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Abstract: Integrated omics-based platforms from epigenomics and proteomics technologies are
used to identify several important mechanisms in obesity etiology, food components, dietary intake,
regulation of biological pathways, and potential new intervention targets. Therefore, this study aimed
to analyze whether dietary factors involved in the methylation of tumor necrosis factor (TNF)-α are
implicated in differential protein expression in people with normal weight and obesity. Methods:
The participants were classified into the non-obese (N = 100) and obese (N = 133) groups. DNA
methylation levels of the TNF-alpha gene and proteomics were analyzed using the pyrosequencing
method and LC-MS-MS, respectively. Results: Comparison between geometric means of DNA
methylation of TNF-α showed lower levels in subjects with obesity than in those without obesity
(p < 0.05). There were associations between dietary factors and some metabolic syndrome components
and TNF-α DNA methylation levels. Proteomic analysis showed important signaling pathways
related to obesity, with 95 significantly downregulated proteins and 181 upregulated proteins in
the non-obese group compared with the obese group. Conclusion: This study shows an association
between the dietary factors involved in the methylation of TNF-α and differential protein expression
related to obesity. However, a large sample size in future studies is required to confirm our results.

Keywords: TNF-α; DNA methylation; serum proteome; signaling pathway

1. Introduction

The incidence of obesity worldwide and its consequent economic burden are steadily
increasing [1]. Therefore, there is an increasing need for the development of efficient
therapeutic approaches. Currently, epigenetic modification is an important approach in
precision medicine with a target for strategy development to personalized lines of treatment
for obesity. Epigenetics is known as novel paradigm for exploring the mechanisms that
contribute to the regulation of gene expression in diseases associated with obesity [2].
Abnormal increases or decreases in DNA methylation contribute to the development
of metabolic diseases. DNA methylation of cytosines in cytosine-guanine dinucleotides
(CpGs) is used as a biomarker to investigate epigenetic dysregulation of genes involved
in inflammation, lipid and lipoprotein metabolism, and adipogenesis for obesity-induced
hyper-or hypo-methylation and metabolic phenotypes [2]. An experimental study showed
that a high fat intake induced overweight in rats along with increased adiponectin levels and
changes in the methylation patterns in the promoters of key genes in fatty acid metabolism
and liver steatosis [3].
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Obesity is related to chronic low-grade inflammation, with the production of proin-
flammatory adipokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), leptin,
monocyte chemoattractant protein-1 (MCP-1), and resistin [4]. TNF-α is expressed in and
secreted by adipose tissue, and its levels are associated with the degree of adiposity. TNF-α
is causally linked to metabolic syndrome through various mechanisms. These mechanisms
include the following: hyperglycemia via inhibition of insulin action; impairment of glucose
clearance and hepatic glucose production; dyslipidemia via suppression of triacylglycerol
clearance; promotion of insulin resistance-induced-hepatic de novo lipogenesis and stimu-
lation of lipid synthesis and adipose lipolysis in the liver; and hypertension via alterations
in renal hemodynamics, nephron transport, and the function of transporters [5–7]. A previ-
ous study of 165 subjects with overweight/obesity investigated the associations between
inflammatory gene methylation, clinical blood parameters, and dietary data [8]. The results
showed TNF-α methylation was negatively associated with cholesterol intake, but serum
cholesterol concentrations were positively associated with TNF-α methylation [8]. How-
ever, an intervention study of an 8-week energy-restricted diet in individuals with obesity
showed a strong association between the baseline TNF-α promoter methylation pattern
and circulating TNF-α concentrations [9]. Changes in weight loss at the endpoint with total
methylation of the TNF-α promoter suggested a putative role of epigenetic regulation of
TNF-α expression in subjects with obesity and metabolic syndrome.

Integrated omics-based platforms from genomics, epigenomics, transcriptomics, pro-
teomics, and metabolomics technologies have shown several main mechanisms in the
etiology of obesity, regulation of biological pathways, and potential new intervention tar-
gets [10]. The serum or plasma proteome is widely used in clinical investigations because
it is a reliable and efficient method of evaluating the molecular mechanisms underlying
pathophysiological changes in obesity and driving personalized prevention [11]. A pro-
teomic analysis of 1500 individuals with overweight/obesity showed a group of proteins
associated with body mass index (BMI) and closely associated with chronic inflammation,
such as complement factor, C-reactive protein (CRP), and proline-rich acidic protein 1 [12].
Furthermore, an epigenome-wide association study of a population-based cohort of 3080
participants with proteomic data showed associations of 14 of the proteins and 8 of the CpG
sites with relevant clinical phenotypes, including BMI, alcohol consumption, total choles-
terol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides
(TGs) [13].

Nutrigenomics is currently used extensively in novel investigations involving obesity
and dietary-related diseases because it addresses the effect of nutrients or nutritional
supplements on gene and protein expression [14]. There is a link between DNA methylation
of TNF alpha and proteomic in plasma. Changes in DNA methylation of TNF alpha
may be both causal for changes in biological processes by differentially regulating gene
expression and consequential in response to modified physiological or environmental
factors including diet and disease, such as obesity or low-grade inflammation. Blood
circulating proteins, as intermediate phenotypes, can reveal the underlying disease-causing
pathways in obesity [14]. We hypothesize that dietary factors modify the DNA methylation
of inflammatory genes in obese individuals, and these molecular changes contribute to the
more complex phenomenon of proteomic profiles. Therefore, this study has the goal of
evaluating the relationship between dietary factors implicated in TNF-α methylation and
differential protein expression in normal-weight and obese individuals.

2. Materials and Methods
2.1. Study Participants

Participants (men aged 45–60 years) in this study were individuals who participated
in the cohort study called the Electricity Generating Authority of Thailand (EGAT) in
collaboration with Mahidol University, Thailand. We collected data from a health survey
(EGAT2/5) in 2018 that were related to this study. These data included age, educational
level, occupation, tobacco smoking, alcohol drinking, medical history and family history
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of cancer, cardiovascular disease, other metabolic diseases (diabetes, hypertension, and
dyslipidemia), and inflammatory disease, which were recorded on the same day through
a health examination, measurement of anthropometry, a dietary assessment, and bio-
chemical analysis. The exclusion criteria were individuals with hypertension, diabetes,
chronic kidney disease, chronic liver disease, chronic inflammatory disease, cardiovascular
disease, cancer, thyroid disease, or gastrointestinal disease. Metabolic syndrome was diag-
nosed in accordance with the National Cholesterol Education Program Adult Treatment
Panel III definition if three or more of the following five criteria were met: abdominal
obesity (waist circumference ≥90 cm), high blood pressure (BP) (systolic/diastolic BP
≥130 or ≥85 mmHg, respectively), hyperglycemia (fasting blood glucose concentrations
≥100 mg/dL), hypertriglyceridemia (TG concentrations ≥150 mg/dL), and low (HDL)-
cholesterol (HDL-C) concentrations (<40 mg/dL) [15]. The study was conducted according
to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of
Faculty of Medicine Ramathibodi hospital, Mahidol University (protocol code COA. No.
MURA2019/67 and date of approval; 11 February 2019).

2.2. Anthropometric Measures

Trained staff performed anthropometric measurement of weight and height. BMI
values were calculated. Height (cm) and body weight (kg) were measured in light clothes
without shoes. In this study, the participants in the normal weight (non-obese) and obese
groups were classified according to the World Health Organization recommendations for
Asian populations which state a BMI of 18.5–22.9 kg/m2 for normal weight (non-obese)
and ≥ 25 kg/m2 for obesity [16]. The participants’ BMI was estimated as weight in kg
divided by the square of height in meters (kg/m2). Waist circumference was measured
unclothed using a tape measure and was measured in the horizontal plane of the superior
border of the iliac crest.

2.3. Assessment of Dietary Intake

A self-reported semi-quantitative food frequency questionnaire (FFQ) was used for
collecting dietary data. The FFQ consisted six food groups. There were 24 questions
related to protein, 3 to fruits, 8 to vegetables, 12 to carbohydrates, 7 to dairy products, 12 to
drinks and beverages, 5 to fats (for cooking), and 6 to miscellaneous items. After trained
staff explained the portion size of each product to the participants, they were asked to
recall their average frequency of dietary consumption of the standard serving size during
the previous 12 months. The study participants indicated the frequency of all consumed
beverages and food items on a scale ranging from 0 to 3 times/week, 4 to 6 times/week,
and >6 times/week. The frequency per week for egg, fruits, and vegetable intake was
reported as 0–3 servings, 4–6 servings, and >6 servings.

2.4. Biochemical Analysis

Blood samples were obtained from all participants after an overnight fast at the
same time as the heath examination. These blood samples were promptly processed to
perform DNA methylation and biochemical analyses. Biochemical parameters, such as the
lipid profile (consisting of TGs, total cholesterol, HDL-C, LDL-C), fasting plasma glucose
(FPG), glycated hemoglobin, alanine transminase, aspartate transaminase (AST), blood
urea nitrogen, and creatinine, were analyzed by an automatic analyzer (Cobas-Mira; Roche,
Milan, Italy)

2.5. DNA Methylation Analysis

A volume of 3 mL of whole blood was collected into EDTA tubes from each partic-
ipant and centrifuged at 2500 g for 15 min. The buffy coat fraction was transferred to a
cryovial and immediately frozen at −80 ◦C until use. A DNA extraction and purification
kit (Promega, Madison, WI, USA) was used, following the manufacturer’s instructions.
DNA (500 ng) underwent bisulphite conversion, with an efficiency of >99%, using an EZ
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DNA methylation kit (ZymoResearch, Inc., Irvine, CA, USA) to convert un-methylated
cytosine bases (C) into uracil bases (U), according to the manufacturer’s protocol. M-Elution
Buffer (ZymoResearch, Inc., Irvine, CA, USA) was used to elute bisulfite-treated DNA.
Polymerase chain reaction (PCR) pyrosequencing-based assays were used for measuring
%5-methylcytosine at the four CpG position in the gene promoter region at chromosome
6 (position 1: 2874672, position 2: 2874678, position 3: 2874680, and position 4: 2874695),
as previously described [8]. Pyrosequencing assay information for TNF-α consisted of
the following: forward primer, biotin-TGAGGGGTATTTTTGATGTTTGT; reverse primer,
TTAATAATTATTTTTATATATTTT; and sequencing primer, ATAAATTTTA TATTTTTTAT.
PCR cycling conditions were 95 ◦C for 60 s, 56 ◦C for 60 s, and 72 ◦C for 60 s (50 cycles).

In brief, a 50 µL PCR reaction was carried out with 25 µL of GoTaq Green Master
Mix (Promega), 1 pmol of forward primer, 1 pmol of biotinylated reverse primer, and
500 ng of bisulfite-treated genomic DNA. The PCR product was bound to streptavidin
high-performance sepharose (Amersham Biosciences, Uppsala, Sweden). The sepharose
beads containing the immobilized PCR product were purified, washed, and denatured
using 0.2 M NaOH solution and rewashed using the Pyrosequencing Vacuum Prep Tool
(Pyrosequencing, Inc., Westborough, MA, USA), as recommended by the manufacturer.
Pyrosequencing primer (0.3 µM) was annealed to the purified single-stranded PCR product,
and pyrosequencing was performed with the PyroMark MD System (Pyrosequencing, Inc.).
The degree of methylation was expressed as the percentage of cytosines that were methy-
lated. This percentage was calculated as the number of methylated cytosines divided by the
sum of methylated and unmethylated cytosines, multiplied by 100% (%5-methylcytosine).
Each sample was measured three times to increase the reliability and to increase the preci-
sion of the findings.

2.6. Protein Quantitation and Identification by Liquid Chromatography–Mass Spectrometry
(LC-MS/MS)

A proteomic analysis was performed using LC-MS/MS, as described previously [17].
A total of 20 µg of pooled serum protein was obtained from 100 and 133 subjects in the non-
obese and obese groups, respectively. Total protein was extracted and the protein content
was evaluated by the Lowry method, and in-gel digestion was performed as described
previously [18]. MaxQuant 1.6.1.12 was used to quantify the proteins in individual samples
using the Andromeda search engine to correlate MS/MS spectra with the UniProt Homo
sapiens database. The following parameters were used for data processing: a maximum of
two miss cleavages, mass tolerance of 20 ppm for the main search, trypsin as the digesting
enzyme, carbamidomethylation of cysteines as fixed modification, and the oxidation of
methionine and acetylation of the protein N-terminus as variable modifications. Only
peptides with a minimum of seven amino acids as well as at least one unique peptide
were required for protein identification. Only proteins with at least two peptides and
at least one unique peptide were considered to be identified and used for further data
analysis. ShinyGO 0.77 software (http://bioinformatics.sdstate.edu/go, accessed on 20
April 2023) was used for in-depth analysis with graphical visualization of enrichment, and
we also used the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway related
to the identified proteome. In addition, MetaboAnalyst (https://www.metaboanalyst.ca,
accessed on 20 April 2023), which is a web-based platform dedicated to comprehensive
omics data analysis and interpretation, was applied for comparison of serum proteome
profiles between the non-obese and obese groups. The results are presented as a volcano
plot and up/downregulated proteins.

2.7. Statistical Analysis

Statistical analyses were performed using IBM SPSS version 23 (IBM Corp., Armonk,
NY, USA). Continuous and categorical variables are presented as the mean ± standard
deviation and frequency (%), respectively. The normality of each variable was evaluated
using the Shapiro–Wilk test. Methylation levels of TNF-α were log-transformed and
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expressed as geometric means and the standard deviation. Between-group comparisons for
anthropometry, metabolic profiles, and other variables were conducted using an unpaired
Student’s t-test. Univariate and multivariate (adjusted for metabolic syndrome components)
regression analyses with categorical predictors were performed using the general linear
model. Further analysis was performed to compare the estimated marginal means of the
total DNA methylation between the non-obese and obese groups. Estimated marginal
means provided estimates of predicted mean values (total DNA methylation level) in the
model between the non-obese and obese groups with and without metabolic syndrome.
Interaction plots of these means were created to visualize some of the relationships. All
statistical tests were two-sided, and a p-value < 0.05 was considered statistically significant.

3. Results
3.1. Characteristics of the Participants

In this study, 233 participants were classified into the non-obese (normal BMI) (N = 100)
and obese (N = 133) groups. The participants had a mean BMI of 21.47 ± 1.03 kg/m2

and 28.46 ± 3.27 kg/m2, respectively. Descriptive characteristics and biochemical profiles
of the participants are shown in Table 1. Subjects in the obese group had a significantly
higher WC, SBP, and DBP than those in the non-obese group (all p < 0.05). Current smoking
and drinking statuses were not different between the groups. In addition, FPG, glycated
hemoglobin, TG, LDL-C, and AST concentrations were significantly higher in the obese
group than in the non-obese group (p < 0.05). However, HDL-C concentrations were lower
in the obese group than in the non-obese group.

Table 1. General characteristics and biochemical parameters of the study population.

Characteristics Total
(N = 233)

Non-Obese Group
(N = 100)

Obese Group
(N = 133)

Age (years) 57.70 ± 1.41 57.68 ± 1.41 57.71 ± 1.42

BMI (kg/m2) 25.46 ± 4.30 21.47 ± 1.03 28.46 ± 3.27 a

Waist circumference (cm.) 92.9 ± 10.87 83.38 ± 5.01 100.07 ± 8.29 a

SBP (mmHg) 138.04 ± 16.90 133.70 ± 16.20 141.30 ± 16.72 a

DBP (mmHg) 79.00 ± 9.45 76.21 ± 9.02 81.10 ± 9.25 a

Smoking, n (%)

• Non-smoker 109 (46.8%) 52 (52.0%) 57 (42.9%)

• Smoker 31 (13.3%) 16 (16.0%) 15 (11.3%)

• Ex-smoker 93 (39.9%) 32 (32.0%) 61 (45.9%)
Alcohol consumption, n (%)

• Non-drinker 50 (21.5%) 24 (24.0%) 26 (19.5%)

• Drinker 125 (53.6%) 51 (51.0%) 74 (55.6%)
• Ex-drinker 58 (24.9%) 25 (25.0%) 33 (24.9%)

FPG (mg/dL) 103.06 ± 21.34 94.25 ± 11.89 109.69 ± 24.32 a

HbA1c (%) 5.98 ± 0.88 5.58 ± 0.511 6.29 ± 0.98 a

TC (mg/dL) 199.14 ± 43.13 201.94 ± 40.81 194.03 ± 44.26

TG (mg/dL) 156.03 ± 108.16 126.80 ± 65.49 169.30 ± 79.50 a

LDL-C (mg/dL) 131.30 ± 40.23 123.10 ± 41.39 136.89 ± 38.12 a

HDL-C (mg/dL) 52.39 ± 13.16 57.04 ± 13.37 48.89 ± 11.90 a

ALT (U/L) 27.24 ± 14.83 23.58 ± 13.32 30.07 ± 15.35 a

AST (U/L) 25.35 ± 12.39 25.02 ± 14.98 25.60 ± 10.08

BUN (mg/dL) 13.57 ± 3.23 13.47 ± 3.50 13.64 ± 3.03

Creatinine (mg/dL) 1.01 ± 0.16 0.98 ± 0.13 1.04 ± 0.18
a statistically significance difference (p < 0.05) from the non-obese group.
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3.2. Associations between DNA Methylation of TNF-α and Metabolic Components and
Dietary Factors

The geometric mean values of the four positions and total levels of DNA methylation
of TNF-α were significantly lower in the obese group than in the non-obese group, as
shown in Table 2 (all p-values < 0.05). In addition, we performed a further analysis to
determine the differences in each position and total DNA methylation of TNF-α levels
in relation to metabolic components in the non-obese and obese groups (Table 2). The
non-obese and obese groups with TG concentrations ≥150 mg/dL showed some signif-
icantly lower positions and total levels of DNA methylation of TNF-α than those with
TG concentrations < 150 mg/dL. We found significant differences in DNA methylation of
TNF-α at position 4 (19.46 ± 4.43% vs. 21.63 ± 4.36%) and total levels (55.34 ± 11.67% vs.
58.44 ± 10.01%) in the obese group between subjects with and without hypertension. A
similar trend was also found in the obese group with FPG concentrations ≥110 mg/dL com-
pared with those with FPG concentrations <10 mg/dL for DNA methylation of TNF-α at
position 2 (12.21 ± 2.89% vs. 14.97 ± 2.91%), position 4 (21.79 ± 4.24% vs. 24.47 ± 4.45%),
and total levels (58.25 ± 10.02% vs. 61.36 ± 10.62%) (all p < 0.05).

Table 2. DNA methylation of TNFα (GM ± SD) for each position and totals classified by metabolic
components among non-obese and obese groups.

Study Group DNA Methylation of TNFα

Position 1 Position 2 Position 3 Position 4 Total

Non-obese group (N = 100) 9.37 ± 2.21 8.14 ± 1.96 17.46 ± 3.89 23.16 ± 4.01 63.47 ± 8.99

Obese group (N = 133) 8.14 ± 2.01 a 12.35 ± 3.12 a 16.12 ± 4.08 a 21.53 ± 3.97 a 58.11 ± 10.22 a

Metabolic syndrome-components

Waist circumference

Non-obese group <90 cm (N = 62) 10.36 ± 2.24 13.20 ± 2.08 16.35 ± 3.58 21.32 ± 4.69 62.36 ± 8.74

≥90 cm (N = 38) 9.33 ± 5.69 14.59 ± 3.14 17.02 ± 5.04 23.04 ± 5.07 61.99 ± 9.63

Obese group <90 cm (N = 49) 8.99 ± 2.32 13.01 ± 4.02 17.25 ± 3.08 23.44 ± 3.99 62.48 ± 8.69

≥90 cm (N = 84) 7.61 ± 2.14 11.05 ± 3.57 a 15.37 ± 3.64 a 21.09 ± 4.04 a 57.96 ± 10.58 a

HDL-cholesterol

Non-obese group <40 mg/dL (N = 83) 9.25 ± 3.95 13.33 ± 3.63 17.39 ± 4.16 22.91 ± 4.69 62.89 ± 12.62

≥40 mg/dL (N = 10) 11.03 ± 2.85 15.21 ± 2.88 18.44 ± 4.57 26.42 ± 2.17 71.12 ± 7.35

Obese group <40 mg/dL (N = 103) 8.01 ± 1.85 12.22 ± 2.71 16.03 ± 3.21 21.75 ± 4.26 58.02 ± 10.22

≥40 mg/dL (N = 30) 8.58 ± 3.02 12.72 ± 3.49 16.40 ± 3.48 20.69 ± 4.67 58.41 ± 11.06

Triglyceride

Non-obese group <150 mg/dL (N = 73) 9.47 ± 4.12 13.35 ± 3.67 17.74 ± 4.27 23.11 ± 4.66 63.39 ± 12.95

≥150 mg/dL (N = 26) 9.24 ± 3.28 13.91 ± 3.43 15.46 ± 3.76 a 20.19 ± 4.69 a 61.07 ± 11.06 a

Obese group <150 mg/dL (N = 71) 8.52 ± 2.47 12.97 ± 3.04 16.46 ± 3.52 22.45 ± 4.84 60.41 ± 11.45

≥150 mg/dL (N = 62) 7.70 ± 1.67 a 11.59 ± 2.54 a 15.72 ± 2.92 20.43 ± 3.48 a 55.46 ± 8.32 a

High blood pressure (SBP ≥ 130 or DBP ≥ 85 mmHg

Non-obese group No (N = 45) 8.58 ± 3.66 13.41 ± 3.92 17.36 ± 3.88 22.96 ± 4.82 62.33 ± 11.98

Yes (N = 55) 10.02 ± 4.00 13.50 ± 3.35 17.55 ± 4.43 23.3 ± 4.52 64.39 ± 12.90

Obese group No (N = 30) 8.20 ± 2.18 12.33 ± 2.80 16.26 ± 3.22 21.63 ± 4.36 58.44 ± 10.01

Yes (N = 103) 7.92 ± 2.15 12.32 ± 3.25 15.64 ± 3.41 19.46 ± 4.43 55.34 ± 11.67 a

Fasting plasma glucose

Non-obese group <110 mg/dL (N = 85) 9.29 ± 3.89 13.39 ± 3.54 17.74 ± 4.25 23.03 ± 4.65 63.18 ± 12.39

≥110 mg/dL (N = 15) 10.95 ± 4.14 14.72 ± 5.03 17.70 ± 2.64 25.49 ± 4.07 64.88 ± 14.40

Obese group <110 mg/dL (N = 85) 8.09 ± 2.24 14.97 ± 2.91 16.17 ± 3.33 24.47 ± 4.45 61.36 ± 10.62

≥110 mg/dL (N = 48) 8.21 ± 2.04 12.21 ± 2.89 a 16.02 ± 3.15 21.79 ± 4.24 a 58.25 ± 10.02 a

a significant different from non-obese group, p < 0.05.
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We also evaluated the association between dietary factors and DNA methylation
of TNF-α levels in the two study groups (Table 3). The regression coefficient of dietary
variables from univariate and multivariate analyses for predicting log DNA methylation
of TNF-α levels showed some significant associations. Red meat, processed meat, and
fried meat intake were negatively associated, whereas egg, fruit, and vegetable intake
were significantly positively associated with log DNA methylation of TNF-α levels in the
non-obese and obese groups.

Table 3. Univariate and multivariate analysis between DNA methylation of TNF-α and dietary
factors among non-obese and obese groups.

Dietary Variables Univariate Regression Analysis Multivariate Regression Analysis

Non-Obese
Group (N = 100)

Obese Group
(N = 133) Non-Obese Group (N = 100) Obese Group

(N = 133)

β p-Value * β p-Value * β p-Value * β p-Value *

Frequency of red meat per week

0–3 times 0 (<0.0001) 0 (0.005) 0 (0.057) 0 (0.024)

4–6 times −3.98 <0.0001 −4.68 0.361 −1.21 0.071 −2.36 0.124

>6 times −12.05 <0.0001 −11.14 <0.0001 −3.65 0.084 −10.25 <0.0001

Frequency of process meat per
week

0–3 times 0 (0.034) 0 (0.027) 0 (0.014) 0 (0.039)

4–6 times −4.66 0.116 −2.29 0.417 −3.09 0.119 −1.47 0.097

>6 times −7.61 <0.0001 −3.84 0.038 −5.23 0.001 −4.96 0.003

Frequency of fried meat per week

0–3 times 0 (0.025) 0 (0.039) 0 (0.127) 0 (0.029)

4–6 times −1.64 0.458 −2.81 0.660 −0.98 0.233 −1.29 0.068

>6 times −12.79 0.004 −11.16 0.006 −1.07 0.057 −8.47 0.001

Frequency of fish per week

0–3 times 0 (0.124) 0 (0.218) 0 (0.214) 0 (0.067)

4–6 times −2.43 0.362 −0.85 0.737 1.96 0.198 1.14 0.314

>6 times 9.43 0.039 2.63 0.410 3.58 0.207 1.39 0.219

Frequency of egg per week

0–3 servings 0 (0.207) 0 (0.011) 0 (0.127) 0 (0.041)

4–6 servings 1.18 0.865 7.66 0.002 0.95 0.141 3.04 0.053

>6 servings 4.68 0.478 6.78 0.012 2.14 0.097 5.99 0.041

Frequency of fruits per week

0–3 servings 0 (0.008) 0 (0.019) 0 (0.039) 0 (0.017)

4–6 servings 4.34 0.062 8.57 0.001 2.36 0.612 6.32 0.001

>6 servings 7.17 0.014 9.32 <0.0001 4.96 0.027 7.18 <0.0001

Frequency of vegetables per week

0–3 servings 0 (0.011) 0 (0.007) 0 (0.041) 0 (0.022)

4–6 servings 4.91 0.103 2.50 0.378 1.98 0.078 2.09 0.244

>6 servings 5.07 0.042 11.24 <0.0001 4.67 0.033 8.04 0.002

* The p-value in parentheses is the overall p-value for the diet variables, and the other p-values show comparisons
to the reference category.

The estimated marginal means of total methylation from the general linear model of
dietary intake of the participants are shown in Figures 1 and 2. In this study, the numbers
of non-obese individuals without MS and with MS were 84 and 16, respectively, whereas
there were 35 cases of metabolically healthy obesity (26.3%) and 98 case of obesity with MS
(73.68%). There was a significant decrease in the estimated marginal mean of total DNA
methylation with an interaction between the consumption frequency and participants with
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and without metabolic syndrome only for fried meat in the non-obese group (p = 0.038).
However, in the obese group, this decrease in total DNA methylation was also found for
red meat (p = 0.040), processed meat (p = 0.012), and fried meat (p = 0.029). There was a
significant increase in total DNA methylation with the consumption frequency of fish intake
in the obese group (p = 0.004). The estimated marginal mean of total DNA methylation
was significantly increased with a greater frequency of egg (p = 0.014) and fruit (p = 0.001)
intake in the subjects in the obese group without metabolic syndrome compared with those
with metabolic syndrome (Figure 3). In the non-obese group, there were no significant
interactions between egg, fruit, and vegetable intake and the metabolic syndrome status.
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3.3. Serum Proteomic Analysis, Differential Protein Expression, and Potential Mechanisms Related
to Identified Proteins in the Non-Obese and Obese Groups

In the proteomic analysis, we identified the serum proteome in the non-obese and
obese groups. Figure 3 shows a pathway analysis (N = 12) of the total serum proteins in
this study. The KEGG pathways with fold enrichment from high (2.03) to low (1.07) values
were extracellular matrix–receptor interaction, glutamatergic synapse, proteoglycans in
cancer, the Rap1 signaling pathway, the calcium signaling pathway, pathways in cancer,
the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, the mitogen-activated
protein kinase (MAPK) signaling pathway, and metabolic pathways. We further analyzed
the PI3K-Akt signaling pathway because of its close relevance to inflammation in obesity
(Figure 4).
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We compared the serum proteome profiles between the non-obese and obese groups.
A volcano plot shows 95 significantly downregulated proteins and 181 upregulated proteins
in the non-obese group compared with the obese group (Figure 5). The top 10 downreg-
ulated proteins were intercellular adhesion molecule 4, phosphatase and actin regulator,
histone-lysine N-methyltransferase 2C, gamma-tubulin complex component 6, caspase
recruitment domain-containing protein 11, RNA-binding motif protein 42, putative zinc
finger protein 487, tubulin tyrosine ligase like 8, cyclin-dependent kinase 15, and protein
FAM227B. The top 10 upregulated proteins were coiled-coil and C2 domain-containing
protein 2A, autophagy and beclin 1 regulator 1, voltage-dependent P/Q-type calcium
channel subunit alpha, glutamate-rich protein 6, tuftelin-interacting protein 11, KIAA0232,
spectrin repeat-containing nuclear envelope family member 3, major histocompatibility
complex (MHC) class II antigen, nicotinamide nucleotide adenylyltransferase 3, and media-
tor of RNA polymerase II transcription subunit 13. These proteins’ log 2-fold changes and
p-values are shown in Table 4. A comparison of 276 significantly up- and downregulated
proteins between the non-obese and obese groups is shown in Supplementary Table S1.
Based on data of identified proteins in Table 4, some proteins have been reported in the PI3K-
Akt signaling pathway/the inflammatory process associated with the TNF-alpha function
(https://www.uniprot.org/, accessed on 10 April 2023; http://stitch.embl.de/, accessed on
10 April 2023; and https://genemania.org/, accessed on 20 April 2023). In terms of proteins
associated with PI3K-Akt signaling pathway, there were T2B5D4 (CMyc splice variant),
M0R275 (AKT serine/threonine kinase 2), A0A075B6T1 (Autophagy and beclin 1 regulator
1), O95597 (Bcl−2-JH protein), H7C413 (BRCA1/BRCA2-containing complex subunit 3),
F8WDP7 (cyclin-dependent kinase 15), A0A0S2Z592CDK5 regulatory subunit-associated
protein 1 isoform 1, B1AVT0 (CDC-like kinase 2), A0A2K8FKR1 (phosphatidylinositol-4,5-
bisphosphate3-kinase), A8KA75 (phosphatidylinositol-4,5-bisphosphate 3-kinase), Q96BE9
(cyclin-dependent kinase 4), Q5MAI5 (cyclin-dependent kinase-like 4), and Q53FZ9 (Fas-
activated serine/threonine kinase isoform 1 variant). The other group of identified proteins
related to the inflammatory process, and TNF-alpha pathway included M0R0X1 (RAB4B,
member RAS oncogene family), E7EMV7 (TNFAIP3 interacting protein 1), Q12986 (tran-
scriptional repressor NF-X1) and F8W8G5 (MYB proto-oncogene, transcription factor).
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Table 4. Top ten downregulated and upregulated proteins with fold changes and p-values compared
between the non-obese group and obese group (total proteins are described in Supplementary Table S1).

Protein ID Protein Names Gene Names Gene Ontology
(Biological Process) log2 (FC) p-Value

U5U6J5 Intercellular adhesion
molecule 4 ICAM4 Cell adhesion [GO:0007155] 2.711 0.0022

B7Z339 Phosphatase and actin regulator 2.560 0.0010

Q8NEZ4 Histone-lysine
N-methyltransferase 2C KMT2C

Methylation [GO:0032259];
positive regulation of
transcription by RNA
polymerase II [GO:0045944];

2.538 0.0003

Q96RT7 Gamma-tubulin complex
component 6 (GCP-6) TUBGCP6 Cytoplasmic microtubule

organization [GO:0031122] 2.531 0.0003

Q9BXL7 Caspase recruitment
domain-containing protein 11 CARD11

Positive regulation of
canonical NF-kappa b signal
transduction; regulation of
apoptotic process

2.523 0.0002

K7EML2 RNA binding motif protein 42 RBM42 2.522 0.0002

B1APH4 Putative zinc finger protein 487 ZNF487
Negative regulation of
transcription by RNA
polymerase II

2.500 0.0001

A0A1C7CYW9 Tubulin tyrosine ligase-like 8 TTLL8 Protein modification process 2.500 0.0002

F8WDP7 Cyclin-dependent kinase 15 CDK15 2.496 0.0002

Q96M60 Protein FAM227B FAM227B 2.492 0.0002

Q9P2K1 Coiled-coil and C2
domain-containing protein 2A CC2D2A

Axoneme assembly;
smoothened signaling
pathway

−2.6249 0.0009

A0A075B6T1 Autophagy and beclin 1
regulator 1 AMBRA1 −2.5975 0.0007

A0A590UJK2 Voltage-dependent P/Q-type
calcium channel subunit alpha CACNA1A Regulation of monoatomic ion

transmembrane transport −2.4755 0.0001

Q7L0X2 Glutamate-rich protein 6 ERICH6 −2.4482 0.0001

Q8N523 Tuftelin-interacting protein 11 TFIP11 Biomineral tissue
development −2.4352 0.0000

A5YKK5 KIAA0232 KIAA0232 −2.4214 0.0001

G3V533
Spectrin repeat-containing
nuclear envelope family
member 3

SYNE3 −2.4202 0.0000

A0A2H4G345 MHC class II antigen HLA-DQB1
Antigen processing and
presentation immune
response

−2.4183 0.0001

D6RGG8 Nicotinamide nucleotide
adenylyltransferase 3 NMNAT3 Biosynthetic process −2.4039 0.0000

A0A3B3IRX3 Mediator of RNA polymerase II
transcription subunit 13 MED13L Regulation of transcription by

RNA polymerase II −2.4033 0.0000

4. Discussion

The chronic inflammatory state associated with obesity can be responsible for some
deleterious health consequences. DNA methylation plays a critical role in the regula-
tion of gene expression through recruiting proteins involved in gene repression or by
inhibiting the binding of transcription factor(s) to DNA [19]. In addition, an increased
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secretion of cytokines such as TNF-α has been reported with obesity-associated adipose
tissue enlargement [2]. In this study, we found significantly lower levels of TNF-α DNA
methylation (for four positions and total levels) in the obese group than in the non-obese
group. A previous study on women with high truncal fat showed significantly lower
5-methylcytosine levels (p < 0.05) of the TNF-α gene promoter than those in women with
lower truncal adiposity [20]. In addition, higher circulating TNF-α levels were correlated
with methylation levels in the women with greater truncal adiposity These findings sug-
gest that molecular mechanisms are involved in body fat accumulation and subsequent
low-grade inflammation over time.

In recent years, various aspects of metabolic syndrome and its associated epige-
netic changes have been investigated. Metabolic features (e.g., high BMI or low-grade
inflammation or low antioxidant status) and dietary factors related to gene expression
regulation in obesity-related diseases have been studied [10,21]. In this study, we found
differences in DNA methylation related to each metabolic syndrome component in the
non-obese and obese groups. We also found significantly lower DNA methylation levels
of TNF-α in subjects with obesity and a WC ≥ 90 cm, TG concentrations ≥ 150 mg/dL,
high blood pressure (systolic BP ≥ 130 mmHg or diastolic BP ≥ 85 mmHg), and FPG
concentrations ≥ 110 mg/dL compared with those without MS (Table 2). Our findings
were similar to those in a previous report that outlined the associations between TNF-α
promoter methylation levels and several anthropometric variables (BMI, WC, and total
body fat) and different metabolic features (e.g., total cholesterol–HDL-c and LDL-C–HDL-
C ratios), which suggested a TNF-α regulatory action on obesity related to metabolic
syndrome [8]. However, another study showed no difference in high-sensitivity CRP or
TNF-α levels between metabolically healthy individuals who were morbidly obese and
metabolically unhealthy individuals who were morbidly obese [22]. An animal study
showed that increased plasma TNF-α concentrations possibly activated NADPH oxidase,
resulting in the release of high superoxide levels from polymorphonuclear leukocytes and
the possible development of hypertension through increased systemic oxidative stress
and vascular tone [23]. Abnormal FPG concentrations and the risk of insulin resistance
related to TNF-α may involve the generation of reactive oxygen species and impairment
of insulin signaling through serine phosphorylation, which leads to the development of
type 2 diabetes mellitus [24]. Furthermore, TNF-α promotes lipolysis and reduces insulin
sensitivity by activating nuclear factor kappa B and c-Jun N-terminal kinase [25].

We also evaluated the association between dietary intake derived from the semi-FFQ
and DNA methylation of TNF-α in the non-obese and obese groups. Univariate and mul-
tivariate analyses showed significant positive associations between TNF-α methylation
and dietary intake of fish, egg, fruits, and vegetables. We also found negative associations
between TNF-α methylation and dietary intake of red meat, processed meat, and fried meat
(Table 3). We further compared estimated marginal means of TNF-α DNA methylation
with frequency of food consumption in subjects with and without metabolic syndrome.
Significant findings related to all subtypes of food intake, except for vegetable intake, were
mostly found in the obese group (Figures 1 and 2). A previous study showed that TNF-α
DNA methylation was associated with the intake of several foods or nutrients, such as
cholesterol, folic acid, beta-carotene, carotenoid, and retinol [8]. A cross-sectional study
investigated the associations between processed and unprocessed red meat consumption
and plasma inflammation markers [26]. This previous study showed that processed meat
consumption was significantly associated with higher IL-6 concentrations, but not with
CRP concentrations, and it was inversely associated with total TNF-α concentrations A
meta-analysis showed that egg consumption (the quantity of eggs consumed in the inter-
vention was 1–2 eggs/day and >2 eggs/day) had no significant effect on serum biomarkers
of inflammation (high-sensitivity CRP, IL-6, and TNF-α) in adults [27]. In contrast to our
finding, Ballesteros et al. [28] found a decrease in plasma concentrations of AST and TNF-α
following egg intake (one egg/day for week). This finding might be explained by the
presence of lutein and zeaxanthin in egg yolk. The effects of increased fruit and vegetable
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consumption on a significant decrease in high-sensitivity CRP and TNF-α concentrations
were reported in a community-based study (N = 965) [29]. Furthermore, in healthy young
adults, the highest tertile of energy-adjusted fruit and vegetable consumption (>660 g/d)
was associated with lower plasma CRP concentrations and lower TNF-α gene expression
from peripheral blood mononuclear cells [30]. In another study, TNF-α and IL-6 con-
centrations and myeloperoxidase activity were higher (whereas catalase and superoxide
dismutase activities were lower) in consumers with a high intake of ultra-processed food
(UPF) with metabolic syndrome than in those with a low intake of UPF [31]. These findings
indicate an association between dietary consumption and the proinflammatory status and
suggest a new aspect involved in the mechanisms related to nutrigenomics. An important
issue should be considered in our findings: DNA methylation changes have a significant
impact on dietary factors. In fact, various nutrients play a role as methyl donors or par-
ticipate in DNA methylation maintenance, or directly affect the enzymes involved in the
methylation process [32].

A multifaceted strategy is required for preventing or controlling metabolic disorders
because of the complex interplay of environmental, genetic, and epigenetic factors in the
development of metabolic diseases [33]. We investigated the differential expression of
serum proteome profiles and possible mechanisms in the non-obese and obese groups
(Figures 4 and 5 and Table 4). On the basis of the top 10 KEGG pathways identified from
total serum proteins, we focused on the PI3K-Akt pathway, owing to a large number of
identified proteins (Figure 5) coded by genes in this signaling pathway. Cytokines bind to a
specific receptor on the surface of their target cell and are constitutively associated with
protein members of the JAK/STAT signaling pathway, subsequently transactivating the
PI3K-Akt signaling pathway [34]. Our results on serum proteins provide evidence for the
role of the PI3K protein family being responsible for abnormal metabolic disease down-
stream of PI3K in the glucose, insulin, and lipid signaling pathways [35]. Upregulation and
downregulation of PI3K/AKT can be beneficial in obesity depending on the context. We
further compared upregulated and downregulated proteins between the non-obese and
obese groups (Figure 5 and Table 4). Some proteins have previously been reported to have
important roles related to obesity, similar to the results of our study.

In this study, intercellular adhesion molecule 4 was upregulated in the obese group.
This protein plays a role in blood coagulation and thrombosis. Ihanus et al. [36] found that
intercellular adhesion molecule-4/integrin interactions related to erythrocytes activated
neutrophils and monocytes, which resulted in the development of thrombus. In addition,
a study on changes in adipose tissue gene expression in a randomized trial featuring
diet, exercise, or a combined diet plus exercise regime in controls and postmenopausal
women with overweight/obesity showed that decreased intercellular adhesion molecule-4
expression alongside weight loss was associated with Jak-STAT signaling [37]. CARD11 is
a membrane-associated guanylate kinase superfamily, which mediates nuclear factor-κB
activation through functions upstream of the IκB-kinase complex and cooperates with
Bcl10 in a CARD domain-dependent manner [38]. The cross-talk between adipocytes and
adipose tissue macrophages initiates cell death machinery and nuclear factor-κB-mediated
inflammation, eventually resulting in ectopic lipid deposition, glucose intolerance, and
other metabolic complications [39]. Another protein in our results was CDK15, a cyclin-
dependent kinase which is involved in the integration of extracellular and intracellular
signals for modulating gene transcription and cell division. A previous study on an
animal model with analysis of CDK gene expression during adipocyte differentiation using
a quantitative polymerase chain reaction found that CDK15 increased with adipocyte
differentiation, reaching a peak on the fourth day and then decreasing [40].

For the downregulated proteins found in this study, AMBRA1 is involved in the
PI3K complex I that controls autophagosome formation and plays an important role in
mitophagy, which is the efficient turnover of mitochondria [41]. AMBRA1 has been re-
ported to have various functions in carcinogenesis, including autophagy, tumorigenesis,
proliferation, and the cell cycle. Emerging evidence has indicated that AMBRA1 affects
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cancer formation, maintenance, and progression by regulating c-MYC and cyclins, which
are frequently deregulated in human cancer cells [42]. CACNA1A is a protein in voltage-
dependent Ca2+ channels that controls the entry of Ca2+ into excitable cells and regulates
BP through vascular smooth muscle contraction [43]. A genome-wide association meta-
analysis of systolic BP, diastolic BP, and hypertension (N = 86,588 individuals) showed
that genetic polymorphisms of CACNA1A were potentially associated with changes in BP
and hypertension [44]. MHC class II antigen was another protein found in our study. A
previous study showed that the MHC class II pathway mediated adipose inflammation, as
shown by a microarray analysis of primary adipocytes [45]. Additionally, multiple genes
involved in MHCII antigen processing and presentation were increased in obese women.

This study showed associations between dietary factors involved in the methylation
of TNF-α and differential protein expression in the non-obese and obese groups, and
these were related to metabolic syndrome. Promoter methylation patterns are potential
biomarkers that could be applied for managing obesity, and TNF-α gene expression in
blood could be partly determined by dietary factors. At present, knowledge about DNA
methylation and inflammation is not sufficiently detailed (and their exact mechanisms
are unknown), but it could be partially supported by our proteomic analysis. The overall
findings from this study emphasize the role of nutrigenomics, with two central platforms—
epigenetics and proteomics—addressing the interactions between nutrients, bioactive
compounds in foods, and genes (and how these interactions influence phenotype, including
risk of developing obesity).

However, there are some limitations to this study. Peripheral blood is one of the
most common biological matrices for epigenetic investigations, but DNA methylation
levels measured in blood cells result from a mixture of different cell types. It is difficult to
know whether the differences obtained between obese and non-obese groups are due to
differences in cell composition in both groups or due to altered DNA methylation patterns
in the TNF-α promoter. Future epigenomics studies should be performed with different
cellular composition analyses. In addition, we did not measure TNF-α concentrations, and
this limited our evidence supporting the association between an epigenetic and clinical or
biochemical phenotypes related to obesity. This cross-sectional study with a small sample
size could not define a cause-and-effect relationship. Large prospective cohort studies are
required to confirm our results. Finally, dietary assessment using the semi-FFQ is the most
common method used in nutrition research, but it is not precise enough to measure absolute
intake of different food components. Further study with a combination of methods, such
as the FFQ with a 24 h dietary record or the FFQ with biomarker levels, may be used to
obtain more accurate estimates of dietary intake than those of individual methods.

5. Conclusions

In this study, DNA methylation of TNF-α profiles was significant associated with
obesity, metabolic syndrome components (abnormal waist circumference, TG, and FPG),
and dietary factors. These findings demonstrate the occurrence of epigenetic mechanisms
involving the regulation of TNF-α expression. In addition, the proposed signaling pathways
that form our proteomic analysis include PI3K and inflammatory response related to TNF-α,
which contribute to am interrelationship between DNA methylation of inflammatory genes,
differential protein expressions, and implications for obesity-induced metabolic disorders.
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