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Abstract: Bulbil of yam (BY) extract contains various active compounds possessing many pharmaco-
logical properties. However, little is known about the effect and underlying mechanism of BY extract
on ethanol-induced liver damage. The present study explored the beneficial potential of BY extract
on ethanol-induced hepatotoxicity. To evaluate its effectiveness, ethanol-induced HepG2 liver cells
were pretreated with BY extract. BY extract effectively rescued cells from ethanol treatment through
inhibition of apoptotic cell death as well as inhibiting expression of mitogen-activated protein kinase
(MAPK) proteins as stress inducers. BY extract increased the expression of typical antioxidants.
Furthermore, BY extract significantly inhibited mitochondrial dysfunction and endoplasmic reticu-
lum (ER) stress, which are major ROS-inducing factors. Finally, as an underlying mechanism of the
protective effects of BY extract on ethanol-induced liver damage, it activated Nrf2 protein through
translocation from the cytosol to the nucleus, which in turn activated its target oxidative stress
suppressor genes. Collectively, our findings demonstrate that BY extract has potential antioxidative
effects in ethanol-induced liver cells and contributes to the establishment of a treatment strategy for
alcohol-derived liver injuries.
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1. Introduction

The liver is an important organ for detoxifying various metabolites and synthesizing
proteins [1]. For this reason, the liver is vulnerable to various types of injury, such as
fibrosis, cirrhosis, and hepatocellular carcinoma, due to exposure to various types of toxins
and xenobiotics absorbed from the gastrointestinal tract for the first time [2]. Among
them, alcohol causes structural and functional damage to almost every tissue in the body,
especially the liver, which is particularly susceptible to damage [2]. Indeed, alcoholic liver
disease (ALD), caused by alcohol misuse, is the most common liver disease in the world.
According to recent statistics from the World Health Organization (WHO), 3 million people
died from alcohol in 2016 worldwide. Among these deaths, digestive diseases accounted
for the highest proportion, with 21.3%, and more than 90% of these were associated with
ALD, indicating that ALD has become the major cause of death from alcohol [3].

Since alcohol is metabolized in the liver, it is susceptible to alcohol [4], causing many
forms of ALD, such as fatty liver with cholestasis, chronic liver disease, and alcoholic
hepatitis [5]. ALD is a major indication for liver transplantation [6] and results in high
mortality [7]. Indeed, alcoholism due to excessive and long-term alcohol consumption
seriously damages hepatocytes, which leads to liver fibrosis and cirrhosis and ultimately
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progresses to hepatocellular carcinoma [8]. Despite specific treatments for severe alcoholic
hepatitis using chemical agents or surgical interventions being implemented, such as
steroids [9,10], acetylcysteine, antimicrobial and antitumor necrosis factors [11], and liver
transplantation [12], the overall prognosis is still very poor. Therefore, it is necessary to
identify potential therapeutic agents that can protect the liver from alcohol.

Yam is a monocotyledonous plant classified under the Dioscoreaceae family that forms
edible tubercles, such as D. alata, dioscorea, and bulbifera [13]. It is cultivated in some regions,
including Africa, Asia, America, the Caribbean, and the Pacific Islands [14]. Importantly,
yam possesses many pharmaceutical effects, such as anti-hypercholesteremia [15], antidia-
betic [16], antihypertension [17], and antioxidation effects [16,18]. It has also been shown
to possess antihyperglycemic effects and has been discovered as a component of foods
controlling diabetes [19,20]. Many active compounds in yam have been identified, such
as mucin, choline, polyphenols, starches, diosgenin, allantoin, glycoprotein lectin, and
dioscorin [21–24]. Among them, diosgenin has been proven to inhibit the growth of breast
cancer cells [14]. Allantoin increases cell proliferation in the body and has been used in
cosmetics, painkillers, and skin protection [24]. The glycoprotein isolated from yam has
been shown to stimulate the immune system in the body [21].

Therapeutic effects of each part of the yam were also elucidated. The leaves of yam
have been found to possess several antioxidants [25] and exhibit a cytoprotective effect
on HUVEC cells against oxidative stress [26]. The peel of the purple yam has antidiabetic
and antioxidant effects on liver cells [16]. In particular, the bulbil of yam has been proven
to contain a steroidal saponin phytochemical called diosgenin that possesses antifertility
activity [27]. The bulbil of yam, which forms at the leaf axils, has been applied to wounds
and has also been used for medicinal purposes to alleviate symptoms of many illnesses,
such as dysentery, ulcers, leprosy, and cough [27].

Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcriptional factor as a critical
modulator in diverse cellular functions, such as redox, metabolic homeostasis, DNA repair,
and lipid metabolism [28]. It has a crucial role in the inhibition of oxidative stress by
activation of target genes possessing antioxidative properties [29]. Therefore, the Nrf2
signaling pathway has beneficial effects against various types of diseases, such as prostate
cancer [30], breast cancer [31], and Alzheimer’s diseases [32].

The present study demonstrates that the bulbil of aerial yam has a protective effect
on HepG2 liver cells against ethanol (EtOH)-induced liver toxicity by inhibiting oxidative
stress.

2. Materials and Methods
2.1. Bulbil of Yam (BY) Extract

Bulbils of yam were purchased from a Korean traditional market (Jeonju, Republic of
Korea). A BY ethanol extract was used in this study. Briefly, after washing, BY was dried in
a 60 ◦C incubator and ground into powder using an electric blender. For ethanol extraction,
the powdered BY was extracted twice using 80% EtOH (sample: 80% ethanol = 1:8). After
filtering, the BY extract was concentrated using a rotary evaporator and freeze-dried. The
extraction yield was 18.3%. It was kept at 4 ◦C for further analyses.

2.2. Cell Culture and the Treatment of Aerial Bulbil of Yam and EtOH

The HepG2 cells were obtained from the ATCC (Manassas, VA, USA). Cells were
cultured in Dulbecco’s modified Eagle’s medium (GIBCO-BRL, Grand Island, NE, USA)
with 10% fetal bovine serum (GIBCO-BRL) and 1% antibiotics (GIBCO-BRL) and maintained
in an incubator set at 37 ◦C and 5% CO2. For functional studies, the BY extract with
dimethyl sulfoxide (DMSO; Sigma, St. Louis, MO, USA) was pretreated at 10, 20, and
40 µg/mL concentrations for 24 h and then treated with 1 M EtOH (Sigma) for another 24 h
to induce hepatotoxicity.
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2.3. Cell Viability Assay

The BY extract was pretreated with 10, 20, and 40 µg/mL for 24 h to cells
(2 × 104), followed by exposure to 1 M EtOH for an additional 24 h, or EtOH alone for 24 h.
Cell viability was measured by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide (MTT; Sigma). After adding 0.5 mg/mL MTT solution to each well, they were
incubated at 37 ◦C for 2 h and then treated with DMSO to dissolve the formazan crystals.
A plate reader was used to measure the absorbance at 570 nm (Spectra Max M5; Molecular
Devices, Sunnyvale, CA, USA).

2.4. Hoechst 33342 Staining

Nuclear staining with Hoechst 33342 dye was used to detect apoptotic cells. In brief,
the BY extract was pretreated with 10, 20, and 40 µg/mL for 24 h, followed by exposure to
1 M EtOH for an additional 24 h. After fixation with 4% paraformaldehyde for 20 min at
room temperature (RT), the cells were stained with 500 ng/mL Hoechst 33342 dye (Thermo
Fisher Scientific, Waltham, MA, USA) for 30 min at 37 ◦C. The nuclei of the cells were
observed by fluorescence microscopy (Olympus Corp., Tokyo, Japan).

2.5. Measurement of Mitochondrial Membrane Potential (MMP)

MMP was measured using the JC-1 Assay Kit according to the instructions of the
manufacturer. In brief, BY extract was pretreated with 10, 20, and 40 µg/mL for 24 h,
followed by exposure to 1 M EtOH for an additional 24 h. Cells were then incubated with
10 µg/mL JC-1 dye for 20 min at 37 ◦C and were further observed by a fluorescence micro-
scope (Oxford Instruments, Oxfordshire, UK). The fluorescence intensity was determined
using a fluorescence spectrophotometer (Spectra Max M5) with an excitation wavelength
of 550 nm and an emission wavelength of 600 nm as green fluorescence and an excitation
wavelength of 485 nm and an emission wavelength of 535 nm as red fluorescence.

2.6. Western Blot Analysis

The cells were treated with 1 M EtOH for 24 h after being pretreated with 10, 20,
and 40 µg/mL BY extract for 24 h. After cells were lysed with RIPA buffer (LPS Solution,
Daejeon, Republic of Korea) containing protease inhibitors (Roche), protein homogenates
were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to polyvinylidene difluoride (PVDF) membranes. The membranes were
incubated with primary antibodies for 5 h at 4 ◦C and then incubated with secondary
antibodies conjugated with horseradish peroxidase for 1 h at RT after blocking in TBST
solution with 5% bovine serum albumin for 1 h at RT. The protein bands were visualized
with an enhanced chemiluminescence (ECL; Millipore Corp., Billerica, MA, USA) kit and
observed with ChemiDoc system (Cleaver Scientific Ltd., Warwickshire, UK). β-actin was
used as a loading control. The information concerning the antibodies is shown in the
Supplementary Materials.

2.7. Nuclear Fractionation of HepG2 Cells

Cells were treated with 1 M EtOH for 24 h after being pretreated with 10, 20, and
40 µg/mL of the BY extract for 24 h. Fractionation of the nuclei was carried out using
the Nuclear Extraction Reagent Kit (Abcam, Cambridge, UK). The protease inhibitors
supplemented with lysis buffer A (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM
DTT, 0.05% NP40, and pH 7.9) were added to cells, followed by incubation for 10 min on
ice, and a thorough scraping. The cells were centrifuged at 3000× g for 10 min at 4 ◦C. Then,
the supernatants were collected for cytoplasmic fraction. After washing, the nuclear pellet
was suspended in lysis buffer B (5 mM HEPES, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT,
26% glycerol (v/v), and pH 7.9) and incubated on ice for 30 min. After centrifugation at
24,000× g for 20 min at 4 ◦C, the supernatant was collected.
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2.8. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The BY extract was pretreated with 10, 20, and 40 µg/mL for 24 h, followed by
exposure to 1 M EtOH for an additional 24 h. The cDNA was synthesized using the GoScript
Reverse Transcription System Kit (Promega Co., Madison, WI, USA), after total RNA was
extracted from the cells using the TRIzol reagent (Sigma). qRT-PCR was performed using
the kit (Kapa Biosystems, Boston, MA, USA) provided on the machine (Takara Bio. Inc.,
Shiga, Japan). The expression of each gene was normalized to the expression of the GAPDH
gene. Primer sequences are shown in the Supplementary Materials.

2.9. DPPH Assay for Antioxidant Activity

The 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Antioxidant Assay Kit (ab289847, Abcam,
Cambridge, UK) was used to quantify the antioxidant capacity of BY. DPPH working
solution (600 µM) with BY extract (10, 20, and 40 µg/mL) was added to each well. The
plate was incubated for 10 min at RT, protected from light. Absorbance at 517 nm was
determined using a plate reader.

2.10. Total Amount of Phenolic Compounds in the BY Extract

The Phenolic Compounds Assay Kit purchased from Abcam was used to measure the
total phenolic compounds in the BY extract. The catechol standard solution was used, and
vanillic acid was used as a positive control. Furthermore, 100 µL of BY extract solution
(10, 20, and 40 µg/mL) and 100 µL of PC assay buffer were added to all the wells to give a
final reaction volume of 200 µL. The plate was then incubated for 10 min at RT with gentle
shaking. A plate reader was used to determine the absorbance at 480 nm.

2.11. Statistical Analysis

The results are presented as the mean ± standard error of the mean (SEM). Sta-
tistical analysis was performed using one-way ANOVA and post hoc Bonferroni using
Prism 8.02 (GraphPad, San Diego, CA, USA). p values less than 0.05 were considered
statistically significant.

3. Results
3.1. BY Extract Rescues HepG2 Liver Cells from EtOH-Induced Cytotoxicity

Various concentrations (5~150 µg/mL) of BY extract were treated for 48 h and 72 h to
test the cytotoxicity of BY extract on HepG2 cells. The results showed that no cytotoxicity
was shown in any concentration of BY extract for both 48 h and 72 h. Therefore, we
chose three kinds of concentrations (10, 20, and 40 of µg/mL) of BY extract for further
studies (Figure 1a,b). To determine the protective effect of BY extract against EtOH-induced
cytotoxicity, cells were pretreated with 10, 20, and 40 µg/mL of BY extract, followed by
1 M EtOH for another 24 h. An MTT assay was used to check their viability. When treated
with 1 M EtOH alone, the viability of cells was significantly decreased, with a value of
58.0% compared with that of control cells (Figure 1). Otherwise, more of the cells pretreated
with BY extract survived than the EtOH-alone-treated cells in a dose-dependent manner
(73%, 88%, and 94% survival rates in 10, 20, and 40 µg/mL BY extract-pretreated cells,
respectively, compared with those in control cells; Figure 1). These results indicate that BY
extract has a preventative effect on EtOH-induced cytotoxicity in HepG2 cells.



Nutrients 2024, 16, 542 5 of 16
Nutrients 2024, 16, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 1. BY extract rescues HepG2 liver cells from EtOH-induced cytotoxicity. Cell viability was 
checked by MTT assay using the cells treated with BY alone (a,b) and with BY extract/EtOH-treated 
(c) HepG2 cells. The results are shown as the mean ± SEM in triplicate (n = 6). # p < 0.05, ## p < 0.01, 
and ### p < 0.001 vs. control. ** p < 0.01 and *** p < 0.001 vs. ethanol-alone-treated group. Cont, 
control; BY extract, bulbil of yam extract; EtOH, ethanol. 
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tosis in 20 and 40 µg/mL EtOH-treated cells (25%, and 13% apoptotic cell proportion in 20 
and 40 µg/mL BY extract-pretreated cells, respectively; Figure 2b). Next, we determined 
the expression of several apoptosis-related proteins, such as Bcl-2, Bax, and caspase 3, us-
ing Western blot analysis. The results showed that the amount of Bcl-2 protein possessing 
the ability to inhibit the apoptotic signaling pathway was significantly decreased; other-
wise, the Bax protein that causes apoptosis was significantly increased in EtOH-only-
treated cells (0.3-fold change in Bcl-2/Bax, compared with that in control cells; Figure 2c,d). 
Pro-caspase 3 as an inactive form of this protein was decreased and cleaved-caspase 3 as 
an active form of this protein was increased in the EtOH-alone-treated cells, indicating 
that caspase 3 as a pro-apoptotic protein was activated due to the EtOH treatment (0.5- 
and 1.2-fold changes in pro- and cleaved-caspases 3 in EtOH-alone-treated cells, respec-
tively, compared to the control cells; Figure 2c,d). Additionally, in the BY extract-alone-
treated cells, pro-caspase 3 was significantly increased and cleaved-caspase 3 tended to be 
decreased (Figure 2c,e,f). Notably, these changes were dramatically ameliorated by pre-
treatment with BY extract in a dose-dependent manner. Therefore, these results indicate 
that BY extract effectively attenuates EtOH-induced apoptotic responses in HepG2 cells. 

Figure 1. BY extract rescues HepG2 liver cells from EtOH-induced cytotoxicity. Cell viability was
checked by MTT assay using the cells treated with BY alone (a,b) and with BY extract/EtOH-treated
(c) HepG2 cells. The results are shown as the mean ± SEM in triplicate (n = 6). # p < 0.05, ## p < 0.01,
and ### p < 0.001 vs. control. ** p < 0.01 and *** p < 0.001 vs. ethanol-alone-treated group. Cont,
control; BY extract, bulbil of yam extract; EtOH, ethanol.

3.2. BY Extract Suppresses EtOH-Induced Apoptotic Responses in HepG2 Cells

To determine whether BY extract can suppress apoptotic responses due to EtOH-
induced hepatotoxicity in HepG2 cells, we first checked nuclear condensation using
Hoechst staining (Figure 2a). The results showed that the cells undergoing apoptosis
were dramatically increased in the EtOH-only-treated cells (75% apoptotic cell proportion;
Figure 2b). Otherwise, the pretreatment with BY extract dramatically suppressed the apop-
tosis in 20 and 40 µg/mL EtOH-treated cells (25%, and 13% apoptotic cell proportion in 20
and 40 µg/mL BY extract-pretreated cells, respectively; Figure 2b). Next, we determined
the expression of several apoptosis-related proteins, such as Bcl-2, Bax, and caspase 3, using
Western blot analysis. The results showed that the amount of Bcl-2 protein possessing the
ability to inhibit the apoptotic signaling pathway was significantly decreased; otherwise,
the Bax protein that causes apoptosis was significantly increased in EtOH-only-treated cells
(0.3-fold change in Bcl-2/Bax, compared with that in control cells; Figure 2c,d). Pro-caspase
3 as an inactive form of this protein was decreased and cleaved-caspase 3 as an active form
of this protein was increased in the EtOH-alone-treated cells, indicating that caspase 3 as a
pro-apoptotic protein was activated due to the EtOH treatment (0.5- and 1.2-fold changes
in pro- and cleaved-caspases 3 in EtOH-alone-treated cells, respectively, compared to the
control cells; Figure 2c,d). Additionally, in the BY extract-alone-treated cells, pro-caspase 3
was significantly increased and cleaved-caspase 3 tended to be decreased (Figure 2c,e,f).
Notably, these changes were dramatically ameliorated by pretreatment with BY extract
in a dose-dependent manner. Therefore, these results indicate that BY extract effectively
attenuates EtOH-induced apoptotic responses in HepG2 cells.
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centage of apoptotic cells vs. total cells. A total of 50 cells were counted in at least 10 fields. Western 
blot analysis for apoptosis-related proteins (c) and the densities of the ratio of Bcl-2/Bax (d) and pro- 
(e) and cleaved (f) caspase-3 proteins. The results are shown as the mean ± SEM in triplicate (n = 6). 
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EtOH-induced liver toxicity [33]. Therefore, we investigated whether BY extract attenu-
ates the activation of the MAPK signaling pathway in EtOH-treated HepG2 cells. Thus, 
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JNK, and p38. The results showed that phosphorylation of ERK1/2, JNK, and p38 proteins 

Figure 2. BY extract suppresses EtOH-induced apoptotic cell death in HepG2 cells. (a) Hoechst
staining was performed for nuclear staining using cells treated with BY extract and/or EtOH. The
arrow indicates apoptotic cells with nuclear condensation. (b) The apoptotic index was shown as
the percentage of apoptotic cells vs. total cells. A total of 50 cells were counted in at least 10 fields.
Western blot analysis for apoptosis-related proteins (c) and the densities of the ratio of Bcl-2/Bax
(d) and pro- (e) and cleaved (f) caspase-3 proteins. The results are shown as the mean ± SEM
in triplicate (n = 6). # p < 0.05, ## p < 0.01, ### p < 0.001 vs. control. * p < 0.05, ** p < 0.01, and
*** p < 0.001 vs. ethanol-alone-treated group. Cont, control; BY extract, bulbil of yam extract;
EtOH, ethanol.

3.3. BY Extract Inhibits the Activation of MAPK Signaling Induced by EtOH in HepG2 Cells

The MAPK signaling pathway has been demonstrated to be closely associated with
EtOH-induced liver toxicity [33]. Therefore, we investigated whether BY extract attenuates
the activation of the MAPK signaling pathway in EtOH-treated HepG2 cells. Thus, Western
blot analysis was performed against typical MAPK proteins, including ERK1/2, JNK, and
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p38. The results showed that phosphorylation of ERK1/2, JNK, and p38 proteins was
significantly increased in EtOH-alone-treated cells (2.1-, 1.5-, and 2.1-fold increases in
p-ERK1/2, p-JNK, and p-p38, respectively, compared to control cells; Figure 3), indicating
that they were activated due to EtOH treatment. Otherwise, BY extract pretreatment in
EtOH-treated cells significantly inhibited the phosphorylation of these proteins. Therefore,
these results indicate that BY extract effectively suppresses the MAPK signaling pathway
in hepatotoxicity by EtOH.
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Figure 3. BY extract inhibits the activation of MAPK signaling induced by EtOH in HepG2 cells.
Western blot analysis for total and phospho-MAPK proteins using cells treated with BY extract and/or
EtOH (a) and the densities of the ratios of p-ERK/ERK (b), p-JNK/JNK (c), and p-p38/p38 (d). The
results are shown as the mean ± SEM in triplicate (n = 6). ### p < 0.001 vs. control. *** p < 0.001 vs.
ethanol-alone-treated group. Cont, control; BY extract, bulbil of yam extract; EtOH, ethanol.

3.4. BY Extract Inhibits EtOH-Induced Oxidative Stress in HepG2 Cells

To determine whether BY extract could inhibit the oxidative stress due to EtOH-
induced hepatotoxicity, the levels of typical antioxidants, such as SOD1,2, catalase, and GPx,
were checked using Western blot analysis. These antioxidants were dramatically decreased
in EtOH-alone-treated cells; otherwise, when pretreated with BY extract, the levels were
significantly increased compared to EtOH-alone-treated cells in a dose-dependent manner.
In particular, pretreatment with 40 µg/mL BY extract dramatically increased them with
similar levels to those in control cells (Figure 4). Additionally, SOD1, 2, and catalase were
significantly increased in BY extract-alone-treated cells (Figure 3a–d). Therefore, BY extract
rescues HepG2 cells from EtOH-induced hepatotoxicity.
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group. Cont, control; BY extract, bulbil of yam extract; EtOH, ethanol; SOD 1, superoxide dismutase 
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3.5. BY Extract Attenuates Mitochondrial Dysfunction Induced by EtOH in HepG2 Cells 
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to EtOH-induced hepatotoxicity, mitochondrial function was evaluated through JC-1 dye 
immunostaining with an MMP detector using EtOH-alone-treated cells and BY extract 
(10, 20, and 40 µg/mL)-pretreated cells. The results showed that green fluorescence was 
predominant in the EtOH-alone-treated cells, but red fluorescence prevailed in the control 
cells (58.5% decrease in the ratio of red/green fluorescence compared to control cells; Fig-
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against EtOH-induced hepatotoxicity. Notably, treatment with a high concentration of BY 

Figure 4. BY extract inhibits EtOH-induced oxidative stress in HepG2 cells. Western blot analysis for
antioxidants, including SOD1, SOD2, catalase, GPx using cells treated with BY extract and/or EtOH
(a) and the densities of SOD1 (b), SOD2 (c), catalase (d), and GPx (e) proteins were calculated with
HD9 imaging software. The results are shown as the mean ± SEM in triplicate (n = 6). ## p < 0.01
and ### p < 0.001 vs. control. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. ethanol-alone-treated group.
Cont, control; BY extract, bulbil of yam extract; EtOH, ethanol; SOD 1, superoxide dismutase 1;
SOD 2, superoxide dismutase 2; GPx, glutathione peroxidase.

3.5. BY Extract Attenuates Mitochondrial Dysfunction Induced by EtOH in HepG2 Cells

To evaluate the effect of BY extract on the pathological changes in mitochondria due
to EtOH-induced hepatotoxicity, mitochondrial function was evaluated through JC-1 dye
immunostaining with an MMP detector using EtOH-alone-treated cells and BY extract
(10, 20, and 40 µg/mL)-pretreated cells. The results showed that green fluorescence was
predominant in the EtOH-alone-treated cells, but red fluorescence prevailed in the control
cells (58.5% decrease in the ratio of red/green fluorescence compared to control cells;
Figure 5). Therefore, MMP was disrupted by EtOH. In particular, red fluorescence is
prominent in BY extract-pretreated cells (Figure 5), indicating that BY extract protected
MMP against EtOH-induced hepatotoxicity. Notably, treatment with a high concentration
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of BY extract (40 µg/mL) has shown a similar level to that in control cells. Therefore, BY
extract has been proven to attenuate mitochondrial dysfunction caused by EtOH-induced
hepatotoxicity in HepG2 cells.
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Figure 5. BY extract attenuates EtOH-induced mitochondrial dysfunction in HepG2 cells. (a) MMP
was determined by JC-1 staining assay using cells treated with BY extract and/or EtOH. Red and
green fluorescences represent normal and disrupted MMPs, respectively. (b) The percentage ratio
of red/green fluorescence intensities vs. control group was measured. The results are shown as
the mean ± SEM in triplicate (n = 6). ### p < 0.001 vs. control. * p < 0.05 and *** p < 0.001 vs.
ethanol-alone-treated group. Cont, control; BY extract, bulbil of yam extract; EtOH, ethanol; MMP,
mitochondrial membrane potential.

3.6. BY Extract Inhibits the Activation of Endoplasmic Reticulum (ER) Stress Induced by EtOH in
HepG2 Cells

We further evaluated the effects of BY extract on ER stress responses due to ER-
related stress, considered as an incidence of oxidative stress and mitochondrial dysfunction.
Western blot analysis was performed against typical ER stress signaling-related proteins,
including PERK, eIF2α, CHOP, and GADD45α. First, phosphorylated PERK and eIF2α
were dramatically increased in EtOH-alone-treated cells (1.6- and 1.4-fold increases in
p-PERK and p-eIF2α in EtOH-alone-treated cells, respectively, compared to control cells;
Figure 6a–c). Additionally, the expression levels of CHOP and GADD45α proteins were
significantly increased in EtOH-alone-treated cells (1.5- and 1.3-fold increases in CHOP and
GADD45α in EtOH-only-treated cells, respectively, compared to control cells; Figure 6a,d,e).
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In the BY extract-alone-treated cells, the expression levels of phosphorylated eIF2α, CHOP,
and GADD45α proteins were significantly decreased (Figure 6). These results indicate that
EtOH activates ER stress. Conversely, pretreatment with BY extract significantly inhibited
the activation or downregulated these proteins in EtOH-treated cells. Therefore, BY extract
effectively attenuates the activation of ER-related stress by EtOH in HepG2 cells.
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Figure 6. BY extract inhibits the activation of EtOH-induced ER-related stress in HepG2 cells. Western
blot analysis for ER-stress-related proteins using cells treated with BY extract and/or EtOH (a) and the
densities of the ratios of p-PERK/PERK (b), p-eIF2α/eIF2α (c), ATF (d), and GADD45α (e) in triplicate
(n = 6). ### p < 0.001 vs. control. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. ethanol-alone-treated
group. Cont, control; BY extract, bulbil of yam extract; EtOH, ethanol.

3.7. BY Extract Activates Nrf2-Related Signaling Pathway in EtOH-Treated HepG2 Cells

To elucidate the underlying mechanism of the antioxidative effects of BY extract in
EtOH-induced hepatotoxicity, we determined whether the Nrf2 signaling pathway with
potential antioxidative properties [34] is activated in EtOH-treated HepG2 cells. Western
blot analysis demonstrated that the Nrf2 protein increased when pretreated with BY extract,
while it decreased in EtOH-alone-treated cells, indicating that the Nrf2 protein is activated
with BY extract pretreatment (Figure 7a,b). In addition, in qRT-PCR analysis of target down-
stream genes (NQO1, HMOX1, and GCLC) with inhibitory effects against oxidative stress,
their expression was dramatically decreased in EtOH-alone-treated cells; otherwise, pre-
treatment with BY extract significantly restored the expression of these genes (Figure 7c–e).
Therefore, BY extract inhibits oxidative stress through the Nrf2-related signaling pathway
in EtOH-induced hepatotoxicity.
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Figure 7. BY extract activates the Nrf2-related signaling pathway in EtOH-treated HepG2 cells.
Western blot analysis for Nrf2 after nuclear fractionation using cells treated with BY extract and/or
EtOH (a) and the density of nuclear (b) and cytoplasmic Nrf2 (c) (n = 6). qRT-PCR analysis of Nrf2
target genes, including NQO1 (d), HMOX1 (e), and GCLC (f) in triplicate (n = 6). # p < 0.05 and
### p < 0.001 vs. control. ** p < 0.01 and *** p < 0.001 vs. ethanol-alone-treated group. Cont, control;
BY extract, bulbil of yam extract; EtOH, ethanol; NQO1, NAD(P)H quinone oxidoreductase; HMOX1,
heme oxygenase 1; GCLC, glutamate-cysteine ligase catalytic subunit.

3.8. DPPH Radical Scavenging Activity and Total Phenolic Compounds in BY Extract

DPPH, as an organic free radical, has been widely used for determining the antiox-
idative properties of plant extracts or compounds [35]. Therefore, a DPPH assay was
performed to elucidate the ability of DPPH radical scavenging to determine the antioxidant
activity of BY extract. As shown in Figure 8, the DPPH radical scavenging activities of BY
extract dramatically increased in a dose-dependent manner compared to that of control
(82.4%, 90.4%, and 96.2% increase in 10, 20, 40 µg/mL BY extract, respectively; Figure 8a).
Phenolic compounds play important roles in redox ability, which is essential for antioxidant
activity [36]. Therefore, we determined the total phenol contents in BY extract using a
commercially available kit. Total phenol contents were determined from the standard curve
with different concentrations of catechin as a standard compound and were expressed as
mM catechin equivalents (CE). Total phenol contents contained 10, 20, and 40 µg/mL BY
extract were 10.8, 14.1, and 18.6 mM CE, respectively (Figure 8b).
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tions of BY extract (10, 20, and 40 µg/mL) (n = 6). *** p < 0.001 vs. control. Cont, control; BY extract,
bulbil of yam extract.

4. Discussion

Much evidence has been accumulated that yam possesses therapeutic potential against
various diseases, such as inflammation, gastrointestinal disease, diabetes, and cancer.
A previous study reported that the bulbils of yam possess potent analgesic and anti-
inflammatory activities [37]. However, the effects of bulbil of yam on other diseases need
to be studied. Therefore, in the present study, we pursued the potential preventative
properties of bulbil of yam on EtOH-induced hepatotoxicity using HepG2 cells.

First, we observed that the BY extract dramatically increased the viability of EtOH-
treated cells. We then determined whether BY extract could inhibit apoptotic cell death as a
major influencing factor in cell viability. BY extract has been proven to inhibit DNA damage
from nuclear staining and also to attenuate the increased levels of apoptotic signaling-
related proteins by EtOH. Therefore, BY extract effectively rescues HepG2 liver cells from
EtOH. Additionally, the activities of typical MAPK proteins, including ERK, JNK, and p38,
were also measured in BY extract-pretreated cells. MAPK signaling is involved in various
cellular functions, such as proliferation, differentiation, and apoptosis [38]. Furthermore,
it plays an important role in contributing to the pathogenesis of alcoholic liver injury by
promoting inflammation, oxidative stress, etc. [39]. Thus, BY extract effectively suppresses
the activation of these MAPK proteins.

Oxidative stress is closely associated with the development of alcoholic liver dis-
eases [40]. Alcohol metabolism primarily occurs in the liver through oxidative enzymatic
pathways. The first classical pathway is mediated by alcohol dehydrogenase, which con-
verts alcohol into acetaldehyde [41]. The acetaldehyde is further metabolized to acetate.
The second major pathway for alcohol degradation is catalyzed by the 2E1 isoform of the
cytochrome P450 (CYP2E1) [42]. Notably, this metabolic pathway leads to ROS generation,
resulting in oxidative stress, which further provokes liver damage. Previous studies using
CYP2E1-overexpressed HepG2 cells or knock-in mice demonstrated that oxidative stress is
increased, lipid peroxidation and apoptosis occur in cells, and elevated hepatic steatosis
and liver injury occur in hepatic tissues after the administration of alcohol [43,44]. On the
other hand, CYP2E1 knockout mice showed decreased oxidative stress and were protective
against alcohol-induced liver injury [45]. In this regard, we elucidated the preventative
effects of BY extract against oxidative stress in EtOH-treated cells. Western blot analysis
demonstrated that pretreatment with BY extract protects typical antioxidants, including
SOD1, 2, catalase, and GPx, in EtOH-exposed HepG2 cells, indicating that BY extract could
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block oxidative stress by increasing levels of antioxidants. Additionally, we also sought
to verify the ability of BY extract to suppress mitochondrial dysfunction. MMP, as an
important indicator of mitochondrial damage, was disrupted due to EtOH treatment; in
other respects, BY extract was proven to preserve MMP from EtOH-induced hepatotoxicity.
Mitochondria are important organelles for energy metabolism, calcium homeostasis, cell
survival, and apoptosis [46]. Among them, the principal function of mitochondria is ATP
synthesis through oxidative phosphorylation (OXOPHOS) as an electron transfer chain
reaction (ETC) [47]. ETC has been considered the predominant route for ROS genera-
tion [48]. Therefore, mitochondria are an important source of ROS generation within the
cell. Although the physiological level of ROS generation is necessary and involved in
the regulation of many cellular activities, ROS accumulates and causes multiple cellular
disruptions involved in the development of multiple diseases when its production ex-
ceeds the antioxidant capacity due to mitochondrial dysfunction [46]. Accordingly, our
results demonstrated that EtOH treatment caused mitochondrial dysfunction, contribut-
ing to oxidative stress. However, pretreatment with BY extract effectively attenuated the
mitochondrial dysfunction.

Since hepatocytes produce many secreted proteins, including albumin and lipopro-
teins, to perform important metabolic, secretory, or excretory functions, a lot of protein
synthesis and folding are required [49]. Therefore, given that the function of ER is protein
synthesis and processing, hepatocytes are enriched in ER and susceptible to ER pertur-
bation and stress [50]. Upon ER stress due to the excessive accumulation of unfolded
and misfolded proteins, the unfolded protein response (UPR) is activated as an adaptive
response to maintain ER homeostasis [51]. However, when ER stress persists, the UPR
triggers cell death [52]. Furthermore, increasing evidence indicates that ER stress has a
crucial role in the pathogenesis of liver diseases, such as nonalcoholic fatty liver disease,
cholestatic liver disease, hepatocellular carcinoma, and alcoholic liver disease [49]. Herein,
ER stress-related proteins were activated or increased in EtOH-treated cells; in other re-
spects, the BY extract significantly attenuated the activation of or increased these proteins,
suggesting that inhibition of ER stress mediates the preventative effect of BY extract against
EtOH-induced hepatotoxicity.

To elucidate the underlying mechanism of the preventative effects of BY extract
on EtOH-induced hepatotoxicity, we sought to determine the involvement of the Nrf2
signaling pathway. Nrf2, as a transcriptional factor, has a variety of potential properties in
cell defense and homeostasis against oxidative stress, detoxification, and inflammation [53].
Nrf2 is normally present in the cytoplasm, but when activated, it moves to the nucleus
and acts as a transcriptive activator for various genes with antioxidative functions, such
as NQO1, SOD, HMOX1, GCLC, and GCLM [54]. Therefore, it specifically functions as a
defense against oxidative stress. Furthermore, the protective roles of Nrf2 activation in
the pathogenesis of liver diseases, especially alcoholic liver disease, have been extensively
investigated [55]. A previous study demonstrated that the upregulation of Nrf2 inhibited
ROS production and apoptosis in EtOH-exposed mice [56]. Moreover, another study
revealed that Nrf2-mediated cytoprotective enzymes could ameliorate alcohol-induced
liver steatosis both in in vivo and in vitro models [57]. Therefore, NRF2 shows potential
therapeutic use for ALD treatment. Consistent with these studies, our results showed that
BY extract translocated the Nrf2 protein from the cytosol to the nucleus and then activated
various target genes possessing antioxidative properties.

Finally, we demonstrated that BY extract possesses high antioxidant activity by measur-
ing DPPH scavenging activity. Previous studies have demonstrated that many polyphenols
contained BY, such as gallic acid, epicatechin, catechins, quercetin, and kaempferol, have
been identified, which possess antioxidant activities [58,59]. In this study, we demonstrated
that BY extract contains a high total phenolic content, which contributes to its antioxidant
activity in EtOH-treated cells. This study first describes the preventative effects of BY
extract on EtOH-induced hepatic cells.
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5. Conclusions

In conclusion, this study suggests that BY extract, possessing potential antioxidant
properties, attenuates alcohol-induced hepatotoxicity via phenolic compounds possessing
antioxidative properties and the activation of the Nrf2 signaling pathway. Therefore,
we propose that BY extract can be used as a potential therapeutic for the prevention or
treatment of alcoholic liver diseases.
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