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Abstract: Osteoblasts and osteoclasts play crucial roles in bone formation and bone resorption. We
found that plum-derived exosome-like nanovesicles (PENVs) suppressed osteoclast activation and
modulated osteoblast differentiation. PENVs increased the proliferation, differentiation, and mineral-
ization of osteoblastic MC3T3-E1 cells and osteoblasts from mouse bone marrow cultures. Notably,
PENVs elevated the expression of osteoblastic transcription factors and osteoblast differentiation
marker proteins in MC3T3-E1 cells. Higher levels of phosphorylated BMP-2, p38, JNK, and smad1
proteins were detected in PENV-treated MC3T3-E1 cells. Additionally, the number of TRAP-positive
cells was significantly decreased in PENV-treated osteoclasts isolated from osteoblasts from mouse
bone marrow cultures. Importantly, osteoclastogenesis of marker proteins such as PPAR-gamma,
NFATc1, and c-Fos were suppressed by treatment with PENVs (50 µg/mL). Taken together, these
results demonstrate that PENVs can be used as therapeutic targets for treating bone-related diseases
by improving osteoblast differentiation and inhibiting osteoclast activation for the first time.

Keywords: plum-derived exosome-like nanovesicles (PENVs); exosome-like nanovesicles; osteoblasts;
osteoclasts; bone remodeling; BMP-2 signaling; Runx2

1. Introduction

Bone remodeling is regulated by achieving a balance between healthy new bone
formation by osteoblasts and disassembly of old bone by osteoclasts [1–3]. Osteoclasts,
derived from hematopoietic stem cells (HSCs), secrete acids and specialized proteinases to
break down and digest complexes of hydrated proteins and minerals at the molecular level
in a process known as bone resorption [4–6]. Osteoblasts originating from mesenchymal
stem cells (MSCs) are involved in osteogenesis and development of the bone matrix, which
is formed by tropocollagen, a component of collagenous fiber, and mucopolysaccharide
synthesis [7–11]. An imbalance in bone remodeling is involved in several bone-related
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diseases (for example, osteoporosis, osteopetrosis, osteoarthritis, rheumatoid arthritis,
Paget’s disease, osteonecrosis, and scoliosis).

Mammalian-derived exosomes are secreted by almost all cells and have a size of
50–300 nm [12]. Exosomes transport biomolecular cargoes including lipids, proteins,
and nucleic acids to target cells for biological activation. Exosomes have been used as
markers for specific diseases. Plant-derived nanovesicles are released from various edible
plants and have characteristics similar to mammalian-derived exosomes. Many natural
biochemicals present in plant-derived nanovesicles can be delivered to target tissues,
resulting in enhanced therapeutic effects [13].

Previous reports have shown that plums and dried plums contain abundant amounts
of polyphenols and increase bone density, skeletal bone mass acquisition, and indicators
of bone formation [14]. Polyphenols from dried plum have also been demonstrated to
prevent bone resorption by osteoclasts through suppression of receptor activator NF-kB
ligand (RANKL) signaling [15]. The use of dried plums as a dietary supplement can protect
bone from deterioration after spinal cord injury [16]. When vitamin K, potassium, and
polyphenols from dried plums were combined, trabecular and cortical bone parameters
were recovered. [17]. However, the effects of plum-derived exosome-like nanovesicles
(PENVs) on osteoblast and osteoclast activation have not been reported to date.

In this study, we have demonstrated that PENVs suppressed osteoclast activation and
modulated differentiation and mineralization of osteoblasts for the first time.

2. Materials and Methods
2.1. Reagents

Murine RANKL (cat No. 315-11) and M-CSF (cat No. 315-02) were purchased from
PeproTech. Cell cultures with high quality reagents were used from Gibco (Grand Island,
NY, USA). Unless otherwise specified, additional reagents were used from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. Cell Culture

MC3T3-E1 subclone 4 (#CRL-2593) was obtained from the American Type Culture
Collection (ATCC). The cells were grown in growth media [α-MEM containing 10%
FBS, penicillin-streptomycin (10,000 U/mL)] and treated osteoblast differentiation me-
dia (growth media with 50 µg/mL ascorbic acid and 10 mM sodium phosphate monobasic).

Long bones obtained from 7-week-old female mice were used to produce primary
osteoblast cultures by flushing the bone marrow with RPMI medium. Primary osteoblasts
from mouse bone marrow were grown in growth media (α-MEM containing Penicillin-
Streptomycin (10,000 U/mL) for 24 h. The adherent cells, considered to be stromal cell
populations, were trypsinized using 0.25% trypsin-EDTA (Sigma-Aldrich, St. Louis, MO,
USA) and seeded. Primary osteoblasts from mice were maintained in the osteoblast
differentiation media (growth media with 50 µg/mL ascorbic acid and 10 mM sodium
phosphate monobasic).

For preparation of primary osteoclast cultures, bone marrow cells were extracted
from the tibia and femur of 7-week-old female mice. The isolated bone marrow cells were
cultured in α-MEM containing 10% FBS, 2 mM L-glutamine and penicillin-streptomycin
(10,000 U/mL) for 24 h. Cells floating on the medium were then primed with 30 ng/mL
M-CSF for 72 h. After 72 h of exposure, the attached cells were considered to be bone-
marrow-derived macrophages (BMMs). For differentiation of osteoclasts, the BMMs from
the indicated groups were incubated in osteoclast differentiation media (α-MEM medium
containing 30 ng/mL M-CSF and 100 ng/mL RANKL) for 72–96 h.

2.3. Purification and Isolation of Plum-Derived Exosome-like Nanovesicles

Japanese plums, known as daeseoks, were cultivated on Gyeongsang, Uiseong, and
harvested [18]. For isolating PENVs, Japanese plums were deseeded and made into a fresh
juice using juicer. Fresh plum juice was used in sequential centrifugation following our lab
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methods for the isolation of plant exosome-like nanovesicles (Figure 1A) [19]. The PENVs
pellet was resuspended in 500 µL PBS and stored at −80 ◦C. The concentration of PENVs
was determined using the Bicinchoninic Acid (BCA) Protein Assay Kit (Thermo Fisher
Scientific, Rockford, IL, USA).

2.4. Nanoparticle Tracking Analysis (NTA)

The size distribution and particles concentration of the average PENVs were de-
termined by NTA using a Nanosight NS300 device (Malvern Panalysis Ltd., Malvern,
UK) [19].

2.5. Transmission Electron Microscopy (TEM) and Cryogenic Electron Microscopy (Cryo-EM)

PENVs were applied to low-discharged TEM grid covered with a continuous carbon
film for 1 min. Grids were negatively stained with 0.75% (w/v) uranyl formate, as previ-
ously reported [20]. TEM images were recorded with a magnification of 22,000×. Cryo-EM
(Titan Krios G4 Cryo-TEM; Thermo Fisher Scientific) was used to observe the PENVs, and
the images were captured at a magnification of 22,000× [19].

2.6. Labeling of PENVs and Uptake of Labeled PENVs in Cell Cultures

PENVs (1 mg in 1 mL of PBS) were labeled with DiD red fluorescent dye (1,1′-
dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide; Invitrogen) at 1:200 dilution
following to the manufacturer’s instructions. For uptake of PENVs into MC3T3-E1 cells,
DiD dye-labeled PENVs were acquired using the CELENA® S Digital Imaging System
(Anyang-si, Republic of Korea) for 6 or 24 h [19].

2.7. MTT Assay

MC3T3-E1 cells (density of 1 × 104 cells/well in 96-well plates) were treated in
a growth medium in the presence or absence of PENVs for the indicated number of days.
After incubation of cells, MTT reagent was added to all wells in 96-well plates. The medium
in the wells was aspirated, and the wells were refilled with DMSO to dissolve formazan
crystals. The purple-colored formazan product was measured at 570 nm using ELISA plate
reader (TECAN, Männedorf, Switzerland).

2.8. Determination of Alkaline Phosphatase (ALP) Activity

MC3T3-E1 cells (density of 1 × 105 cells/well in 12-well plates) were treated in
a differentiation medium in the presence or absence of PENVs for the indicated number of
days. The activity of alkaline phosphatase (ALP) was used in our lab method to determine
cellular or medium ALP activity in the presence or absence of PENVs [19]. ALP activity in
the cells is presented as nmol PNP/mg protein/min and nmol PNP/mL/min as units of
enzyme activity.

2.9. Alizarin Red S and von Kossa Staining

MC3T3-E1 cells and primary osteoblasts (density of 1 × 105 cells/well in 12-well
plates) were treated in a differentiation medium in the presence or absence of PENVs for
the indicated number of days. On day 7, MC3T3-E1 cells and primary osteoblasts were
washed in PBS and fixed in ethanol. The MC3T3-E1 cells and primary osteoblasts were
stained with 40 mM Alizarin Red S solution (pH 4.4) for 30 min at room temperature and
washed with PBS. Images of the mineralized matrices were acquired using a microscope
(Leica, Nussloch, Germany).

To quantify matrix mineralization, 100 mmol/L cetylpyridinium chloride was dis-
solved over 1 h at room temperature. The absorbance of ca-deposit with stained red colored
nodule was measured at absorbance intensity (570/600 nm) using ELISA plate reader
(TECAN, Männedorf, Switzerland) [19].

For von Kossa staining, MC3T3-E1 cells and primary osteoblasts (density of 1 × 105 cells/
well in 12-well plates) were treated in a differentiation medium in the presence or absence
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of PENVs for the indicated number of days. The MC3T3-E1 cells and primary osteoblasts
were stained with 3% silver nitrate at room temperature under ultraviolet light for 1 h.
Images of the mineralized matrices were captured using a microscope (Leica, Nussloch,
Germany) [19].

2.10. Tartrate-Resistant Acid Phosphatase (TRAP) Staining and Activity Analysis

The osteoclasts differentiated from mouse bone marrow cells were stained for TRAP, an
enzyme found abundantly in mature osteoclasts. TRAP staining (TRAP & ALP double-stain
kit, cat no. MK300, Takara, Kusatsu, Japan) was performed according to the manufacturer’s
instructions [19]. After washing with PBS, the cells were stained using a TRAP staining
kit. TRAP-positive cells with at least three nuclei were regarded as osteoclasts and were
detected using a light microscope (Leica Microsystems, Wetzlar, Germany).

For the TRAP activity assay, the osteoclasts were permeabilized with 0.5% Triton X-100
for 10 min and incubated with pNPP substrate-containing solution. The reaction mixtures
were transferred to a new 96-well plate containing an equal volume of 1 N NaOH, and the
absorbance of TRAP activity was measured at 405 nm using ELISA plate reader (TECAN,
Männedorf, Switzerland).

2.11. Real-Time Quantitative Polymerase Chain Reaction (RT qPCR)

The mRNA levels of Runx2, osteopontin (OPN), ALP, and collagen type 1 (COL1)
were determined using RT qPCR analysis. Total RNA was extracted using the Total RNA
Extraction Kit (Thermo Fisher Scientific, Lenexa, KS, USA) and RNA concentration was
measured using Nanodrop® ND-1000 (Thermo Fisher Scientific). cDNA was amplified
using a cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, USA). To
determine the relative mRNA expression, glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) with SYBR Green PCR Master Mix (Applied Biosystems) was used as indicated
in previous reports [19]. The primer sequences used are listed in Table 1.

Table 1. Primer sequences used for real-time qPCR analysis.

Genes Sequence (5′ → 3′)

ALP F: CAAGGATGCTGGGAAGTCCG
R: CGGATAACGAGATGCCACCA

OPN F: CTGGCAGCTCAGAGGAGAAG
R: CAGCATTCTGTGGCGCAAG

COL 1 F: ACGTCCTGGTGAAGTTGGTC
R: CAGGGAAGCCTCTTTCTCCT

OCN F: GCAATAAGGTAGTGAACAGACTC
R: GTTTGTAGGCGGTCTTCAAGC

Osterix F: GTCAAGAGTCTTAGCCAAACTC
R: AAATGATGTGAGGCCAGATGG

BMP-2 F: CGCACGCGATGCAACACCAC
R: ACTGCATGTCCCCGGGCTCA

Smad-1 F: AAGGTGGGGAAAGTGAAAC
R: CTGCTTGGAACCAAATGGGAA

2.12. Western Blot Analysis

The cellular proteins were extracted using 1 × RIPA buffer from cell pellets and the
concentration of cellular proteins was measured using a BCA protein assay kit. Equal
amounts of proteins were separated by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) and transferred onto nitrocellulose membranes. After blocking
with 5% skim milk in TBS-T (Tris-buffered saline containing 0.1% Tween-20), the mem-
branes were incubated with primary antibodies overnight at 4 ◦C. The primary antibodies
against ALP, OPN, Runx2, Osterix, BMP-2, Smad-1, p38, ERK, JNK, β-actin (1:5000 dilu-
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tion), phospho-Smad1, phospho-p38, phospho-ERK, phospho-JNK (1:3000 dilution), PPAR
gamma, c-Fos, and NFATc1 were used from Santa Cruz Biotechnology (San Diego, CA,
USA). Next, the nitrocellulose membranes were primed with secondary antibodies (Anti-
Rabbit or Anti-Mouse with horseradish peroxidase). Immunoreactive protein bands were
detected using a chemiluminescent reagent (Thermo Fisher Scientific). Relative protein
images were captured using Fusion SOLO X (Vilber, Marne-la-Vallée, France).

2.13. Statistical Analysis

Data are expressed as means ± SD. Statistical comparisons were performed using
one-way analysis or t-test of variance, followed by Tukey’s post hoc analysis. Statistical
analyses were performed using the SPSS software (version 21.0; SPSS, Inc., Chicago, IL,
USA) [19]. p value < 0.5 was considered statistically significant.

3. Results
3.1. Isolation and Characterization of PENVs

First, we isolated PENVs using an optimized mammalian exosome purification
method [19] (Figure 1A). Vesicle structure and size of the PENVs particles were observed
using TEM and cryo-electron microscopy (Figure 1B). The size of the PENVs was 211 nm,
as measured by Nanoparticle Tracking Analysis (NTA) (Figure 1C). To confirm whether the
PENVs were internalized into the cells, we used the DiD labeling technique (Figure 1D).
Following 6 and 24 h of treating PENVs with DiD, red fluorescence of the DiD signal was
visible in MC3T3-E1 cells but not in control cells (Figure 1E), indicating that PENVs were
integrated well into the osteoblastic MC3T3-E1 cells.
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3.2. PENVs Activated the Osteoblast Differentiation and Mineralization

To determine whether PENVs can modulate osteoblast activation, various doses of
osteoblastic MC3T3-E1 cells were treated with PENVs (1, 5, 10, and 50 µg/mL). MTT
assay revealed that PENVs did not display toxicity against osteoblastic MC3T3-E1 cell
proliferation in a dose- or time-dependent manner (Figure 2A). Treatment with various
doses of PENVs for 7 or 14 days increased ALP activity (Figure 2B).
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Mineralization of osteoblasts was determined by Alizarin Red S and von Kossa stain-
ing, which showed that the treatment with PENVs for 7 days promoted the deposition of
Ca-P in the MC3T3-E1 cells (Figure 2C–E). Thus, our data demonstrated that differentiation
and mineralization of osteoblasts were modulated by PENVs.

3.3. PENVs Enhanced Osteoblast Differentiation Marker Gene and Protein Expressions

ALP and OPN play critical roles in bone metabolism by activating osteoblast differenti-
ation [21,22]. Osterix and Runx2 are essential transcription factors that modulate osteoblast
differentiation [23,24]. To investigate whether PENVs modulate MC3T3-E1 cell differen-
tiation, osteoblast differentiation transcription factors and marker genes were analyzed
using qRT-PCR. Osteoblast differentiation marker genes, including ALP, OPN, COL1, and
osteocalcin (OCN), and transcription factors, such as Osterix and Runx2, were elevated in
cells treated with PENV for 7 d (Figure 3A).
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Figure 3. PENVs promote the expression of mRNA and protein of osteoblast differentiation markers.
(A) mRNA expression of osteoblast markers was determined by real-time qPCR. (B) Levels of
alkaline phosphate (ALP) and osteopontin (OPN) were determined using Western blot analysis.
(C) Expressions of Osterix and Runx2 as osteoblast differentiation transcription factors in osteoblastic
MC3T3-E1 cells are shown. Data are presented as means ± SD (n = 3). ** p < 0.01 between PENVs
and control group (OSM; osteogenic medium).

To confirm whether PENVs can activate osteoblast differentiation marker proteins, in-
cluding ALP, OPN, Runx2 and Osterix, we examined the expression levels of these proteins
in MC3T3-E1 cells using Western blot analysis. The results showed that the expression of
osteoblast differentiation marker proteins (ALP and OPN) and transcription factor pro-
teins (Runx2 and Osterix) in PENV-treated cells was higher than in PENV-untreated cells
(Figure 3B,C). Overall, these results indicate that PENVs can modulate the expression of
osteoblast differentiation markers and transcription factors related to genes and proteins.

3.4. PENVs Stimulated Osteoblast Differentiation through BMP-2/MAPK/Smad-1 Dependent
Runx2 Pathway

Bone morphogenetic protein-2 (BMP-2) is a key signaling target molecule in osteoblast
differentiation and formation [25,26]. BMP-2 is an upstream regulator of the Runx2,
an osteoblast differentiation transcription factor. Additionally, BMP-2 modulates the acti-
vation of the major mitogen-activated protein kinase (MAPK) molecules (p38, JNK, and
ERK) and Smad-1 activation. To determine whether PENVs promote BMP-2 signaling,
we performed RT qPCR to determine the mRNA levels of BMP-2 and Smad-1, followed
by Western blot analysis to confirm the expression of phospho-Smad1, -p38, -ERK and
-JNK. The gene expression levels of BMP-2 and Smad-1 were enhanced in PENV-treated
osteoblastic MC3T3-E1 cells (Figure 4A). In addition, PENVs markedly increased the phos-
phorylation of JNK, p38, and Smad1 in MC3T3-E1 cells (Figure 4B). However, the PENVs
did not modulate the phosphorylation of the ERK protein. These results suggest that PENVs
enhance osteoblast differentiation genes and proteins through the BMP-2/MAPK/Smad-1
dependent Runx2 pathway (Figure 4C).
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sentative Western blot bands of different proteins are shown. (C) A schematic illustration depicting
the effects of PENVs in promoting osteoblast differentiation. Data presented as means ± SD (n = 3).
** p < 0.01, *** p < 0.001 between PENVs and control group (OSM; osteogenic medium).

3.5. PENVs Enhanced Osteoblast Differentiation and Mineralization of Mouse
Primary Osteoblasts

To confirm primary osteoblast differentiation and mineralization induced by PENVs,
we performed ALP, Alizarin Red S, and von Kossa staining. ALP staining showed that
PENV-treated mouse primary cells exhibited strong ALP-positive staining in a dose-
dependent manner (Figure 5A). Alizarin red S and von Kossa staining also showed high
expression of Ca-P deposits in mouse primary cells treated with various doses of PENVs-
treated mouse primary cells for 7 days (Figure 5B,C). The intensity of Alizarin Red S staining
in the nodules with mineral deposits increased with various doses of mouse primary cells
treated with PENV for 7 days (Figure 5D). Taken together, these data indicate that PENVs
promote osteoblast differentiation and mineralization of primary osteoblasts, similar to the
osteoblastic MC3T3-E1 cell line.
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Figure 5. PENVs enhance differentiation of mouse primary osteoblasts. (A–C) Representative images
of ALP staining, Alizarin Red S staining, and von Kossa staining are shown. (D) Ca deposition in
extracellular matrix was quantified using Alizarin Red S dye. Data presented as the means ± SD
(n = 3). * p < 0.05 between PENVs and control group (OSM; osteogenic medium).

3.6. PENVs Inhibited Osteoclast Differentiation of Mouse Primary Osteoclasts

During bone remodeling, osteoclasts are inextricably linked to osteoblasts [27]. Thus,
we tested whether PENVs were able to regulate osteoclasts rather than osteoblasts. TRAP+
cells decreased in the PENV-treated group (Figure 6A). Consistent with these results, PENVs
significantly decreased TRAP activity and osteoclastogenic differentiation of marker of
proteins such as NFATc1, c-Fos, and PPAR-gamma only at the concentration of 50 µg/mL
(Figure 6B,C). Our data showed that PENVs efficiently promote bone formation by reducing
osteoclast differentiation.
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Figure 6. PENVs decrease osteoclast activation in mouse primary osteoclasts. Bone marrow cells
from 7-week-old mice were isolated and incubated for 3 days in growth medium containing M-CSF.
The cells were considered to be differentiated into macrophages and used in the osteoclast study as
mentioned in “Materials and Methods” section. After stimulation with RANKL, (A) TRAP staining
and (B) TRAP activity (absorbance at 405 nm) was examined. Data presented as the means ± SD
(n = 3). (C) Levels of the osteoclastogenesis proteins were estimated (n = 3). * p < 0.05, ** p < 0.01
between PENVs and control group (OSM; osteogenic medium).

4. Discussion

In the current study, we first isolated and characterized exosomes, such as nanovesicles,
extracted from fresh plum juice. We found that PENVs exhibited biological functions in
the regulation of osteoblasts and osteoclasts activation (Figure 7). Treatment with PENVs
enhanced osteoblast activation in osteoblastic MC3T3-E1 cells and primary osteoblasts
in mice. In addition, PENVs increased the mRNAs and protein expression of osteoblast
differentiation markers, such as ALP and OPN, and transcription factors, such as Osterix
and Runx2. In particular, activation of the BMP-2/MAPK/Samd-1 dependent Runx2
pathway was induced by treatment with PENVs, suggesting that PENVs promote osteoblast
differentiation through BMP-2/MAPK/Samd-1 molecules. In addition, PENVs treatment
inhibited osteoclastogenesis in primary mouse osteoclasts. Therefore, these results imply
that PENVs could be used for the optimal treatment of osteoporosis.

Exosomes are small vesicles composed of vesicles containing various proteins, nucleic
acids, bioactive lipids, and secondary metabolites, which act as extracellular messengers
between various cells [28–30]. Plant-derived exosomes, such as nanovesicles, also contain
similar molecules. Interestingly, these nanovesicles have an advantage of biocompati-
bility and biodegradability, making them suitable as vehicles for therapeutic delivery,
similar to mammalian exosomes [31,32]. Several studies have reported that plant-derived
nanovesicles target some types of tissues and are involved in the prevention of inflamma-
tion or oxidative stress in various diseases. Recently, our group reported that yam-derived
nanovesicles are important in prevention of osteoporosis in vitro and in vivo [19]. We
also reported that apple-derived nanovesicles regulated osteoblastic MC3T3-E1 cell line
activation [33].
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hanced osteoblast differentiation and suppressed osteoclast activation in osteoblasts and osteoclasts.

Polyphenols in plums and prunes have been reported to significantly restore bone
mass by upregulating osteoblast function and activity [14]. Another study showed that
dried plums have preventive effects against bone loss caused by ovariectomy in C57BL/6J
mice [34] and bone-related diseases in humans [35]. Focusing on the protective efficacy
of plums against bone deterioration, we hypothesized that PENVs promote osteoblast
differentiation and suppress osteoclast activation.

Osteoblasts, which are derived from mesenchymal stem cells, form bones, and together
with osteoclasts and osteocytes are responsible for bone resorption, constitute the bone
tissue that maintains its strength and elasticity [36]. Osteoblast activation leads to a reduced
incidence of bone-mass-related diseases [37]. To promote and strengthen bone formation,
an increase in the activation and differentiation of osteoblasts and/or a decrease in death of
osteoblasts is important. Our data showed that both cellular ALP activity and ALP-stained
positive areas increased in the osteoblastic cell line MC3T3-E1 and primary osteoblasts
obtained from mice. The expression of osteoblast differentiation marker genes, such as
ALP and OPN, and osteoblast transcription factors, such as Runx2 and Osterix, was
significantly elevated in PENV-treated osteoblastic MC3T3-E1 cells. PENVs effectively
increased the expression levels of the osteogenic genes as well as those of proteins. In
addition, mineralized bone nodule formation was increased after treatment of osteoblastic
MC3T3-E1 cells and primary osteoblasts obtained from mice.

BMP-2 plays a major role in osteoblast differentiation and commitment. In addition,
among the several signaling pathways regulating Runx2, such as those of transforming
growth factor (TGF2) and fibroblast growth factor (FGF), the BMP-2 signaling pathway
is the most well-known [25,26]. In addition, BMP-2 activates major families of MAPKs,
such as ERK, p38, JNK, and Smad, and subsequently induces the expression of Runx2,
an important transcription factor involved in the differentiation of osteoblastic cells. Our
data showed that treatment with PENVs increased the expression of BMP-2 gene and
protein in MC3T3-E1 cells. In addition, treatment with PENVs markedly elevated the
expression of phospho-Smad1, phospho-p38, and phospho-JNK but did not affect the
expression of phospho-ERK (Figure 4). These results demonstrate that modulation of
osteoblast differentiation/proliferation by treatment with PENVs is closely related to the
Runx2-dependent BMP-2/MAPK/Smad-1 signaling pathway.
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Osteoclasts play a major role in maintaining bone remodeling [38]. However,
an increase in osteoclasts or their hyperactivation may cause an imbalance in bone home-
ostasis, thereby contributing to the development of bone-related diseases, such as osteo-
porosis, bone fracture, and bone loss. In the present study, PENVs suppressed RANKL-
dependent osteoclast formation and differentiation without having any cytotoxic effects.
Treatment with PENVs prior to RANKL treatment significantly inhibited RANKL-induced
formation of TRAP-positive cells (Figure 6A). In addition, TRAP activity and osteoclast acti-
vation of PPAR-gamma, NFATc1 and c-Fos proteins were inhibited by treatment only with
50 µM of PENVs (Figure 6). Thus, PENV treatment significantly inhibited RANKL-induced
osteoclast differentiation.

In summary, this study demonstrates that PENVs enhance osteoblast differentiation
and mineralization by modulating the BMP-2/MAPK/Smad-1 dependent Runx2 pathway.
We also confirmed that PENVs promote differentiation and mineralization of primary
osteoblasts. Regarding osteoclast differentiation markers, PENVs inhibited TRAP+ cells
and TRAP activity in mouse primary osteoclasts. To the best of our knowledge, these
results are the first to report that PENVs can be used as osteoporosis treatment to promote
osteoblast activation and decrease osteoclast differentiation.
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