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Abstract: Despite the known beneficial effects of creatine in treating exercise-induced muscle damage
(EIMD), its effectiveness remains unclear. This study investigates the recovery effect of creatine
monohydrate (CrM) on EIMD. Twenty healthy men (21–36 years) were subjected to stratified, ran-
domized, double-blind assignments. The creatine (CRE) and placebo (PLA) groups ingested creatine
and crystalline cellulose, respectively, for 28 days. They subsequently performed dumbbell exercises
while emphasizing eccentric contraction of the elbow flexors. The EIMD was evaluated before and
after exercise. The range of motion was significantly higher in the CRE group than in the PLA group
24 h (h) post exercise. A similar difference was detected in maximum voluntary contraction at 0, 48,
96, and 168 h post exercise (p = 0.017–0.047). The upper arm circumference was significantly lower in
the CRE group than in the PLA group at 48, 72, 96, and 168 h post exercise (p = 0.002–0.030). Similar
variation was observed in the shear modulus of the biceps brachii muscle at 96 and 168 h post exercise
(p = 0.003–0.021) and in muscle fatigue at 0 and 168 h post exercise (p = 0.012–0.032). These findings
demonstrate CrM-mediated accelerated recovery from EIMD, suggesting that CrM is an effective
supplement for EIMD recovery.

Keywords: creatine monohydrate; exercise-induced muscle damage; eccentric exercise; dietary
supplementation

1. Introduction

Frequent strenuous physical activity, including eccentric contractions that exert tension
while stretching, causes exercise-induced muscle damage (EIMD) characterized by multiple
physiological disruptions, including myocyte damage, impaired excitation–contraction
coupling, disorganization of myofibrillar contractile mechanisms, and structural alterations
in the extracellular matrix [1]. Consequently, reduced muscle strength and range of motion,
increased muscle stiffness, and muscle soreness occur [2]. These symptoms typically appear
within 24 h post exercise and may persist for five days or longer [3]. Magnetic resonance
imaging analysis has indicated that muscle tissue swelling can persist for up to one month,
necessitating extended recovery periods depending on the injury severity [4]. Furthermore,
EIMD alters electromyographic patterns, including kinematic alterations and increased
coordinated muscle activity, which may increase the risk of muscle strain [5]. Hence,
effective recovery strategies are crucial, particularly for athletes engaged in concurrent
training and competition.

Owing to their complex annual training and performance schedule, athletes often
use various ergogenic aids to expedite recovery from damage and sustain their physical
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condition [6,7]. Creatine monohydrate (CrM) amplifies hypertrophy and maximal strength
gain during strength training [8]. CrM is synthesized endogenously from amino acids such
as glycine, methionine, and arginine or ingested with food or as a dietary supplement [9].
Furthermore, approximately 95% of dietary CrM is stored in skeletal muscles, whereas the
remaining 5% is distributed to the brain, testes, and heart [10]. CrM accumulation in skeletal
muscles can mitigate post-exercise muscle damage. The modulation of mitochondrial
permeability and stabilization of myocyte membranes through enhanced intramuscular
phosphocreatine content are associated with this recovery process [11]. Furthermore, CrM
inhibits decreases in maximum strength (i.e., one-repetition maximum) and increases in
creatine kinase (CK) levels [12].

CrM can positively impact performance. For instance, Rosene et al. [13] reported that
after several days of eccentric leg extension, a creatine-supplemented group exhibited a
higher maximal isometric force score than the placebo group. Moreover, CrM was found
to restore decreased maximal muscle strength and joint range of motion earlier than in
the placebo group. Collectively, these effects can improve quality of life and maintain
athletic performance. However, these findings are not universally corroborated due to the
absence of sample size validation and rigorous validation through suitable methods, such
as double-blind randomized controlled trials [14].

Accordingly, this study aims to clarify whether pre-consumption of CrM reduces
EIMD damage and facilitates the recovery process using a statistically robust sample
size. Moreover, the intrinsic characteristics associated with EIMD warranted random and
hierarchical random assignments.

2. Materials and Methods
2.1. Participants

This study was conducted in accordance with the Declaration of Helsinki (21-003), and
informed written consent was obtained from all participants. However, before obtaining
written informed consent, participants were briefed on the nature and purpose of the
experimental procedure and the associated risks.

The sample size was calculated using the appropriate input parameters (effect size:
0.3, alpha: 0.05, power: 0.8) in a two-way analysis of variance (ANOVA; G*Power version
3.1, Heinrich Heine Universität, Düsseldorf, Germany). Data from a previous study that
evaluated eccentric exercise similar to the present study indicated that ten participants
were necessary for each group [15]. Thus, in the current study, 20 healthy men (21–36 years
old) participated in the study, with 10 per group. Participants were limited to Japanese men
because EIMD symptoms are significantly influenced by age, sex, genetics, ethnicity, and
exercise experience [16]. Thirty-six participants expressed their willingness to participate;
however, four withdrew for personal reasons. All enrolled individuals participated in the
study between July 2021 and March 2022 at the Keio Physical Education Research Institute
in Kanagawa, Japan. As EIMD is influenced by training experience and age, participants
were equally randomized after prior measurements of maximal muscle strength and age
determination. Randomization was conducted using Predictive Analytics Software version
28 for Windows (SPSS Japan Inc., Tokyo, Japan).

Of those who completed the experiment, 12 were excluded based on previously
defined exclusion criteria [2,12], namely, if the participants (1) were <20 years old, (2) were
on a weight-loss diet or medication, (3) were diagnosed with acute or chronic illness,
(4) were on ongoing medical treatment that may affect the immune system, (5) were
recovering from injury, (6) were self-reported smokers, or (7) if they had a history of chronic
alcohol abuse. The remaining 20 participants were included in the analyses (Figure 1).
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Figure 1. Flowchart showing the parallel randomized controlled trial process involving two groups.

All participants who completed the study had no adverse health effects attributable
to CRE or PLA ingestion. Participant characteristics in the CRE group were as follows:
aged 23.5 ± 4.1 years (21–36 years) and body weight 72.1 ± 11.2 kg (53–86 kg). The PLA
group characteristics were as follows: aged 23.9 ± 1.9 years (21–28 years) and body weight
70.4 ± 9.9 kg (55–93 kg). No significant differences were detected in any of the baseline
variables between the PLA and CRE groups (Table 1).

Table 1. Baseline physical characteristics and exercise-induced muscle damage indices.

Levene’s Test Independent t-Test
PLA CRE F-Value p-Value t-Value p-Value t-Test

Age (years) 23.9 ± 1.9 23.5 ± 4.1 1.390 0.252 0.753 0.460 n.s.
Body Mass (kg) 72.1 ± 11.2 70.4 ± 9.9 0.276 0.605 0.293 0.773 n.s.
Body Fat (%) 19.7 ± 4.2 17.5 ± 4.3 0.000 0.995 1.084 0.291 n.s.
SLM (kg) 54.2 ± 6.9 54.5 ± 6.2 0.003 0.959 −0.084 0.934 n.s.
ROM (deg) 123.0 ± 5.3 120.2 ± 2.9 0.002 0.964 0.188 0.852 n.s.
MVC (kgf) 21.6 ± 2.8 21.6 ± 2.2 0.795 0.383 0.070 0.945 n.s.
CIR (cm) 28.6 ± 2.5 27.6 ± 1.8 0.726 0.404 0.703 0.490 n.s.
SM (kPa) 41.4 ± 6.7 45.6 ± 10.3 0.750 0.397 −0.813 0.426 n.s.
UTF/USG 208.8 ± 161.9 313.1 ± 387.3 1.147 0.297 −0.786 0.441 n.s.
SOR (mm) 0.0 ± 0.0 0.0 ± 0.0 − − − − n.s.
MF (mm) 0.0 ± 0.0 0.3 ± 0.8 5.833 0.027 −1.176 0.255 n.s.

Data are presented as mean ± SD. PLA: placebo group; CRE: creatine group; SLM: soft lean mass; ROM: range
of motion; MVC: maximum voluntary contraction; CIR: circumference; SM, shear modulus; UTF: urinary titin
N-terminal fragment; USG: urine specific gravity; SOR: soreness; MF, muscle fatigue; n.s., not significant.

2.2. Experimental Design

In this randomized, double-blind, placebo-controlled clinical trial, participants in-
gested 3 g of creatine (CLE) or microcrystalline cellulose (CLE; a tasteless and odorless
substance) per day. Participants were instructed to ingest the test meal with water for
28 days. CRE and PLA were each packed in aluminum opaque sachets, making the sam-
ples indistinguishable. CRE was purchased from AlzChem Trostberg GmbH (Trostberg,
Germany) after being packaged and stored at room temperature. Daily consumption was
self-recorded in a diary to assess the compliance rate. Following the 28-day ingestion pe-
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riod, participants performed the eccentric exercises. Before the experiment, the participants
attended a familiarization session that included muscle strength measurements. On the
first day, a pre-exercise warm-up was conducted, and an eccentric exercise involving the
elbow flexor muscles was performed. Exercise tasks were safely performed as previously
described [17]. The maximum voluntary contraction (MVC), range of motion (ROM),
muscle soreness, muscle fatigue, circumference, muscle shear modulus, and urinary titin
fragment (UTF) were measured immediately before and after the eccentric exercise routine.
Measurements were repeated at 1, 24, 48, 72, 96, and 168 h post exercise. All participants
performed the exercises using their left arm.

2.3. Eccentric Exercise

We adopted the methodology of the exercise task reported by Nosaka et al. [18],
in which the participants were seated on an arm-curl bench with the hip flexed at 85◦

(0◦ = full hip extension). They completed five sets of ten eccentric exercises with dumbbells
weighing 50% of the elbow joint MVC of the left arm (recorded in the familiarization
session). Eccentric exercises were performed by extending the elbow joint from 90◦ to 180◦

(180◦ = full extension) at a 60-beat-per-minute rhythm of the metronome (i.e., extended 90◦

in five seconds; Figure 2). The examiner supported the elbow flexion during the concentric
phase. All actions were repeated every three seconds, and a recovery period of two minutes
was provided between each set.
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Figure 2. Eccentric exercises. During the down (eccentric) phase (A), the participant extends their
arms in a controlled manner; the examiner lifts the dumbbells during the up (concentric) phase (B).

2.4. Maximum Voluntary Contraction Evaluation

Maximal isometric elbow flexion strength was evaluated during 5 s isometric maximal
voluntary contractions performed at an elbow angle of 90◦ using a handheld dynamometer
(Mobie; SAKAI Medical Co., Ltd., Tokyo, Japan). Two or three (if the difference between
the two measurements exceeded 10%) trials were performed, and the maximum value
obtained was considered for evaluation.

2.5. Active Range of Motion

The centers of the acromion, lateral epicondyle, and ulnar styloid were marked using
a semi-permanent marker. The elbow joint angle was photographed in relaxed and flexed
states to determine the active ROM. The angle between the line connecting the center of
the acromion and the lateral epicondyle and that connecting the lateral epicondyle and
ulnar styloid was measured using ImageJ software (version 1.39, U. S. National Institutes
of Health, Bethesda, MD, USA). The angle at the relaxed state was subtracted from that at
the flexed state to determine the ROM of the elbow joint.
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2.6. Subjective Evaluation

Muscle soreness (SOR) and fatigue were measured as subjective evaluations of muscle
damage [19]. SOR and muscle fatigue were assessed using a 100 mm visual analog scale
(VAS); 0 and 100 indicated no pain (or no fatigue) and extreme pain (or extreme fatigue),
respectively. The SOR was measured when the participants actively extended their arms.
Participants held their shoulder joints at 90◦ flexion and elbow joints at 180◦ active extension
and marked the levels of perceived soreness on the VAS. The assessment of muscle fatigue
was performed per previously described protocols [2].

2.7. Circumference

The circumference of the upper arm at 50% and 75% of the acromial process of the
scapula was measured using a measuring tape (Model R-280; Futaba, Mobara, Japan) while
the arm was hung down by the side. The mean of two measurements was recorded.

2.8. Muscle Shear Modulus

The shear modulus (SM) of the biceps brachii muscle was measured while participants
were relaxed in a supine position on a bed at a 180◦ elbow joint, 10◦ shoulder joint extension,
and 30◦ shoulder joint abduction. The ultrasonographic apparatus used an ultrasound
shear wave scanner in “shear wave” mode coupled with a linear array transducer (Aplio
300; Canon Co., Ltd., Tokyo, Japan). The ultrasound transducer was placed over the
muscle belly of the long head of the biceps brachii (i.e., approximately 50% of the upper
arm length ranging from the acromial process of the scapula to the lateral epicondyle
of the humerus) [20]. The probe was attached to the same location across sessions and
days using a semi-permanent ink marker; measurement marks were maintained during
the experimental period. The images were acquired thrice after ensuring that the color
map and propagation imaging of the shear wave speed were stable for a few seconds
during the session. In the case of pain associated with full extension of the elbows, the
elbow joint was slowly and fully extended while consulting the participant to avoid the
stretch reflex [2]. Scanning was performed carefully to avoid the pressing or deformation
of muscles. The mean shear modulus was calculated over the largest region of interest,
excluding the aponeurosis and subcutaneous adipose tissues from the B-mode images. The
elastographic images were stored as bitmap (.bmp) files, measured, and averaged using
software (iElastographic image analyzer ver. 1, Takei Scientific Instruments Co., Ltd., Kamo,
Japan); these data were used for further analyses. All measurements and analyses of the
ultrasonographic data were performed by an expert with >10 years of experience. The
shear modulus in the resting muscle condition had a coefficient of variation of 2.0% ± 1.9%
and an intraclass correlation coefficient of 0.965 (p < 0.001).

2.9. Titin N-Terminal Fragment Excretion Assay

Approximately 3 mL of urine was collected from each participant, and concentrations
of UTF were measured using an enzyme-linked immunosorbent assay kit (Titin N-terminal
Fragment Assay Kit; Immuno-Biological Laboratories Co., Ltd., Fujioka, Japan) as previ-
ously described [21]. Samples were stored at −20 ◦C. Thawed urine samples were diluted
from 1:5 to 1:500 to ensure they were within the linear detection range. Diluted samples
and standard solutions were added to each antibody-coated well of 96-well microplates,
followed by incubation for 60 min at 37 ◦C. Subsequently, the microplates were washed
four times with a wash buffer. Labeled antibodies were added to each well, and the
samples were incubated again for 30 min at 37 ◦C. After washing five times using wash
buffer, microplates were incubated with a tetramethylbenzidine solution for 30 min at
room temperature (20–25 ◦C). Finally, the stop solution was added to each well. The ab-
sorbance of the samples was measured at 450 nm using the Multiskan FC microplate reader
(Thermo Fischer Scientific, Waltham, MA, USA). The UTF concentration was calculated
using a linear regression model, and urinary creatinine levels were estimated using an
automated analyzer (Bio Majesty JCA-BM8060; JEOL, Tokyo, Japan). The UTF values
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were normalized based on urinary creatine (Cr) levels (each raw data point in urine/Cr
concentration) [21]. The normal range of UTF concentrations in the general population was
considered: 1.47–7.14 pmol/mg/dL [17].

2.10. Statistical Analysis

The Shapiro–Wilk test was performed to confirm that baseline values for all items
showed normality. Equal variance was assessed using Levene’s test. Given that all variables
showed normality and equal variances, the baseline values of each variable were compared
between groups using independent t-tests. Post-exercise changes in parameters were
compared between the groups (PLA vs. CRE) using a two-way ANOVA considering two
factors (group × time). In the case of a significant interaction effect, Bonferroni’s post hoc
test was performed to identify the time points reflecting significant differences between
conditions. The UTF data indicated a non-normal distribution. Therefore, we applied
a logarithmic transformation (log10) before analysis [19]. All statistical analyses were
performed using Predictive Analytics Software version 28 for Windows (SPSS Japan Inc.,
Tokyo, Japan). Statistical significance was considered at p ≤ 0.05.

3. Results
EIMD Indices

The comparative data of physical features recorded in the CRE and PLA groups are
depicted in Figure 3. The ROM of the CRE group was higher than that of the PLA group at
24 h post exercise (Figure 3A). MVC was higher in the CRE group than in the PLA group at
0, 48, 96, and 168 h post exercise (Figure 3B). Reduced CIR was recorded in the CRE group
compared with the PLA group at 48, 72, 96, and 168 h post exercise (Figure 3C). The SM in
the CRE group was lower than in the PLA group at 96 and 168 h post exercise (Figure 3D).
No significant differences in UTF or subjective SOR were observed (Figure 3E,G). The CRE
group experienced less muscle fatigue compared with the PLA group immediately after
exercise and at 168 h post exercise (Figure 3F).
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CRE, creatine group; ROM, range of motion (A); MVC, maximum voluntary contraction (B); CIR,
circumference (C); SM, shear modulus (D); UTF, urinary titanium N-terminal fragment (E); muscle
fatigue (F); SOR, subjective soreness (G). * p < 0.05. Data are presented as mean ± SD.

4. Discussion

In this study, we investigated whether pre-intake of CrM facilitates recovery from
EIMD induced by eccentric exercise. The participants were randomly stratified into the
CRE or PLA group based on variables that potentially influence the onset of EIMD, such as
age and muscle strength. ROM, MVC, CIR, SM, and muscle fatigue returned to baseline
levels more rapidly in the CRE group than in the PLA group.

Both groups exhibited the lowest ROM and MVC values immediately after eccentric
exercise (Figure 3A,B) and the highest SOR value at 72 h post exercise (Figure 3G). Yam-
aguchi et al. [22] reported that MVC decreased by a maximum of 37.3%, ROM declined by
13.6%, and SOR increased by 51.1 mm after isokinetic eccentric exercise performed at 100%
effort. In contrast, within the current study, a 73.1% decrease in MVC, a 34.8% reduction
in ROM, and a 66.4 mm increase in SOR were detected in the PLA group after isotonic
eccentric exercise. However, MVC decreased by 78.7%, ROM declined by 42.1%, and SOR
increased by 61.7 mm in the CRE group. A comparison with previously published data
suggests that stronger muscle damage was induced in the current study.

We detected significantly higher isometric peak torque at the elbow joint in the CRE
group at 0, 48, 96, and 168 h post exercise than in the PLA group (Figure 3B). A meta-
analysis of the recovery-facilitating effects of CrM pre-intake reported a modest effect size
of 0.81 for muscle force recovery after EIMD [23]. This might have been influenced by
the diversity in muscle force measurement techniques (e.g., comparison between vertical
jump height and isometric contraction) and the variable targeted muscle groups (e.g., knee
extensors versus elbow flexors) considered in different studies. Conversely, a previous
study that evaluated both isometric and isokinetic peak torques to assess the CrM-induced
recovery [24] reported significant differences in isometric strength but not in isokinetic
strength. Similar isometric strength measurements used in the previous and present studies
suggest that congruence in contraction type may contribute to the consistency in the results.
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Additionally, CrM intake facilitates the proliferation and differentiation of satellite cells [25].
Our results indicated that satellite cells show increased activity 24–48 h after high-intensity
resistance training. Moreover, a trend toward facilitated recovery at 48 h post exercise was
confirmed. Considering this congruence in the recovery time course, we hypothesized
that satellite cell activation may facilitate muscle repair, inducing increased mechanical
contractile forces and expedited recovery to baseline physical parameters. The present
study found a higher degree of EIMD than in previous studies. Therefore, elevated levels
of EIMD may further stimulate the activation of satellite cells.

The upper arm circumference was significantly smaller in the CRE group than in
the PLA group at 48, 72, 96, and 168 h post exercise (Figure 3C). Damage and inflamma-
tory responses in EIMD can be categorized into primary and secondary events. Primary
events involve mechanical destruction of the sarcomeres, followed by secondary events,
such as inflammatory and oxidative stress responses [26,27]. These cascading events can
lead to increased vascular permeability, intramuscular edema, and leukocyte infiltration,
potentially exacerbating damage and inhibiting the structural and functional recovery of
muscles [26,27]. Previous studies suggested that CrM exhibits antioxidant [28,29] and anti-
inflammatory effects [30,31] that attenuate secondary events following eccentric exercise.
Previous in vitro research on rats with pre-administered CrM has confirmed its explicit
anti-inflammatory effect on endothelial cells [32]. However, caution must be exercised
when directly applying these animal-based findings to humans. We theorize that the dual
anti-inflammatory and antioxidant effects of CrM may have contributed to the mitigation
of secondary muscle damage responses and the associated reduction in edema in this study.

Significantly lower subjective fatigue levels were demonstrated at 0 and 168 h post
exercise during elbow flexion in the CRE group than in the PLA group (Figure 3F). The
changes recorded over time revealed lower values in the primary event, unlike that in the
circumference. Multifaceted factors contribute to fatigue; however, persistent arm fatigue
after exercise is particularly attributable to low-frequency fatigue [2]. This refers to muscle
exhaustion induced by sustained exercise or high-intensity short-duration activities; it
involves fluctuations in intramuscular calcium ion concentrations [33]. Eccentric exercise
impairs excitation–contraction coupling in muscles, leading to an increased concentration of
intramuscular calcium ions and low-frequency fatigue [34]. In contrast, CrM enhances the
concentration of creatine phosphate in muscle cells and facilitates the rephosphorylation of
adenosine triphosphate [35]. This aids in maintaining intracellular calcium homeostasis and
the normal function of the sarcoplasmic reticulum calcium pump [36]. Therefore, the results
of this study suggest that CrM intake normalizes intramuscular calcium dynamics induced
by eccentric exercise, which possibly contributes to the alleviation of subjective fatigue.

No significant differences In UTF were observed between the two groups (Figure 3E).
Previous reports on CrM-mediated recovery from EIMD have indicated that the increase in
biomarkers that reflect the level of EIMD, such as CK, is attenuated by CrM treatment [37].
In this study, UTF was analyzed as a biomarker. UTF is generated from the fragmentation of
the N-terminal portion of titin, a major structural protein of myofibrils, owing to mechanical
and metabolic damage associated with excessive eccentric contractions, resulting in its
leakage into urine [21]. Our study revealed a strong correlation (r = 0.966) between UTF
concentration and blood CK activity after EIMD onset [17]. However, in contrast to the
response observed using CK, UTF did not significantly differ between the CRE and PLA
groups in this study. Yokota et al. [38] evaluated the inhibitory effects of CrM intake on
EIMD induced by downhill exercise in mice and detected suppressed inflammation in the
test group. However, the increase in UTF was not inhibited, which is comparable to our
results. Considering that the mechanisms underlying the release of CK into the bloodstream
and the leakage of UTF into the urine differ fundamentally, it can be speculated that CrM
may accelerate the recovery from muscle cell membrane damage without significantly
affecting titin breakdown.

The CRE group exhibited significantly lower SM values at 96 and 168 h post exercise
(Figure 3D). SM reflects passive tension in muscles and increases with an increase in the
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dorsiflexion angle of the ankle [39]. According to the three-element muscle model proposed
by Hill et al. [40], muscle tension involves contractile elements (e.g., actin, myosin, and
titin), serial elastic elements (e.g., tendons), and parallel elastic elements (e.g., extracellular
matrix). In contrast to the UTF analysis results, the SM differed considerably between
groups. As UTF serves as an indicator of contractile elements, the effects of CrM are
possibly limited to contractile components and may predominantly influence parallel elastic
elements, such as the extracellular matrix. Previous reports suggest that the symptoms of
EIMD may be exacerbated when the muscle fascia, a parallel elastic element, undergoes
significant elongation during eccentric exercise [41]. Furthermore, Inami et al. [2] pointed
out that approximately 50% of alterations in the SM can be explained by UTF, while the
remaining 50% is potentially related to the extracellular matrix. Hence, we consider that
the accelerated recovery in the SM value of the CRE group may reflect a specific effect of
CrM on the extracellular matrix.

Previous meta-analyses assessed the ergogenic effects of dietary supplements in facili-
tating the prevention of and recovery from EIMD [42]. Markers of inflammation and oxida-
tive stress were significantly reduced within 24–48 h following eccentric exercise in groups
that ingested fruit-derived supplements compared with placebo groups [41]. Furthermore,
root-vegetable-derived supplements reduce markers of inflammation within 24–48 h post
exercise [43]. In contrast, CrM intake exhibited stronger preventive effects against acute
symptoms, inflammation, and oxidative stress, particularly within the first 24 h post ex-
ercise [43]. The differences observed in these meta-analyses might be attributable to the
difference between the biochemical composition of CrM and that of plant-derived extracts.
Variables, such as the supplement dosage and the level of muscular strain, can influence
outcomes. Hence, it is difficult to confirm that CrM is superior to other options. However,
the anti-inflammatory, anti-oxidative stress, and calcium-ion-homeostasis-maintaining
effects of CrM indicate that it holds promise as a valuable supplement for managing EIMD.

In the present study, the participant population was limited to young males; hence,
potential demographic bias could not be eliminated. Previous research indicates that
the degree of EIMD can differ between men and women due to the influence of sex
hormones [44]. Therefore, future studies are needed to confirm the effects of CrM using
a sample population that includes both sexes. To elucidate the mechanisms underlying
the preventative effects of CrM on the signs and symptoms of EIMD, this study employed
various metrics, including body composition, muscle stiffness changes, functional muscle
assessments, and biochemical markers indicative of muscle cell damage. Nevertheless,
future research could benefit from incorporating biomarkers directly involved in muscle
damage and repair mechanisms, such as matrix metalloproteinases or Bcl-2-associated
athanogene 3. Information on the influence of CrM on these biomarkers can provide
a more in-depth understanding of the role of CrM in facilitating recovery from EIMD.
These insights will contribute to a comprehensive knowledge of the ergogenic role of CrM
in EIMD.

5. Conclusions

In this study, we demonstrated that pre-intake of CrM significantly facilitated recov-
ery from EIMD. This improvement was particularly evident in the physiological metrics
assessed, including ROM, MVC, arm circumference, SM, and indicators of muscle fa-
tigue. These findings have implications for athletes engaged in consecutive competitions,
suggesting that CrM supplementation may be beneficial for accelerating recovery from
competition-induced fatigue and muscle damage. The results of this study support the
supposition of a previous review article [45] that described the potential of CrM to accel-
erate recovery, potentially providing new insights for a consensus on the impact of CrM
on EIMD.
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