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Abstract: Intermittent fasting (IF), an alternating pattern of dietary restriction, reduces obesity-
induced insulin resistance and inflammation. However, the crosstalk between adipose tissue and
the hippocampus in diabetic encephalopathy is not fully understood. Here, we investigated the
protective effects of IF against neuroinflammation and cognitive impairment in high-fat diet(HFD)-fed
mice. Histological analysis revealed that IF reduced crown-like structures and adipocyte apoptosis
in the adipose tissue of HFD mice. In addition to circulating lipocalin-2 (LCN2) and galectin-3
(GAL3) levels, IF reduced HFD-induced increases in LCN2- and GAL3-positive macrophages in
adipose tissue. IF also improved HFD-induced memory deficits by inhibiting blood–brain barrier
breakdown and neuroinflammation. Furthermore, immunofluorescence showed that IF reduced
HFD-induced astrocytic LCN2 and microglial GAL3 protein expression in the hippocampus of HFD
mice. These findings indicate that HFD-induced adipocyte apoptosis and macrophage infiltration
may play a critical role in glial activation and that IF reduces neuroinflammation and cognitive
impairment by protecting against blood–brain barrier leakage.

Keywords: intermittent fasting; high-fat diet; lipocalin-2; galectin-3; cognitive impairment

1. Introduction

Obesity can lead to non-alcoholic fatty liver disease, type 2 diabetes (T2D), and cogni-
tive impairment [1]. Previous studies indicate that a high-fat diet (HFD) stimulates lipid
accumulation in adipose tissue and exacerbates insulin resistance, leading to neuroinflam-
mation [2,3]. Furthermore, increased permeability of the blood–brain barrier (BBB) in
obesity causes neuroinflammation and memory deficits [4,5]. However, specific mech-
anisms that could be exploited for the prevention and treatment of obesity-associated
memory deficits are not yet defined.

Lipocalin-2 (LCN2), a neutrophil gelatinase-associated lipocalin, is a secreted protein
produced by adipocytes [6]. In obesity, LCN2 promotes the development of insulin re-
sistance and T2D [7,8]. LCN2 is known to increase BBB permeability, allowing harmful
substances to enter the brain [9]. However, further research is needed to better understand
the role of LCN2 in neuroinflammation and BBB maintenance in obesity.

Galectin-3 (GAL3), a β-galactoside-binding lectin, is expressed by various cell types
and regulates innate immune responses [10]. GAL3 promotes inflammation, apoptosis, and
oxidative stress in diabetic cardiomyopathy [11]. GAL3 also impairs learning and memory
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in diabetic patients, leading to mild cognitive impairment [12]. However, the role of GAL3
in HFD-induced inflammation and memory deficits is not fully understood.

Intermittent fasting (IF) is a dietary modification that has recently received attention
for its potential to prevent obesity and T2D [13]. There is growing evidence that chronic IF
benefits cognitive function in HFD-fed mice [14]. Interestingly, IF for 20 weeks increases
hippocampal neuron tolerance to excitotoxic stress in mice, suggesting a neuroprotective
effect [15]. However, the beneficial effects of long-term IF on HFD-induced neuroinflamma-
tion and memory deficits have yet to be fully examined.

Given the common roles of LCN2 and GAL3 in the chronic inflammation associated
with obesity and T2D, the functional relationships between adipose tissue macrophage-
derived LCN2 and GAL3 and neuroinflammation would be expected in the diabetic brain
with memory deficits. We previously showed that LCN2 has an inflammatory role in
the diabetic brain with BBB leakage [4]. However, the exact mechanisms of IF on LCN2
and GAL3-mediated adipose tissue macrophage infiltration and neuroinflammation have
not been fully studied. The present study aimed to investigate the protective role of
chronic IF against HFD-induced inflammation and associated diabetic encephalopathy. In
addition, we examined the effects of IF on the crosstalk between adipocyte death-related
macrophage accumulation and hippocampal inflammation in HFD-fed mice with BBB
leakage. We report that IF attenuated HFD-induced inflammation and memory deficits by
downregulating LCN2 and GAL3 proteins.

2. Materials and Methods
2.1. Animals and IF Mouse Model

Three-week-old male C57BL/6 mice were purchased from KOATECH (Pyeongtaek,
Republic of Korea). The mice were divided into normal diet (ND; n = 10), HFD (n = 10,
60% kcal from fat, Research Diets Inc., New Brunswick, NJ, USA), and HFD + IF (HIF;
n = 12) groups. Mice in the ND and HFD groups were fed a ND or HFD for 30 weeks,
whereas mice in the HIF group were fed an HFD for 8 weeks and then switched to an
IF protocol consisting of alternating 24 h periods of fasting and feeding for 22 weeks
(Supplementary Figure S1). We measured food intake and energy intake every other day
for 16 weeks at 12 weeks after IF protocol (Supplementary Figure S2). All mice fasted
overnight before sacrifice at 34 weeks of age. Mice were individually housed under an
alternating 12 h light/dark cycle.

2.2. Echo MRI

EchoMRI (Whole Body Composition Analyzer, Houston, TX, USA) was performed on
mice to quantify body fat mass.

2.3. Glucose Tolerance Test (GTT) and Insulin Tolerance Test (ITT)

GTT and ITT were performed as previously described [16] using D-glucose (2 g/kg,
Sigma-Aldrich, St. Louis, MO, USA) or insulin (0.75 U/kg, Humulin-R, Eli Lilly, Indianapo-
lis, IN, USA). After intraperitoneal injection of D-glucose or insulin, blood samples were
obtained from tail vein. The glucose levels from GTT and ITT were determined using an
Accu-Chek glucometer (Roche Diagnostics GmbH, Mannheim, Germany).

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Serum protein levels were measured using mouse LCN2 (R&D Systems, Minneapolis,
MN, USA), GAL3 (Abcam, Cambridge, UK), and matrix metalloproteinase 9 (MMP9; R&D
Systems) enzyme-linked immunosorbent assay (ELISA) kits according to the manufactur-
ers’ protocols.

2.5. Hematoxylin and Eosin (H&E) Staining

WATs (n = 3–4 mice per group) were fixed in 4% paraformaldehyde for 12 h at 4 ◦C.
Samples were embedded in paraffin, cut into 5-µm sections, stained with hematoxylin and
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eosin (H&E; Abcam, Cambridge, MA, USA), and visualized under BX53 light microscopy
(Olympus, Tokyo, Japan). The number of crown-like structures (CLSs) were counted in
three randomly selected fields.

2.6. Terminal Deoxynucleotidyl Transferase Dutp Nick end Labeling (TUNEL) Assay

TUNEL assay was used to measure the degree of apoptosis in WATs using an in situ
cell death detection kit (Roche Molecular Biochemicals, Mannheim, Germany) according
to the manufacturer’s protocol. For the counting of the number of TUNEL-positive cells
(n = 3–4 mice per group), three fields (400 µm × 400 µm) were randomly selected from
each section using ImageJ software (Version 1.52a, NIH, Bethesda, MD, USA).

2.7. Western Blot Analysis

Frozen WATs and hippocampi (n = 3–4 mice per group) were homogenized in T-PER
lysis buffer (Thermo Fisher Scientific, Carlsbad, CA, USA) with a protease and phosphatase
inhibitor cocktail (Thermo Fisher Scientific). After bicinchoninic acid assay (Thermo Fisher
Scientific) for protein concentration, proteins were loaded and electroblotted. Blots were
probed with primary antibodies (Supplementary Table S1). α-tubulin and β-actin were
used as internal controls to normalize protein content in tissue samples. Protein bands
were detected using enhanced chemiluminescence substrates (Pierce, Rockford, IL, USA),
and chemiluminescence was analyzed using an LAS-4000 instrument (Fujifilm, Tokyo,
Japan). The Multi-Gauge V 3.0 image analysis program (Fujifilm, Tokyo, Japan) was used
for densitometry analysis.

2.8. Double or Triple Immunofluorescences

Sections of deparaffinized WATs and frozen brains (n = 3–4 mice per group) were
incubated with 5% serum for 1 h at room temperature followed by incubation with pri-
mary antibodies (Supplementary Table S1). After washing three times, sections were
incubated with corresponding Alexa Fluor 488-, 594-, or 680-conjugated secondary anti-
body (Invitrogen, Carlsbad, CA, USA). Nuclei were counterstained with 4′,6-diamidino-
2-phenylindole (DAPI; Invitrogen). Slides were mounted with VectaMount (Vector Labo-
ratories, Burlingame, CA, USA), and representative images were taken using an FV3000
microscope (Olympus, Tokyo, Japan). For the counting of the number of extravascular
albumin from hippocampal section, three fields (200 µm × 200 µm) were randomly selected
from each section using ImageJ software (Version 1.52a, NIH).

2.9. Morris Water Maze (MWM)

For 5 days, the MWM test was conducted as previously described [16]. Mice (n = 7 mice
per group) received four daily trials for four consecutive days. A video-tracking program
(Noldus EthoVision XT7, Noldus Information Technology, Wageningen, The Netherlands)
recorded latency to find the platform. On the last day, the platform was removed, and the
numbers of crossings in the target quadrant (i.e., where the platform had been located) and
the platform area were analyzed.

2.10. Statistical Analysis

Statistical analyses were performed using PRISM 7.0 (GraphPad Software Inc., San Diego,
CA, USA). Group differences were determined by one-way analysis of variance (ANOVA)
followed by post hoc analysis with Tukey’s tests. All values are expressed as mean ± standard
error of the mean (SEM). A p-value < 0.05 was considered statistically significant.

3. Results
3.1. IF Attenuates Adipocyte Death and Macrophage Infiltration in the WAT of HFD Mice

To establish an experimental diabetic mouse model, mice were fed an HFD for
30 weeks. To examine the impact of IF on HFD mice, HIF mice were fed an HFD for
8 weeks and then switched to an IF protocol consisting of alternating 24 h periods of



Nutrients 2024, 16, 159 4 of 16

fasting and feeding for 22 weeks (Supplementary Figure S1). Compared with mice fed an
ND, HFD mice had heavier body weights and greater fat mass, whereas IF reversed these
changes (Body weight; F (2, 29) = 42.67, p < 0.0001, Fat mass; F (2, 29) = 54.51, p < 0.0001)
(Figure 1A,B). Glucose and insulin tolerance tests showed that HFD mice had impaired glu-
cose tolerance compared with ND mice. However, IF significantly attenuated HFD-induced
insulin resistance (GTT 0 min; F (2, 29) = 10.66, p = 0.0003, GTT 30 min; F (2, 29) = 1.818,
p = 0.1804, GTT 60 min; F (2, 29) = 1.357, p = 0.2732, GTT 90 min; F (2, 29) = 2.748, p = 0.0807,
GTT 120 min; F (2, 29) = 4.471, p = 0.0203) (ITT 0 min; F (2, 29) = 6.894, p = 0.0036,
ITT 15 min; F (2, 29) = 10.46, p = 0.0004, ITT 30 min; F (2, 29) = 19.52, p < 0.0001, ITT 45 min;
F (2, 29) = 17.52, p < 0.0001, ITT 60 min; F (2, 29) = 5.307, p = 0.0109) (Figure 1C,D). To in-
vestigate the effects of IF on HFD-induced WAT inflammation, we first examined adipocyte
death and macrophage infiltration. Histological analysis revealed that HFD mice had many
CLSs and TUNEL-positive cells in the WAT, whereas IF significantly reversed these changes
(CLSs; F (2, 26) = 15.70, p < 0.0001, TUNEL; F (2, 17) = 16.94, p < 0.0001) (Figure 1E–G).
Additionally, the HFD-induced increase in the ratio of Bax-to-Bcl-2 protein expression was
reduced by IF (F (2, 8) = 6.398, p = 0.0219) (Figure 1H). We next assessed macrophage infiltra-
tion in HFD-induced WAT apoptosis. Double immunofluorescence analysis revealed that
IF attenuated the infiltration of F4/80-positive macrophages into perilipin-1-free adipocytes
in HFD mice (Figure 1I). Together, these findings indicate that IF may improve insulin
resistance in HFD mice by reducing adipocyte death and macrophage infiltration.

3.2. IF Reduces Circulating and WAT LCN2 Protein Levels in HFD Mice

Because LCN2, an adipocytokine, is closely related to adipocyte death and inflamma-
tion in obesity [17,18], we evaluated the effects of IF on LCN2 protein levels in HFD mice.
IF attenuated the increased serum LCN2 level in HFD mice (F (2, 15) = 21.39, p < 0.0001)
(Figure 2A). In WAT, the HFD-induced increase in LCN2 protein level was significantly
reduced by IF (F (2, 8) = 7.867, p = 0.0129) (Figure 2B). Triple immunofluorescence showed
the presence of LCN2-positive cells in myeloperoxidase-positive neutrophils and F4/80-
positive macrophages in the WAT of HFD mice. However, these LCN2-positive neutrophils
and macrophages were not observed in HIF mice (Figure 2C). These results suggest that IF
reduces LCN2-mediated inflammation in HFD mice.

3.3. IF Reduces Circulating and WAT GAL3 Protein Levels in HFD Mice

Because GAL3 is related to adipocyte inflammation in HFD-induced obesity [19],
we evaluated the effects of IF on GAL3 protein levels in HFD mice. Consistent with
serum LCN2 levels, IF inhibited the increase in GAL3 levels in HFD mice (F (2, 18) = 34.11,
p < 0.0001) (Figure 3A). GAL3 protein expression was elevated in the WAT of HFD mice
compared with ND mice, whereas IF significantly reversed this increase (F (2, 8) = 20.99,
p = 0.0007) (Figure 3B). Double immunofluorescence showed the presence of many GAL3-
positive cells in LCN2-positive cells in HFD mice (Figure 3C). However, these colocalized
cells were reduced by IF. Thus, these findings indicate that IF attenuates circulating and
macrophage-derived GAL3 protein in HFD mice.

3.4. IF Improves Memory Deficits in HFD Mice

To assess whether IF improves memory deficits in HFD mice, we performed the
MWM test. ND and HIF mice tended to show shorter escape latencies across training for
4 consecutive days. However, on the last day, there was significant decrease in escape
latency in HIF mice compared with HFD mice (Training on the first day; F (2, 81) = 2.106,
p = 0.1283, Training on the second day; F (2, 81) = 4.126, p = 0.0197, Training on the third
day; F (2, 81) = 0.3548, p = 0.7024, Training on the last day; F (2, 18) = 6.176, p = 0.0091)
(Figure 4A). In addition, we found that there were no significant differences in swimming
distance or speed among groups on the last day (swimming distance; F (2, 18) = 2.410,
p = 0.1182, swimming speed; F (2, 18) = 2.231, p = 0.1363) (Figure 4B,C). Observation of
swimming routes on the test day showed that HIF mice exhibited more of a spatial bias
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toward the former platform location compared with HFD mice (Figure 4D). Moreover,
IF increased the numbers of crossings in the target quadrant and target zone compared
with HFD mice (Numbers of crossings in the target quadrant; F (2, 18) = 6.176, p = 0.0091,
Numbers of crossings in the target zone; F (2, 18) = 8.222, p = 0.0029) (Figure 4E,F), indicating
that IF improves HFD-induced memory deficits.
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Figure 1. Effects of IF on insulin resistance and adipocyte death in the WAT of HFD mice. (A) Body
weight (n = 10–12). (B) Fat mass (n = 10–12). (C) Glucose tolerance test (n = 10–12). (D) Insulin
tolerance test (n = 10–12). (E) Representative images of H&E and TUNEL staining in WAT sections
(n = 3–4). Scale bar, 100 µm. (F) Quantification of CLSs in H&E-stained sections. (G) Quantification of
TUNEL-positive cells in TUNEL-stained sections. (H) Western blot analysis of Bcl-2 and Bax proteins
in WAT lysates (n = 3–4). Quantification of Bax-to-Bcl-2 ratio. (I) Representative images of double
immunofluorescence staining of F4/80 (green) and perilipin-1 (red) in WAT sections. Nuclei were
stained with DAPI. Scale bar, 100 µm. Significance was determined by one-way ANOVA. * p < 0.05
versus ND. † p < 0.05 versus HFD.
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Figure 2. Effects of IF on serum and WAT LCN2 protein levels in HFD mice. (A) Serum LCN2
levels (n = 6) as assessed using ELISA. (B) Western blot and quantitative analysis of LCN2 protein
in WAT lysates (n = 3–4). Protein levels were normalized to α-tubulin from the same immunoblot.
(C) Representative images of triple immunofluorescence staining of LCN2 (red), MPO (green), and
F4/80 (purple) in WAT sections. Nuclei were stained with DAPI. Scale bar, 50 µm. Significance was
determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD.

3.5. IF Inhibits BBB Leakage in the Hippocampus of HFD Mice

Given the important role of the hippocampus in memory function, vascular abnormali-
ties in the hippocampus are likely to be causally related to cognitive impairment in diabetic
patients [5]. To investigate whether the improvement in memory deficits by IF was due to
protection against BBB leakage, we measured BBB-related protein levels (Figure 5A). Hip-
pocampal levels of claudin-5 were markedly lower in HIF mice compared with HFD mice.
By contrast, zonula occludens-1 (ZO-1) expression was lower in HFD mice, whereas IF re-
stored its expression (claudin-5; F (2, 8) = 21.36, p = 0.0006, ZO-1; F (2, 8) = 9.555, p = 0.0076)
(Figure 5A). Furthermore, HFD-induced intercellular adhesion molecule-1 (ICAM-1), a
leukocyte adhesion receptor on endothelial cell membranes, and MMP9 were significantly
reduced in the hippocampus of HIF mice (ICAM-1; F (2, 8) = 18.6, p = 0.0010, MMP9;
F (2, 8) = 43.23, p < 0.0001) (Figure 5A). We also confirmed that an increase in circulating
MMP9 level in HFD mice was decreased by IF (F (2, 15) = 10.75, p = 0.0013) (Figure 5B).
Next, we performed immunofluorescence staining with aquaporin-4 (AQP4) and albumin
to detect albumin in extravascular regions. AQP4 is a specific component of astroglial
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endfeet that comprises the BBB in close contact with endothelial cells [20,21]. We observed
many albumins near AQP4-positive astrocytes in the hippocampus of HFD mice compared
with ND mice (Figure 5C,D). However, IF significantly alleviated extravascular albumins
in the hippocampus of HFD mice (F (2, 33) = 37.20, p < 0.0001). Thus, these results suggest
that IF protects against BBB leakage and inhibits hippocampal inflammation in HFD mice.
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Figure 3. Effects of IF on serum and WAT GAL3 protein levels in HFD mice. (A) Serum GAL3 levels
(n = 6–8) as assessed using ELISA. (B) Western blot and quantitative analysis of GAL3 protein in
WAT lysates (n = 3–4). Protein levels were normalized to α-tubulin from the same immunoblot.
(C) Representative images of GAL3 (green) and LCN2 (red) double immunofluorescence staining
in WAT sections. Nuclei were stained with DAPI. Scale bar, 50 µm. Significance was determined by
one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD.

3.6. IF Reduces Microglial GAL3 and Astrocytic LCN2 in the Hippocampus of HFD Mice

Given that levels of GAL3 and LCN2 proteins were increased in the serum and WAT
of HFD mice, we investigated the effect of IF on microglial GAL3 and astrocytic LCN2
expression in HFD mice. Western blot analysis revealed that IF significantly reduced HFD-
induced increases in hippocampal GAL3 and LCN2 protein levels (GAL3; F (2, 8) = 35.53,
p = 0.0001, LCN2; F (2, 8) = 18.67, p = 0.0010) (Figure 6A). Double immunofluorescence
revealed that GAL3-positive Iba-1 microglia mainly localized around vascular regions in
the hippocampus of HFD mice, but GAL3-positive microglia were not observed in IF mice
(Figure 6B). In addition, LCN2 colocalized with GFAP-stained vessels in HFD mice, but
these colocalized cells were not observed in HIF mice (Figure 6B). These findings suggest
that IF mitigates BBB permeability-induced glial activation in HFD mice by downregulating
microglial GAL3 and astrocytic LCN2 proteins.
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Figure 4. Effect of IF on cognitive impairment in HFD mice. (A) Latency to reach the target platform
over 4 days of MWM training (n = 7). (B,C) Swimming speed (B) and swimming distance (C) on
the test day (n = 7). (D) Representative images of swimming paths without the platform during
testing. Red lines indicate the swimming path. Numbers of target zone quadrant (E) and platform
(F) crossings on the test day (n = 7). Black dashed circles indicate the location of the hidden platform.
Significance was determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD.

3.7. IF Reduces Hippocampal Inflammation in HFD Mice

To verify whether glial activation is linked to neuroinflammation in HFD mice, we
determined the effect of IF on inflammation-related proteins in the hippocampus of
HFD mice. Western blot analysis showed that tumor necrosis factor-α (TNF-α) and TNF
receptor-1 (TNFR1) levels in the hippocampus of HFD mice were reduced by IF (TNF-α;
F (2, 8) = 8.103, p = 0.0119, TNFR1; F (2, 8) = 16.06, p = 0.0016) (Figure 7A,B). Consistently,
hippocampal interleukin-6 (IL-6) levels were significantly lower in HIF mice than in HFD
mice (F (2, 8) = 6.673, p = 0.0197) (Figure 7A,B). Hrigh-mobility group box-1 (HMGB1) is
endocytosed through the receptor for advanced glycation end products (RAGE), which is
associated with inflammatory diseases [22]. Western blot analysis showed that IF markedly
reduced hippocampal HMGB1 and RAGE expression in HFD mice (HMGB1; F (2, 8) = 11.67,
p = 0.0042, RAGE; F (2, 8) = 22.66, p = 0.0005) (Figure 7A,B). These results indicate that IF
attenuated HFD-induced hippocampal inflammation.
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Figure 5. Effect of IF on BBB leakage in the hippocampus of HFD mice. (A) Western blot and
quantitative analysis of claudin-5, ZO-1, ICAM-1, and MMP9 in hippocampal lysates (n = 3–4).
Protein levels were normalized to β-actin from the same immunoblot. (B) Serum MMP9 level (n = 6).
(C) Representative images of double immunofluorescence staining of AQP4 (green) and albumin
(red) in hippocampal sections. White arrows indicate AQP4-positive astroglial endfeet. Yellow arrow
indicates extravascular albumin. Nuclei were stained with DAPI. Scale bar, 50 µm. (D) Quantitative
analysis of albumin from (C). Significance was determined by one-way ANOVA. * p < 0.05 versus
ND. † p < 0.05 versus HFD.
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Figure 6. Effects of IF on GAL3 and LCN2 protein in the hippocampus of HFD mice. (A) Western
blot and quantitative analysis of GAL3 and LCN2 in hippocampal lysates (n = 3–4). Protein levels
were normalized to β-actin. (B) Representative images of double immunofluorescence staining of
GAL3 (green) and Iba-1 (red), GAL3 (green) and GFAP (purple), or LCN2 (red) and GFAP (green) in
hippocampal sections. Arrows indicate co-localized GAL3 and Iba-1-positive microglia. Nuclei were
stained with DAPI. Scale bar, 50 µm. Significance was determined by one-way ANOVA. * p < 0.05
versus ND. † p < 0.05 versus HFD.
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Figure 7. Effects of IF on neuroinflammation in the hippocampus of HFD mice. (A,B) Western blot
(A) and quantitative analysis (B) of TNF-α, TNFR1, IL-6, HMGB1, and RAGE in hippocampal lysates
(n = 3–4). Protein levels were normalized to β-actin from the same immunoblot. Significance was
determined by one-way ANOVA. * p < 0.05 versus ND. † p < 0.05 versus HFD.

4. Discussion

We investigated the effects of IF on the crosstalk between adipocyte death-related
macrophage accumulation and hippocampal inflammation in HFD mice. First, we found
that IF attenuated HFD-induced adipocyte death and macrophage infiltration in the
WAT and improved insulin resistance. Second, IF reduced LCN2- and GAL3-positive
macrophages in the WAT of HFD mice as well as serum LCN2 and GAL3 levels. Third, IF
attenuated HFD-induced BBB leakage, neuroinflammation, and memory deficits. Finally,
IF reduced astrocytic LCN2 and microglial GAL3 expression in the hippocampus of HFD
mice. Thus, these findings suggest that IF could be used as drug replacement therapy
to improve cognitive impairment resulting from HFD-induced neuroinflammation and
BBB breakdown.

A critical finding of this study is that interrupting the HFD regimen with IF caused
dramatic weight loss and attenuated insulin resistance and adipocyte death. Moreover,
the decrease in CLSs, which are characteristic of WAT apoptosis and macrophage infiltra-
tion [23,24], suggests that metabolic dysfunction or insulin resistance can be corrected by
caloric reduction. These results are consistent with our previous study, which showed that
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caloric restriction (2 g/day) reduced body weight and adipocyte macrophage infiltration
in HFD mice [5]. Increased adipocyte death increases the activation of proinflammatory
adipocyte resident macrophages or other immune cells, thereby aggravating WAT in-
flammation [25,26]. Thus, mitigating WAT inflammation is crucial for protecting against
obesity-associated metabolic disorders. In the present study, IF reduced histological CLS
and macrophage infiltration in the WAT of HFD mice. These results indicate that IF, an
alternative to continuous caloric restriction, may attenuate WAT inflammation by inhibiting
adipocyte death and macrophage infiltration and improving insulin resistance in HFD mice.

LCN2 is an adipocytokine that is abundantly secreted from adipose tissue, including
neutrophils and macrophages [6,27]. LCN2 is a major contributor to inflammation in
adipose and other tissue in HFD-induced obesity [27,28]. Our previous studies demonstrate
that LCN2 plays an inflammatory role in the WAT, liver, and hippocampus in animal models
of metabolic disorders, including obesity, non-alcoholic fatty liver disease, and T2D [4,8,18].
As expected, in the present study, we found that in addition to reducing circulating LCN2
levels, IF reduced HFD-induced LCN2 expression and LCN2-positive neutrophils and
macrophages in the WAT. These results indicate that IF may alleviate HFD-induced WAT
inflammation by suppressing LCN2 expression.

GAL3, a lectin mainly secreted by macrophages, promotes inflammation and insulin
insensitivity in obesity [29]. Consistent with evidence that GAL3 is increased in adipose
tissue macrophages in HFD mice [19], we found that IF reduced the HFD increase in serum
GAL3 and WAT protein levels and co-localization with LCN2-positive macrophages. As
IF may exert an anti-inflammatory effect by triggering the transition of M2 phenotype
macrophages in mice [30], these findings suggest that IF reverses HFD-induced macrophage
activation in the WAT by downregulating GAL3-mediated macrophage infiltration.

Given the critical role of the hippocampus in learning and memory, vascular abnormal-
ities within the hippocampus may be causally related to cognitive impairment in patients
with diabetes or Alzheimer’s disease [5,31]. The hippocampal BBB is more susceptible
to disruption than other brain regions, thereby increasing the impact on learning and
memory [32]. Thus, BBB breakdown is considered an early biomarker of human cognitive
impairment [33]. It is widely reported that elevated levels of inflammatory mediators
promote neuroinflammation by triggering detrimental neutrophil/microglia activation in
the diabetic brain through BBB leakage [34,35]. We hypothesize that HFD-induced increases
in circulating LCN2 and GAL3 invade the leaky BBB and activate glia, resulting in local
neuroinflammation. Activated microglia can secrete high levels of TNF-α, which exac-
erbates neuroinflammation and further potentiates BBB permeability, directly impairing
neuronal network dynamics and causing memory deficits [36]. Consistent with previous
studies [5,37], we found that IF reversed the HFD-induced increases in proinflammatory
cytokines (TNF-α and IL-6), TNFR1, HMGB1, and RAGE in the hippocampus. TNF-α is
known to increase BBB leakage via degradation and downregulation of BBB tight junc-
tion proteins [37]. In HFD/streptozotocin-treated diabetic mice with memory deficits, we
previously demonstrated that ZO-1 protein is reduced in the hippocampus, and many neu-
trophils are present in the extravascular space of vessels ensheathed by GFAP-expressing
astrocytes [4]. In the present study, HFD mice exhibited upregulation of claudin-5, ICAM-1,
and MMP9 expression in the hippocampus, whereas levels of hippocampal ZO-1 protein
were reduced. However, these changes were reversed by IF. Furthermore, the HFD-induced
increase in the amount of extravascular albumin was reversed by IF, suggesting that IF
protects against HFD-induced BBB leakage. Previous studies report that increased MMP9
secretion and protein levels in human brain microvascular endothelial cells are attenuated
by an MMP inhibitor [38]. In diabetic mice, MMPs promote BBB disruption and neuroin-
flammation [39]. These findings suggest that the hippocampal BBB plays an important role
in diabetes-related memory deficits and that BBB components may represent novel thera-
peutic targets for mitigating the neuroinflammation and cognitive impairment associated
with chronic low-grade inflammatory conditions, including obesity and diabetes.
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Our previous studies report that upregulating systemic and hippocampal LCN2 levels
causes cognitive deficits in HFD or ob/ob mice [40,41]. Conversely, LCN2 deficiency im-
proves insulin resistance and diabetic encephalopathy [7,42]. In accordance with evidence
that hippocampal LCN2 levels are increased in diabetic encephalopathy [4,7], we found
that serum and hippocampal LCN2 levels were elevated in HFD-fed mice and normalized
by IF. A previous study shows that LCN2 released from astrocytes activates microglia,
further aggravating diabetes-induced neuroinflammation [43]. This supports the notion
that LCN2 deficiency reduces levels of reactive gliosis and inflammatory cytokines in
mice with diabetic encephalopathy. Based on the present findings, we suggest that LCN2
crosses the BBB as an inflammatory mediator and activates LCN2-positive astrocytes and
GAL3-positive microglia in the diabetic brain. The increased immune response of glial cells
may be caused by direct neuronal damage of a HFD or secreted LCN2 and GAL3 proteins
caused by BBB damage. Consistent with evidence that serum and hippocampus GAL3
levels are associated with neuroinflammation and memory deficits in diabetic rats [12], we
also found increased levels of LCN2 and GAL3 in the serum and hippocampus of HFD
mice with memory deficits. Therefore, these results strongly suggest that LCN2 and GAL3
are systemic inflammatory mediators that are causative of diabetic neuroinflammation.
However, IF was capable of attenuating the accumulation of LCN2- and GAL3-positive
cells through BBB leakage in the hippocampus of HFD mice. Although we did not observe
microglial expression of LCN2 in HFD mice, HFD mice had more GAL3-positive microglia
in the hippocampus than ND mice, and this effect was reversed by IF. There is substantial
evidence that GAL3 contributes to inflammation, microglial activation, and neurodegen-
eration. Recent studies also suggest that GAL3 is a key player in microglia-mediated
neuroinflammation [44,45]. Therefore, our results suggest that IF provides neuroprotec-
tion against the aggravating neuroinflammatory response in diabetic encephalopathy by
downregulating astrocytic LCN2 and microglial GAL3 levels.

5. Conclusions

We demonstrated that LCN2 and GAL3, as proinflammatory mediators, exert local ef-
fects on systemic and neuroinflammation via BBB leakage under an HFD-induced diabetic
condition. Systemic LCN2- and GAL3-mediated WAT macrophages induced hippocampal
inflammation via BBB leakage, but these pathological findings were reversed by IF. How-
ever, this study also has some limitations. First, it did not provide evidence for how specific
immune cells are regulated by GAL3 in diabetic encephalopathy. Second, cellular crosstalk
between the WAT and hippocampus must be further investigated. Third, it remains to be
determined whether myeloid-specific GAL3 deficiency plays an anti-inflammatory role
in the diabetic brain. Thus, further studies will help establish the precise mechanisms by
which IF protects against cognitive impairment associated with metabolic disorders such
as obesity and T2D.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16010159/s1. Figure S1: Experimental scheme of IF protocol in
HFD mice; Figure S2: Effects of IF on food intake and energy intake in HFD mice; Table S1: List of
primary antibodies.
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