects. Adv. Respir. Med. 2020, 88, 580–589. [Google Scholar] [CrossRef]
- Putowski, Z.; Szczepańska, A.; Czok, M.; Krzych, Ł.J. Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19—Where Are We Now? Int. J. Environ. Res. Public Health 2021, 18, 1173. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef]
- Bedock, D.; Couffignal, J.; Lassen, P.B.; Soares, L.; Mathian, A.; Fadlallah, J.; Amoura, Z.; Oppert, J.-M.; Faucher, P. Evolution of Nutritional Status after Early Nutritional Management in COVID-19 Hospitalized Patients. Nutrients 2021, 13, 2276. [Google Scholar] [CrossRef]
- Kokoszka-Bargieł, I.; Cyprys, P.; Madeja, P.; Rutkowska, K.; Wajda-Pokrontka, M.; Madowicz, J.; Knapik, P. Factors influencing death in COVID-19 patients treated in the ICU: A single-centre, cross-sectional study. Anaesthesiol Intensive Ther. 2022, 54, 132–140. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Roza, A.M.; Shizgal, H.M. The Harris Benedict equation reevaluated: Resting energy requirements and the body cell mass. Am. J. Clin. Nutr. 1984, 40, 168–182. [Google Scholar] [CrossRef] [Green Version]
- Reeves, A.; White, H.; Sosnowski, K.; Tran, K.; Jones, M.; Palmer, M. Energy and protein intakes of hospitalised patients with acute respiratory failure receiving non-invasive ventilation. Clin. Nutr. 2014, 33, 1068–1073. [Google Scholar] [CrossRef]
- Thomas, S.; Alexander, C.; Cassady, B.A. Nutrition risk prevalence and nutrition care recommendations for hospitalized and critically-ill patients with COVID-19. Clin. Nutr. ESPEN 2021, 44, 38–49. [Google Scholar] [CrossRef]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dvir, D.; Cohen, J.; Singer, P. Computerized energy balance and complications in critically ill patients: An observational study. Clin. Nutr. 2006, 25, 37–44. [Google Scholar] [CrossRef]
- Choi, E.Y.; Park, D.-A.; Park, J. Calorie Intake of Enteral Nutrition and Clinical Outcomes in Acutely Critically Ill Patients: A me-ta-analysis of randomized controlled trials. J. Parenter. Enter. Nutr. 2014, 39, 291–300. [Google Scholar] [CrossRef]
- Al-Dorzi, H.M.; Albarrak, A.; Ferwana, M.; Murad, M.H.; Arabi, Y.M. Lower versus higher dose of enteral caloric intake in adult critically ill patients: A systematic review and meta-analysis. Crit. Care 2016, 20, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Marik, P.E.; Hooper, M.H. Normocaloric versus hypocaloric feeding on the outcomes of ICU patients: A systematic review and meta-analysis. Intensiv. Care Med. 2016, 42, 316–323. [Google Scholar] [CrossRef]
- Song, J.H.; Lee, H.S.; Kim, S.Y.; Kim, E.Y.; Jung, J.Y.; Kang, Y.A.; Park, M.S.; Kim, Y.S.; Kim, S.K.; Chang, J.; et al. The influence of protein provision in the early phase of intensive care on clinical outcomes for critically ill patients on mechanical ventilation. Asia Pac. J. Clin. Nutr. 2017, 26, 234–240. [Google Scholar] [CrossRef]
- Allingstrup, M.J.; Esmailzadeh, N.; Knudsen, A.W.; Espersen, K.; Jensen, T.H.; Wiis, J.; Perner, A.; Kondrup, J. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin. Nutr. 2012, 31, 462–468. [Google Scholar] [CrossRef]
- Nicolo, M.; Heyland, D.K.; Chittams, J.; Sammarco, T.; Compher, C. Clinical Outcomes Related to Protein Delivery in a Critically Ill Population: A Multicenter, Multinational Observation Study. J. Parenter. Enter. Nutr. 2016, 40, 45–51. [Google Scholar] [CrossRef]
- Matejovic, M.; Huet, O.; Dams, K.; Elke, G.; Alonso, C.V.; Csomos, A.; Krzych, J.; Tetamo, R.; Puthucheary, Z.; Rooyackers, O.; et al. Medical nutrition therapy and clinical outcomes in critically ill adults: A European multinational, prospective observational cohort study (EuroPN). Crit. Care 2022, 26, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Dumont, N.; Clemente, R.; Allan, K.; Downer, C.; Mitchell, A. Critical care: Meeting protein requirements without overfeeding energy. Clin. Nutr. ESPEN 2016, 11, e55–e62. [Google Scholar] [CrossRef]
- Czuczwar, M.; Potręć, B. Nutritional intervention in the intensive care unit according to recent guidelines. Anaesthesiol. Intensive Ther. 2021, 2018, 1–7. [Google Scholar]
- Chapple, L.S.; Weinel, L.; Ridley, E.J.; Jones, D.; Chapman, M.J.; Peake, S.L. Clinical Sequelae From Overfeeding in Enterally Fed Critically Ill Adults: Where Is the Evidence? J. Parenter. Enter. Nutr. 2020, 44, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Weijs, P.J.; Looijaard, W.G.; Beishuizen, A.; Girbes, A.R.; Straaten, H.M.O.-V. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit. Care 2014, 18, 701. [Google Scholar] [CrossRef] [Green Version]
- Langer, T.; Brioni, M.; Guzzardella, A.; Carlesso, E.; Cabrini, L.; Castelli, G.; Dalla Corte, F.; De Robertis, E.; Favarato, M.; Forastieri, A.; et al. Prone position in intubated, mechanically ventilated patients with COVID-19: A multi-centric study of more than 1000 patients. Crit. Care 2021, 25, 128. [Google Scholar] [CrossRef]
- McAuley, D.; Giles, S.; Fichter, H.; Perkins, G.; Gao, F. What is the optimal duration of ventilation in the prone position in acute lung injury and acute respiratory distress syndrome? Intensive Care Med. 2002, 28, 414–418. [Google Scholar] [CrossRef]
- Munshi, L.; Del Sorbo, L.; Adhikari, N.K.J.; Hodgson, C.L.; Wunsch, H.; Meade, M.O.; Uleryk, E.; Mancebo, J.; Pesenti, A.; Ranieri, V.M.; et al. Prone Position for Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. S4), S280–S288. [Google Scholar] [CrossRef] [Green Version]
- Bruni, A.; Garofalo, E.; Grande, L.; Auletta, G.; Cubello, D.; Greco, M.; Lombardo, N.; Garieri, P.; Papaleo, A.; Doldo, P.; et al. Nursing issues in enteral nutrition during prone position in critically ill patients: A systematic review of the literature. Intensive Crit. Care Nurs. 2020, 60, 102899. [Google Scholar] [CrossRef]
- de Paula, J.A.; Rabito, E.I.; Justino, S.R.; Leite, L.S.; Dantas, D.; da Silva, J.S.M.; Maffini, L.F.; Júnior, O.R. Administration of enteral nutrition and gastrointestinal complications in Covid-19 critical patients in prone position. Clin. Nutr. Open Sci. 2022, 45, 80–90. [Google Scholar] [CrossRef]
Category | No. (%) or Median (Q1–Q3) |
---|---|
Males/Females | 47 (65%)/25 (35%) |
BMI [kg m−2] | 29 (25–34) |
APACHE II [points] | 18 (14–25) |
SAPS II [points] | 38.5 (30–49.5) |
NRS score [points] | 4 (3–5) |
CFS score [points] | 4 (3–5) |
Albumin concentration [g dL−1] | 2.8 (2.5–3.0) |
C-Reactive Protein concentration [mg dL−1] | 101 (48,1–150) |
D-dimer concentration [ng mL−1] | 2739 (1449–6952.5) |
Lactate dehydrogenase level [U L−1] | 559 (352–715.15) |
Total lymphocyte count [103 µL−1] | 0.6 (0.39–0.89) |
SOFA score [points] | 9 (5–12) |
Acute respiratory failure with oxygen support | 74 (100%) |
Oxygenation Index < 100 [mmHg] | 11 (15%) |
Oxygenation Index 100–300 [mmHg] | 57 (79%) |
Oxygenation Index > 300 [mmHg] | 4 (6%) |
Acute circulatory failure with catecholamine support | 54 (75%) |
Acute renal failure with renal replacement therapy | 11 (15%) |
Day | Formula Used to Assess the Calorie Target | % of BMR Calorie Intake—Median (Q1–Q3) | <70% | 70–100% | >100% | n |
---|---|---|---|---|---|---|
1 | HB | 24 (6–44) | 69(96%) | 3 (4%) | 0(0%) | 72 |
MsJ | 24 (6–43) | 69(96%) | 3 (4%) | 0(0%) | ||
20 kcal/kg BW | 23 (6,47) | 69 (96%) | 3 (4%) | 0 (0%) | ||
2 | HB | 64 (33–86) | 41 (57%) | 18 (25%) | 13 (18%) | 72 |
MsJ | 67 (36–91) | 38 (53%) | 20 (28%) | 14 (19%) | ||
20 kcal/kg BW | 60 (30–90) | 44 (61%) | 19 (26.5%) | 9 (12.5%) | ||
3 | HB | 57 (35–93) | 43 (62%) | 9 (13%) | 17 (25%) | 69 |
MsJ | 61 (37–98) | 61 (37–98) | 61 (37–98) | 61 (37–98) | ||
20 kcal/kg BW | 43 (63%) | 43 (63%) | 43 (63%) | 43 (63%) | ||
4 | HB | 72 (34–113) | 72 (34–113) | 72 (34–113) | 72 (34–113) | 66 |
MsJ | 33 (50%) | 33 (50%) | 33 (50%) | 33 (50%) | ||
20 kcal/kg BW | 16 (24%) | 16 (24%) | 16 (24%) | 16 (24%) | ||
5 | HB | 54 (33–102) | 54 (33–102) | 54 (33–102) | 54 (33–102) | 60 |
MsJ | 33 (55%) | 33 (55%) | 33 (55%) | 33 (55%) | ||
20 kcal/kg BW | 11 (18%) | 11 (18%) | 11 (18%) | 11 (18%) | ||
6 | HB | 62 (42–92) | 62 (42–92) | 62 (42–92) | 62 (42–92) | 53 |
MsJ | 30 (57%) | 30 (57%) | 30 (57%) | 30 (57%) | ||
20 kcal/kg BW | 11 (21%) | 11 (21%) | 11 (21%) | 11 (21%) | ||
7 | HB | 69 (48–99) | 69 (48–99) | 69 (48–99) | 69 (48–99) | 51 |
MsJ | 27 (53%) | 27 (53%) | 27 (53%) | 27 (53%) | ||
20 kcal/kg BW | 14 (27%) | 14 (27%) | 14 (27%) | 14 (27%) |
Day | % of Protein Intake—Median (Q1–Q3) | n |
---|---|---|
Day 1 | 11 (0–27) | 72 |
Day 2 | 35 (15–57) | 72 |
Day 3 | 34 (14–61) | 69 |
Day 4 | 40 (19–61) | 66 |
Day 5 | 38 (12,59) | 60 |
Day 6 | 40 (22–63) | 53 |
Day 7 | 43 (29–65) | 51 |
Energy–BH | Energy–MsJ | Energy–20 kcal/kg BW | Protein Intake | ||
---|---|---|---|---|---|
Day 4 | APACHE II | r = −0.08 (p > 0.05) | r = −0.07 (p > 0.05) | r = −0.06 (p > 0.05) | r = −0.07 (p > 0.05) |
SAPS II | r = −0.02 (p > 0.05) | r = −0.01 (p > 0.05) | r = −0.03 (p > 0.05) | r = 0.004 (p > 0.05) | |
SOFA | r = −0.09 (p > 0.05) | r = −0.09 (p > 0.05) | r = −0.085 (p > 0.05) | r = −0.14 (p > 0.05) | |
Day 7 | APACHE II | r = 0.14 (p > 0.05) | r = 0.14 (p > 0.05) | r = −0.11 (p > 0.05) | r = 0.21 (p > 0.05) |
SAPS II | r = 0.02 (p > 0.05) | r = 0.16 (p > 0.05) | r = −0.24 (p < 0.05) | r = 0.28 (p < 0.05) | |
SOFA | r = 0.2 (p > 0.05) | r = 0.19. (p > 0.05) | r = −0.13 (p > 0.05) | r = 0.21 (p > 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzych, Ł.J.; Taborek, M.; Winiarska, K.; Danel, J.; Nowotarska, A.; Jaworski, T. Medical Nutrition Therapy in Critically Ill Patients with COVID-19—A Single-Center Observational Study. Nutrients 2023, 15, 1086. https://doi.org/10.3390/nu15051086
Krzych ŁJ, Taborek M, Winiarska K, Danel J, Nowotarska A, Jaworski T. Medical Nutrition Therapy in Critically Ill Patients with COVID-19—A Single-Center Observational Study. Nutrients. 2023; 15(5):1086. https://doi.org/10.3390/nu15051086
Chicago/Turabian StyleKrzych, Łukasz J., Maria Taborek, Katarzyna Winiarska, Justyna Danel, Agnieszka Nowotarska, and Tomasz Jaworski. 2023. "Medical Nutrition Therapy in Critically Ill Patients with COVID-19—A Single-Center Observational Study" Nutrients 15, no. 5: 1086. https://doi.org/10.3390/nu15051086
APA StyleKrzych, Ł. J., Taborek, M., Winiarska, K., Danel, J., Nowotarska, A., & Jaworski, T. (2023). Medical Nutrition Therapy in Critically Ill Patients with COVID-19—A Single-Center Observational Study. Nutrients, 15(5), 1086. https://doi.org/10.3390/nu15051086