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Abstract: (1) Background: Modulators of the Neuropeptide Y (NPY) system are involved in energy
metabolism, but the effect of NPY receptor antagonists on metabolic-dysfunction-associated steatotic
liver disease (MASLD), a common obesity-related comorbidity, are largely unknown. In this study,
we report on the effects of antagonists of the NPY-2 receptor (Y2R) in comparison with empagliflozin
and semaglutide, substances that are known to be beneficial in MASLD. (2) Methods: Diet-induced
obese (DIO) male Wistar rats were randomized into the following treatment groups: empagliflozin,
semaglutide ± PYY3-36, the Y2R antagonists JNJ 31020028 and a food-restricted group, as well as a
control group. After a treatment period of 8 weeks, livers were weighed and histologically evaluated.
QrtPCR was performed to investigate liver inflammation and de novo lipogenesis (in liver and
adipose tissue). Serum samples were analysed for metabolic parameters. (3) Results: Semaglutide +
PYY3-36 led to significant weight loss, reduced liver steatosis (p = 0.05), and decreased inflammation,
insulin resistance, and leptin levels. JNJ-31020028 prevented steatosis (p = 0.03) without significant
weight loss. Hepatic downregulation of de novo lipogenesis-regulating genes (SREBP1 and MLXIPL)
was observed in JNJ-31020028-treated rats (p ≤ 0.0001). Food restriction also resulted in significantly
reduced weight, steatosis, and hepatic de novo lipogenesis. (4) Conclusions: Body weight reduction
(e.g., by food restriction or drugs like semaglutide ± PYY3-36) is effective in improving liver steatosis
in DIO rats. Remarkably, the body-weight-neutral Y2R antagonists may be effective in preventing
liver steatosis through a reduction in de novo lipogenesis, making this drug class a candidate for the
treatment of (early) MASLD.
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1. Introduction

The increasing worldwide prevalence of metabolic-dysfunction-associated steatotic
liver disease (MASLD) is a major health issue due to the associated increase in morbidity
and mortality, but limited treatment options [1]. A recent meta-analysis states a global
prevalence of 38% with an increase of 50% since 1990 [2]. Besides its close association to
extrahepatic diseases within the spectrum of metabolic syndrome, such as type 2 diabetes
mellitus (T2DM), hypertension, and cardiovascular disease, MASLD patients regularly
have an increased all-cause mortality [3]. A progression of the disease results in increased
inflammation and fibrosis, consequently leading to metabolic-dysfunction-associated steato-
hepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma [4].
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The key component of MASLD is liver steatosis. An accumulation of lipids in the liver
may be caused by four different mechanisms: an increased hepatic uptake of circulating
fatty acids from the blood stream, an increased de novo lipogenesis (DNL) in the liver, a
decreased hepatic beta-oxidation, or a decreased hepatic lipid export [5]. Using labelled
triglycerides (TGs), Donnelly et al. were able to demonstrate that 59% of TGs in the liver
of MASLD patients were derived from circulating non-esterified fatty acids (NEFA) in the
blood stream, 26% were derived from hepatic DNL, and 15% from diet [6]. The accumulation
of lipids within the liver results in an environment of lipotoxicity, including mitochondrial
dysfunction, endoplasmic reticulum stress, and apoptosis [7]. A central mechanism con-
necting obesity, T2DM, and MASLD is insulin resistance (IR) [8]. IR leads to lipolysis in
white adipose tissue with subsequent uptake of fatty acids in the liver [9] and an increased
hepatic DNL [5,10]. The adiponectin–leptin ratio is an indicator for adipose tissue dysfunc-
tion, and it was shown to be higher in individuals with greater insulin sensitivity [11]. The
IR-induced disruption of insulin signalling leads to a preserved stimulation of lipogene-
sis (e.g., through activation of SREBP1), while the suppression of gluconeogenesis is not
maintained (e.g., through PI3K, FoxO1 and PKB) [12,13].

Despite the increasing knowledge about MASLD and the obvious clinical significance,
no therapeutic agent has been approved so far [14]. Weight loss is known to be beneficial
for patients with MASLD. Bariatric surgery showed positive effects that may progress
beyond simple weight loss as increased levels of metabolically beneficial gut hormones
were detected [15,16]. Anti-obesity drugs like the glucagon-like peptide-1 (GLP-1) agonists
liraglutide and semaglutide improve hepatic steatosis, possibly though an mTOR- and
AMPK-mediated pathway [17,18]. The sodium glucose transporter 2 (SGLT2) inhibitor
empagliflozin also showed positive effects on non-invasive measures of MASLD and liver
fibrosis in humans without T2DM, while its molecular mechanisms promoting liver health
are still not elucidated [19]. An activation of autophagy as well as reduced endoplasmic
reticulum stress and apoptosis have been proposed as possible modes of action in a mouse
model [20].

Further effective treatment strategies are clearly needed, and gut-derived hormones
(like glucagon, GIP, etc.) as well as several neuropeptides may carry a potential to influence
liver steatosis due to their food intake and energy-regulating characteristics. Neuropeptide
Y (NPY) is an orexigenic neuropeptide that exerts its appetite-regulating effects in the
hypothalamus. Different receptors (NPY receptor 1, 2, 4, 5, and 6) are known and partly
mediate opposite actions. The NPY receptor 1 (Y1R) is mostly stimulated by intact NPY [21]
and central stimulation of Y1R increases food intake [22], while antagonism reduces food
intake [23,24]. Y2R is stimulated not only by NPY, but also by other peptides (e.g., the
gut hormone PYY3-36) [21], and central Y2R stimulation reduces food intake [25], while a
hypothalamic-specific knockout of Y2R resulted in increased food intake but decreased
body weight, with sex-specific differences [26]. A treatment with the Y2R antagonist JNJ-
31020028 in male rats demonstrated an exclusive high-fat diet (HFD) preference, while the
body weights were not increased compared to controls [27]. Data on effects of modulators
of the NPY system on liver steatosis are rare, but it was demonstrated that NPY knockout
results in alleviated liver steatosis in HFD-induced obese mice [28]. Another study reported
that Y2R deletion in hypothalamic neurons leads to an increased hepatic fat content only
in female mice [29]. The gut hormone PYY3-36, which mostly exerts its beneficial effects
through the Y2R, has shown its weight-reducing effects in multiple rodent [30,31], non-
human primate [32], as well as in human studies [33]. A combination treatment with
liraglutide and PYY3-36 improved liver steatosis in diet-induced obese rats [34].

This study aims to further investigate the actions of empagliflozin, semaglutide,
PYY3-36, and the Y2R antagonist JNJ-31020028 on liver steatosis in a well-established HFD-
induced obesity rat model.
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2. Materials and Methods
2.1. Animals, Drugs and Treatment

The study design (including the weight course and HFD preferences) has been re-
cently published [27]. In summary, obesity was induced in adult male Wistar rats (Charles
River Laboratories, n = 34, 6 weeks old) using a HFD (4.615 kcal/kg; 45 kJ% fat, 20 kJ%
protein, 35 kJ% carbohydrates) for 8 weeks. After diet-induced obesity was achieved (mean
body weight 542 ± 13 g), the animals were randomized into the following treatment
groups: [1] control group receiving a HFD (n = 6), [2] empagliflozin via drinking water
(10 mg/kg/day; n = 5), [3] semaglutide s.c. daily (120 µg/kg/day; n = 6), [4] semaglu-
tide s.c. daily (120 µg/kg/day) in combination with unselective NPY2R agonists (PYY3-36
0.015 mol/kg/day, or NNC0165-0020; two animals also received the highly selective Y2R ag-
onist NNC0165-1273) via osmotic minipump (n = 6), and [5] JNJ-31020028 (2.5 mg/kg/day;
n = 6) via osmotic minipump. It has to be noted that a part of [5] (n = 3) also received
exendin 9–39 (30 µg/kg/day) via osmotic minipump. Additionally, one food-restricted
group [6] received 5 g/d of the above-mentioned HFD and 5 g/d of the mentioned low-fat
diet (n = 5). Osmotic minipumps were implanted in the interscapular region (for [4]) or
intraperitoneally (for [5]) under isoflurane anaesthesia with buprenorphine and carprofen
analgesia. For interscapular implantation, a 1 cm incision was made, a subcutaneous pocket
was formed using a sterile forceps, and the pump was inserted into this. For intraperitonal
implantation, a 1 cm incision was made in the lateral abdomen and the pump was inserted
intraperitoneally. During the treatment period, animals were weighed daily, single-housed,
and had free choice of high-fat diet (HFD) and low-fat diet (3.630 kcal/kg; 10 kJ% fat, 20 kJ%
protein, 70 kJ% carbohydrates). Additional information on the manufacturers of the used
compounds can be found in the Supplementary Materials.

2.2. Dissection and Sample Collection

Blood samples pre-treated with dipeptidyl peptidase-4 inhibitor (Merck, Darmstadt,
Germany) were taken directly from the abdominal aorta at the end of the experimental
period under deep anaesthesia with isoflurane and butorphanol (2 mg/kg body weight).
Immediately following blood sampling, the liver was removed and weighed.

2.3. Liver Histology

After defrosting, all samples were fixated in 10% neutral formalin for 24 h, using pieces
of 1.0 × 0.5 cm and further prepared for paraffin embedding. Using a microtome, 3 µm
cross-sections were cut. After de-paraffinization and rehydration, all samples received a
haematoxylin/eosin and Sirius Red staining (500 aqueous picric acid solution 1.2% with
100 mg Sirius Red). Samples were assessed by a pathologist (GH) who was blinded regard-
ing the treatment groups. Assessment of histological features of micro- and macrovascular
steatosis, inflammation, and fibrosis was performed using the MASLD scoring system for
rodent models as described by Liang et al. [35].

2.4. Enzyme-Linked Immunosorbent Assay and Serum Measurements

Plasma levels of insulin, leptin, adiponectin, and fructosamine were measured using
rat-specific assays (details are found in the Supplementary Materials). Aspartate transam-
inase (AST), alanine transaminase (ALT), triglycerides (TG), cholesterol (CH), and non-
esterified fatty acids (NEFA) were measured in an external laboratory (Laboklin, Bad
Kissingen, Germany) using a Roche cobas 8000 modular analyser. The measurements were
performed with commercial kits due to the manufacturer’s protocols. The applied test
principles use photometric determination of products of enzymatic reactions of respective
kits. Measurement of blood glucose was conducted twice per sample using handheld
glucose meters. The average of two measurements was used for HOMA-index calculation.
The HOMA index was calculated with fasting values for the individual rats as follows:

HOMA = insulin [mU/L] ∗ glucose [mmol/L]/22.5



Nutrients 2024, 16, 904 4 of 14

2.5. Gene Expression Analysis

QrtPCR was used to investigate liver inflammation and to assess DNL in the liver
and the visceral adipose tissue. In total, 10 mg liver tissue (or 100 mg visceral adipose
tissue, respectively) was homogenized using a QIAGEN Tissue Lyser II (QIAGEN, Venlo,
The Netherlands) and purified using Proteinase K Solution (Promega, Fitchburg, WI, USA).
For liver samples, RNA was extracted using the Maxwell® RSC simplyRNA Tissue Kit
(Promega, Fitchburg, WI, USA). RNA of visceral adipose tissue was extracted using the
QIAGEN RNeasy Plus Universal Mini Kit (QIAGEN, Venlo, The Netherlands) according to
the manufacturer’s instructions. RNA concentrations were measured and tested for purity
using a NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Santa Clara, CA,
USA). An RNA-integrity score (RIS) was obtained using the capillary gel electrophoresis
system QIAxcel Connect (QIAGEN, Venlo, the Netherlands). If the RIS was below 5, RNA
extraction was repeated. Liver RNA was reversely transcripted into cDNA using the
QIAGEN QuantiTect Reverse Transcription Kit (QIAGEN, Venlo, the Netherlands), while
visceral tissue RNA was reversely transcripted using ThermoFisher High-Capacity cDNA
Reverse Transcription Kit with RNase Inhibitor (Thermo Fisher Scientific, Santa Clara,
CA, USA) on an Eppendorf Mastercycler Gradient Instrument (Eppendorf SE, Hamburg,
Germany). QrtPCR was performed on duplicates using TaqMan hydrolysis probes (Thermo
Fisher Scientific, Santa Clara, CA, USA) of several preselected gene expression assays
(TNF, IL1B, FGF21, SLC2A4, SREBP1, MLXIPL) on a Bio-Rad CFX96™ (Bio-Rad, Hercules,
CA, USA). Duplicates with ∆Cq > 0.8 were excluded. Gapdh (used only in liver), Ubc
(used only in fat) and beta-2 microglobulin (used only in fat) were used as reference
genes. Reaction efficiency was calculated using LinRegPCR software (V. 2020.0). Efficiency-
correction and normalization to multiple reference genes was conducted using qBase+
version 3.2 (Biogazelle, Gent, Belgium) based on normalization methods published by
Hellemans et al. [36]. Through this calculation, normalized relative quantities (NRQs)
were obtained. As NRQs are usually log-normal distributed [37], these values were log-
transformed before statistical analysis.

2.6. Statistical Analysis

Statistical analyses were conducted using GraphPad Prism version 9.5.1 for Windows
(GraphPad Software, La Jolla, CA, USA). Statistical significance was tested using one-way
ANOVA with Holm–Sidak multiple comparison test for multiple comparison correction
where appropriate. Two-way ANOVA with the Holm–Sidak multiple comparisons test
were used for statistical analysis of changes in body weight over time. p-values < 0.05 were
assumed to be significant.

3. Results
3.1. Body Weight Change

Figure 1 shows the weight course in different treatment groups. Control animals
continued to gain weight, whereas a treatment with semaglutide led to a significant re-
duction in body weight at each time point. Weight loss was even more pronounced in
the semaglutide and PYY3-36 combinatory-treated group. Treatment with JNJ-31020028
achieved a minor weight loss compared to the control group, which was significant only in
the first two weeks. Empagliflozin-treated animals achieved only an insignificant weight
loss compared to the control group.
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Figure 1. Weekly body weight change from baseline (in %) of the different treatment groups. The
mean body weight of semaglutide-treated DIO rats differed significantly from the control group in
weeks 1–7 (** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001). The mean body weight of semaglutide + PYY3-36-
treated animals differed significantly from the control group in weeks 1–7 (◦ p ≤ 0.05; ◦◦ p ≤ 0.01;
◦◦◦ p ≤ 0.001). The mean body weight of JNJ-31020028-treated animals differed significantly from the
control group in weeks 1 and 2 (# p ≤ 0.05; ## p ≤ 0.01). The mean body weight of the food-restricted
group differed significantly from the control group at week 1 (p ≤ 0.001), 2 (p ≤ 0.01) and weeks 3–7
(p ≤ 0.0001) (not indicated in the graph). Data are presented as mean ± standard error of the mean.
Error bars that are not visible were too short to be mapped.

3.2. Liver Weight and Histological Assessment: All Agonistic and Antagonistic Incretin-Based
Treatments Improved Liver Steatosis Compared to a High-Fat Diet

The liver weight was reduced significantly in the body-weight-matched group upon
food restriction and reduced markedly in the semaglutide and PYY3-36 combinatory-treated
group (p = 0.054, see Figure 2a). The blinded pathological assessment of liver steatosis re-
vealed an improvement in all treatment groups compared to the control group as displayed
in Figure 2b,c. Animals that were treated with semaglutide showed improved liver steatosis
(mean MASLD score 0.33) compared to controls. A combinatory treatment with semaglu-
tide and PYY3-36 induced a significantly reduced liver steatosis with a mean MASLD score
of 0.17. Steatosis was completely resolved in the livers of all animals, that were treated with
JNJ-31020028 (mean MASLD score 0.0). As an incidental finding, a granulocytic cytoplasm
was detected in the livers of JNJ-31020028-treated animals. The calorie-restricted group
also showed no steatosis (mean score 0.0).

3.3. Assessment of Inflammation Markers Using Histological Assessment and QrtPCR

In the blinded pathological assessment, no signs of advanced MASLD (e.g., inflamma-
tion or fibrosis) were detected in any rat. Molecular inflammation markers were analysed
in the livers of the different treatment groups. Results are displayed in Figure 3. Fibroblast
growth factor 21 (Fgf21) transcription was significantly reduced in semaglutide + PYY3-36-
treated animals compared to animals in the control group (p = 0.024). Interleukin-1βb (Il1b)
did not show any significant changes in transcription levels between different treatment
groups. TNF-α (Tnf ) transcription was significantly reduced in empagliflozin-treated
animals compared to animals in the control group (p = 0.036).
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3.4. Metabolic Measurements: Insulin Sensitivity Was Ameliorated and Leptin Was Decreased in
Semaglutide and PYY3-36-Treated Animals, while Transaminases Did Not Show Any Differences

Metabolic measurements are displayed in Figure 4. Transaminases were measured
to be lower in all treatment groups compared to the control group, but significance was
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not reached. Non-esterified fatty acids (NEFA) showed a trend towards an elevation in
empagliflozin-treated animals and were decreased in all other treatment groups compared
to the control group (Figure 4a). Triglycerides and cholesterol did not show any significant
differences. No significant changes in adiponectin levels were detected. Leptin levels were
significantly decreased in semaglutide + PYY3-36-treated animals (p = 0.004) and even
stronger in the body-weight-matched group (p = 0.002), both compared to the control
group (Figure 4b). The adiponectin–leptin ratio was only increased in the food-restricted
group (p = 0.008). Insulin resistance was assessed via the HOMA index. The HOMA index
was lower in semaglutide and PYY3-36 combinatory-treated animals (mean HOMA index
13.1 ± 4.2 vs. 30.3 ± 18.8 in the control group, p = 0.16), as well as in the body-weight-
matched group (mean HOMA index 7.0 ± 3.7, p = 0.07) (Figure 4c). No significant changes in
fructosamine levels were detected. To further explore insulin resistance, GLUT4 expression
was measured in visceral fat. A trend towards an upregulation of the GLUT4 expression
in the visceral fat of semaglutide ± PYY3-36-treated animals was observed. Additionally,
the JNJ-31020028-treated, as well as the food-restricted, animals showed an upregulation of
GLUT4 (Figure 4d).
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–leptin ratio. Data are presented as mean ± standard error of the mean. ** p ≤ 0.01. (c) HOMA index
and fructosamine measurements in the serum. ns = not significant. (d) QrtPCR-based analysis of
GLUT4 expression in visceral adipose tissue. Data are displayed as log-transformed normalized
relative quantities (NRQs). Data are presented as mean ± standard error of the mean. AST = alanine
transaminase. ALT = aspartate transaminase. NEFA = non-esterified fatty acids. GLUT4 = glucose
transporter type 4.

3.5. Lipogenesis and Lipolysis in the Liver and the Visceral Adipose Tissue

The liver samples and the visceral adipose tissue were analysed for genes that are in-
volved in the regulation of lipogenesis. QrtPCR was used to investigate the expression of two
known regulatory genes that induce de novo lipogenesis in the liver (SREBP1 and MLXIPL);
results are displayed in Figure 5a. The analysis revealed a significant downregulation of
SREBF1 and MLXIPL in the liver of rats treated with JNJ-31020028, compared to the control
group. SREBP1 was significantly reduced in food-restricted animals as well (p < 0.001).
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The visceral fat depots were analysed for the same lipogenesis-regulating genes
(see Figure 5b). A significant upregulation of SREBP1 was found in the visceral fat of
food-restricted animals compared to controls.
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4. Discussion

In a randomised controlled study design, this study confirmed the positive effects of
incretin agonists on liver health, while it provides evidence that Y2R antagonists are also
beneficial in the treatment of liver steatosis. Animals treated with the Y2R antagonists JNJ-
31020028 showed no steatosis at all, despite no changes in body weight and a remarkable
preference for a HFD [27]. A downregulation of SREBP1 and MLXIPL was found, which
points towards a reduced de novo lipogenesis in the liver of these animals, while lipogenesis
in visceral fat was not affected. The exact mechanism of this action specific to the liver is
not yet identified, but the histological observation that this treatment induced a hepatic
cytoplasmic granulation clearly needs to be further investigated. In rodent studies using the
Y2R antagonist BIIE0246, an increased hepatic glycogen accumulation was observed [38],
which could possibly explain the granulation detected in this study.

The NPY system is strongly associated with the regulation of appetite and energy ex-
penditure in the hypothalamus [39]. The Y2R is in the centre of NPY-associated anti-obesity
research and, until recently, a central stimulation would have been assumed to reduce
weight and be beneficial, while a blockage would have been assumed to increase body
weight [25,26,40]. Despite its central, appetite-regulating actions, Y2R are also involved
in oxidative fuel selection and lipid metabolism in peripheral tissues like fat, bones, and
liver [41]. Genetic polymorphisms of the NPY gene (particullary the rs164147 polymor-
phism) have previously shown an association with insulin resistance and the development
of steatohepatitis (the latter in obese subjects) [42,43]. As the JNJ-31020028-treated animals
in the present study almost exclusively consumed a HFD [27] but did not develop liver
steatosis, Y2R antagonists may be beneficial for liver health in an energy-rich setting as
described before [38]. While this study reports on a downregulation of denovo lipogenesis-
regulating genes after Y2R antagonisation, Chen et al. demonstrated that SREBP2 and
3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) are upregulated following direct
administration of NPY into the portal vein [44]. These data support the conclusion that
NPY has a negative impact on liver health by enhancing cholesterol biosynthesis. An indi-
rect mechanism of action could possibly be found in the adipocyte–macrophage crosstalk,
which is stimulated by NPY [28]. In the progression to hepatic fibrosis, NPY might also be
a key player, as neprilysin-mediated cleavage of NPY resulted in fragments, that were held
responsible for the activation of genes, which direct hepatic stem cells to develop towards
fibroblast-like cells [45]. Interestingly, the administration of sacubitril, a neprilysin-inhibitor,
in combination with valsartan, an angiotensin I receptor antagonist, led to a significant
reduction in hepatic fibrosis and portal hypertension in mice [45]. The metabolic impact
of the NPY system is still not fully understood, and the presented results clearly support
further investigations in this interesting field.

Possible side effects of Y2R antagonists have not yet been investigated in humans, but
animal studies revealed a number of possible modes of action that should be addressed
in further studies. It was shown that Y2R knockout mice displayed a reduced anxiety
like behaviour [46]. Alcohol-dependent rats showed a suppression of the motivation to
self-administer ethanol upon treatment with the Y2R antagonist BIIE0246, which further
strengthens the meaning of Y2R for CNS pathways [47]. While Y2R receptor agonists
are most-likely anticonvulsant, it remains unclear whether Y2R antagonists may have
pro-convulsive side effects [48]. Further studies showed effects on pain processing, while
it remains unclear if NPY is pro- or antinociceptive [49]. Additionally, effects of Y2R
antagonists on bone metabolism, cancer development, intestinal disease, and circadian
rhythm disorder have been supposed [50].

In contrast to NPY antagonists, GLP-1 receptor agonists (e.g., semaglutide) are studied
widely and showed positive effects on liver steatosis [17,18,34]. The exact mechanisms
of action by which GLP-1 agonists induce liver-protection is not entirely clear, but recent
studies suggested an involvement of the autophagy-lysosomal pathway [51,52]. In vitro,
the GLP-1 agonist exendin-4 was suspected to enhance autophagic flux and reduce endo-
plasmatic reticulum stress, thereby executing antisteatotic effects through an activation of
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both macro- and chaperone-mediated autophagy [51,53]. The present study showed again
that a polypeptide-based approach is more effective in inducing positive metabolic changes
like weight-loss, reduced high-fat diet preference [27], and liver steatosis compared to a
single peptide. In this setting, body weight loss may be regarded as a key component, since
a food-restricted group that did not receive any pharmacologically active agent showed
similar results regarding liver steatosis. The observed downregulation of FGF-21 in livers
of animals treated with semaglutide and PYY3-36 may provide a link between liver steatosis
and inflammation [54], while advanced fibrotic stages of MASLD were not observed in the
present study. Polypeptide approaches hold promise to soon improve MASLD treatment in
clinical practice, since the first FDA-approved incretine-polypeptide tirzepatide (approved
for the treatment of T2DM) has recently shown positive effects on the liver in a subpopu-
lation of patients with T2DM [55]. Further developments of coagonists (e.g., GLP-1 and
glucagon) may have additional beneficial effects on liver steatosis [56].

This study also showed an upregulation of SREBP1 in the visceral adipose tissue
upon caloric restriction. It was described before that a reduction in leptin signalling may
induce the expression of genes involved in lipogenesis (e.g., SREBP-1c) in adipocytes [57,58].
The capacity to expand adipose tissue on the other hand of course relies on the available
substrates.

The beneficial effects of SGLT2 inhibition through empagliflozin on liver steatosis
were not reproduced in this study. Liu et al. showed in mice that a treatment with the
SGLT2 inhibitor dapagliflozin led to a reduced steatosis score and reduced expression of
SREBP1c accordingly, possibly mediated by the activation of adenosine monophosphate-
activated protein kinase (AMPK) phosphorylation and inhibition of the mammalian target
of rapamycin (mTOR) phosphorylation pathways [59]. It was shown in ApoE-knockout
mice that empagliflozin was able to attenuate MASLD progression, promote autophagy, and
reduce endoplasmatic reticulum stress (as possible modes of action) [20]. In patients with
T2DM, the SGLT2 inhibitor empagliflozin led to an improvement in the steatosis degree
after a 6-month follow-up [60]. Despite possible interspecies differences, the animals in the
present study only showed minor signs of insulin resistance that are not comparable with a
manifest T2DM, which could at least explain in part why no major effects on MASLD were
observed in empagliflozin treated rats. Furthermore, beneficial effects on liver steatosis
may have been negated by the increased levels of NEFA in the present study. Recently,
it was shown in humans that empagliflozin increased the uptake of free fatty acids in
visceral adipose tissue by 27% (p < 0.05), while GLUT4 protein (p = 0.03) and mRNA
content (p = 0.01) was reduced in abdominal s.c. adipose tissue without affecting glucose
uptake, which clearly shows that empagliflozin may have pleiotropic effects that surpass
its actions in the kidney [61]. Whether SGLT2 inhibitors could have beneficial effects in
MASLD subjects without T2DM remains unclear.

5. Limitations

This study has several limitations. First, due to a too-short treatment period, rats
exposed to a HFD did not develop advanced fatty liver disease stages with severe inflam-
mation or marked fibrotic changes. Therefore, the used animal model can only be seen as
a model of early MASLD. However, this can also be seen as an advantage, and effects on
these early stages can be studied. Second, insulin resistance (assessed by HOMA index and
fructosamine) was not markedly present in the investigated rodent model and functional
glucose tolerance measurements were not performed. Third, following the 3Rs-principle,
the numbers of animals per study groups in this exploratory pilot study were kept small,
balancing animal suffering and the significance of results. Three of the animals in the Y2R
antagonist (JNJ-31020028) group received a GLP-1 antagonist (exendin9–39) as well. We
observed a steatosis score of 0.0 in all of the animals with similar changes in the observed
molecular markers, so we assumed that the effect of exendin9–39 was negligible. Further-
more, two of the animals in the semaglutide and NPY agonist-treated group received a
highly selective Y2R agonist (NNC0165-1273) in addition to an unselective NPY receptor
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agonist (PYY3-36 or NNC0165-0020), which had an initially pronounced effect on weight
loss [27] but not on liver steatosis (after eight weeks of treatment). Fourth, transaminases
and lipids in the blood were not altered in the animal model, but these parameters cannot
be regarded as screening parameters for MASLD, as 80% of human MASLD patients have
normal ALT levels [62]. Fifth, sex-specific aspects were not part of the study, but it is
planned to repeat the experiments in female rats.

6. Conclusions

While the obesity pandemic continues to progress with increasing numbers of patients
worldwide, effective treatment options for obesity-associated comorbidities like MASLD
are urgently needed. Until now, the treatment of MASLD usually focusses on associated
comorbidities, since specific treatment options are not yet available. This study underlines
the relevance of weight loss in promoting liver health and gives further evidence that
GLP-1 agonists like semaglutide induce not only weight loss, but also an improvement in
early stages of MASLD. Polypeptide approaches (e.g., semaglutide in combination with
PYY3-36) may be even more beneficial. Although not promoting long-term weight loss, the
Y2R antagonist JNJ-31020028 has a positive impact on liver steatosis and reduces hepatic
de novo lipogenesis. Following the presented data, Y2R antagonists need to be further
evaluated as possible drug candidates in the treatment of MASLD, regardless of underlying
comorbidities. Moreover, Y2R antagonists might even be effective in non-obese patients,
where a weight-reducing drug is not applicable. Further research should go into detail
about the exact mechanisms of action of Y2R antagonists. A multiomics approach will shed
light on enriched pathways in the liver and other organs of interest.
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Abbreviations

ALT alanine transaminase
AST aspartate transaminase
BWM body-weight-matched
CH cholesterol
DIO diet-induced obese
DNL de novo lipogenesis
GIP gastric inhibitory polypeptide
GLP-1 glucagon-like Peptide-1
GLUT4 glucose transporter type 4
HFD high-fat diet
HOMA homeostasis model assessment
IR insulin resistance
MASLD metabolic-dysfunction-associated steatotic liver disease
MASH metabolic-associated steatohepatitis
NEFA non-esterified fatty acids
NPY neuropeptide Y
NRQs normalized relative quantities
PYY3-36 peptide YY 3-36
QrtPCR quantitatively real-time polymerase chain reaction
RNA ribonucleic acid
SGLT2 sodium glucose transporter 2
T2DM type 2 diabetes mellitus
TG triglyceride
Y1R NPY-1 receptor
Y2R NPY-2 receptor
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