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Abstract: Throughout infancy, IgA is crucial for maintaining gut mucosal immunity. This study
aims to determine whether supplementing newborn mice with eight different strains of Bifidobac-
terium longum subsp. infantis might regulate their IgA levels. The strains were gavaged to BALB/C
female (n = 8) and male (n = 8) dams at 1–3 weeks old. Eight strains of B. longum subsp. infantis had
strain-specific effects in the regulation of intestinal mucosal barriers. B6MNI, I4MI, and I10TI can
increase the colonic IgA level in females and males. I8TI can increase the colonic IgA level in males.
B6MNI was also able to significantly increase the colonic sIgA level in females. B6MNI, I4MI, I8TI,
and I10TI regulated colonic and Peyer’s patch IgA synthesis genes but had no significant effect on
IgA synthesis pathway genes in the jejunum and ileum. Moreover, the variety of sIgA-coated bacteria
in male mice was changed by I4MI, I5TI, I8TI, and B6MNI. These strains also can decrease the relative
abundance of Escherichia coli. These results indicate that B. longum subsp. infantis can promote IgA
levels but show strain specificity. Different dietary habits with different strains of Bifidobacterium may
have varying effects on IgA levels when supplemented in early infancy.

Keywords: Bifidobacterium longum subsp. infantis; IgA level; sIgA-coated bacteria; gut microbiota;
intestinal mucosal immunity

1. Introduction

The antibody known as immunoglobulin A (IgA) is mostly found on the surface of
mucous membranes, including those of the respiratory, urinary, and intestinal systems. It is
essential for preserving mucosal integrity and preventing inflammation of the intestinal
barrier [1]. Research has shown that the development of the mucosal immune system and
the synthesis of sIgA are facilitated by commensal bacteria [2]. In the intestinal mucosa,
intestinal microorganisms regulate both T cell-dependent and non-dependent mechanisms,
which transform B cells into IgA plasma cells. This process results in the production of IgA.
Thus, the higher prevalence of immune-mediated illnesses may be related to abnormalities
in the baby gut microbiota [3,4]. In fact, infants at risk of asthma have been found to
display “transient” gut microbial dysbiosis. [5]. In another study, microbial dysbiosis at
3 months of age was associated with the development of atopic wheeze at 5 years of age [6].
sIgA is the most abundant antibody in breast milk and functions as secreted IgA (sIgA) at
the mucosal site due to its irreversible binding to secretory factors during trans-epithelial
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transmigration. Infants cannot synthesize IgA within the first month of life and can only
obtain IgA through breast milk at a level of 0.25–0.5 g/day [7]. Research has demonstrated
that a deficit in sIgA impacts the diversity of the human and mouse microbiomes, which in
turn results in dysbiosis of the gut microbiota and illnesses including colitis and diarrhea.
Through bacterial glycan binding or antigen–antibody interactions, sIgA can encourage
bacterial colonization and proliferation in the gut [8]. sIgA deficiency increases the number
and duration of colonization by Enterobacteriaceae in the gut [9]. In contrast, other bacteria
show stronger colonization when coated by sIgA [10]. sIgA protects the gut microbiota by
encouraging the colonization of some anaerobic bacteria and inhibiting the development of
anaerobic bacteria that cause inflammation, such as Enterobacteriaceae [11].

Dietary habits are crucial in controlling IgA levels [12]. Positive dietary habits can
supply probiotics with the nutrients they need, including dietary fiber and prebiotics that
aid in the growth and reproduction of probiotics [13]. In addition, foods rich in probiotics
in the diet, such as yogurt, fiber, and bean products, can also help increase the level of
probiotics in the intestine [14]. Dietary fiber is one of the primary sources of nourishment
for intestinal Bifidobacterium. Consuming enough dietary fiber might encourage the growth
of intestinal Bifidobacterium, which may in turn control IgA levels [15]. Bifidobacterium
predominates in the infant intestines while they are breastfed. The primary cause is the
oligosaccharides found in breast milk, which promote Bifidobacterium development and
reproduction. However, the relative quantity of Bifidobacterium was reduced in the intestines
of some infants who were fed formula milk [16]. Also, compared to breastfeeding, infants
fed with formula milk have an increased risk of developing diseases [17]. The intake
of probiotics in the diet can to some extent alleviate the impact of formula feeding [18].
This also indicates that regardless of age, dietary habits and structure are crucial for
healthy development.

Researchers have reported that probiotics, including Bifidobacterium and Lactobacillus,
promote sIgA levels. For example, in in vitro experiments, Bifidobacterium bifidum OLB6378
increased sIgA levels, while inactivation of this strain and supplementation of full-term
infants increased the amount of sIgA in the feces of full-term infants [19]. Supplementation
with B. longum subsp. infantis M-63 significantly upregulated the relative abundance of
Bifidobacterium, resulting in elevated fecal IgA levels [20]. Additionally, B. animalis posi-
tively impacted IgA levels in a mouse model and improved intestinal barrier function [21].
B. animalis BB12 relieved colic in children and increased sIgA levels [22]. Thus, certain
commensal bacteria can stimulate intestinal IgA production [23,24] and improve the Th1
immune response [25]. IgA also coats the gut commensal bacteria, increasing immuno-
logical development and exposure to the immune system in early childhood according to
recent research [26]. To maintain intestinal homeostasis, sIgA modulates mucosal dendritic
cells with tolerogenic properties by encasing probiotic bacteria, such as Lactobacillus rham-
nosus [27]. Consequently, sIgA-coated bacteria may be used to assess their probiotic ability.
Moreover, it has been discovered that immunity is influenced by gender variations inde-
pendently of microbiota. This further contributes to the variations in immunity between
genders by causing the selection of a gender-specific microbiome [28]. The aforementioned
study, however, primarily investigated whether different Bifidobacterium or Lactobacillus can
regulate IgA, and the ability of different strains of Bifidobacterium or Lactobacillus to regulate
IgA is different remains unknown.

Bifidobacterium dominates in the infant intestine, especially B. longum subsp. infan-
tis [29], which is associated with healthy infant development. As a result, it is worthwhile
to investigate the B. longum subsp. infantis strains’ capacity to regulate IgA levels. We
speculate that giving mice supplements of these strains may affect the IgA levels of their
progeny in a strain-specific and intestinal niche-dependent way.
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2. Materials and Methods
2.1. Bacteria

Eight strains of B. longum subsp. infantis were deposited at Jiangnan University, Wuxi,
China. Among the eight strains, B6MNI (CCFM1269) was isolated from human breastmilk,
and the other seven strains were isolated from infant feces.

2.2. Animal Experiments

The animal study was approved by Jiangnan University on 15 September 2021 (JN.No
20210915b0601125[299]). Six-week-old male and female BALB/c mice who were specifically
pathogen-free (SPF) were bought from Beijing Vital River Laboratory Animal Technology
Co., Ltd. (Hangzhou, China). After a week of adaptation, male (20 ± 1 g) and female
(18 ± 1 g) mice (2:1) were housed in cages at 20–26 ◦C and 40–70% humidity. After confirm-
ing that the female mice were pregnant, the male mice were removed. The pregnant mice
were not given any medication before giving birth. Both males and females were gavaged
with normal saline and B. longum subsp. infantis strains I2MI, I4MI (CCFM 1270), I4MNI,
I5TI, I6TI, I8TI (CCFM1271), I10TI (CCFM1271), and B6MNI (CCFM1269), with n = 8 per
group, from 1 week old to 3 weeks old, with 1 × 109 CFU/day/mice (Figure 1). At the
time of testing, groups consisting of more than eight mice following litter merging were
randomly divided into eight groups. Mice were sacrificed at 3 weeks old. A blood sample
(100 µL) and the jejunum, ileum, Peyer’s patch (PP), and colon were collected. The other
samples were stored at −80 ◦C for further analysis.
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Figure 1. Process of animal experiment. Neonatal mice were kept with their mother until they were
weaned at three weeks, after a gestation period of three weeks. From one week to three weeks old,
neonatal mice were gavaged with eight strains of B. longum subsp. infantis and normal saline (female
and male groups).

2.3. Biochemical Indicator Measurement

PBS (Phosphate Buffered Saline; mass: volume = 1:9) was used to homogenize 50 mil-
ligrams of the colon, which was centrifuged for 10 min at 4000× g. The supernatant was
then collected for further analysis. The levels of IgA and sIgA in the colon were accessed
with ELISA kits based on the instructions.

2.4. qRT-PCR Analysis

Total RNA was extracted from tissues, including the Peyer’s patches, the colon, the
jejunum, and the ileum, using the TriZol method. Briefly, 10 mg of tissue was combined with
1 mL TriZol and homogenized for 30 s three times, and 200 µL trichloromethane was added
and the mixture was left to stand at room temperature for 15 min. Then, the supernatant
was collected after being centrifuged at 4 ◦C and 12,000× g for 15 min. The same volume of
isopropanol as the supernatant was added and the mixture remained at −20 ◦C for 30 min.
The supernatant was discarded after being centrifuged at 4 ◦C and 12,000× g for 15 min.
Finally, the sediment was dissolved in DEPC water after being washed with 75% ethanol
three times. RNA concentration was determined by the Nanodrop method before reverse
transcription with the HiScript III All-in-one RT SuperMix. The resulting cDNA template
was then kept at −80 ◦C. qRT-PCR was utilized for amplification, and the Ct value of each
template was measured and computed using the 2−∆∆Ct technique, with β-actin serving as
the internal standard for relative quantification. The qRT-PCR system consisted of 95 ◦C
for 5 min, 95 ◦C for 10 s, 60 ◦C for 30 s for 40 cycles; the melt curves depended on the mode
of the machine. The primer sequences are listed in Table 1.
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Table 1. Primers used in this study.

Primer Name Forward (5′-3′) Reverse (5′-3′)

TGF-β CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG
BAFF GGAACAGACGCGCTTTCCA GGCCGGTCATTACCTTTTCGT
APRIL GGAACAGACGCGCTTTCCA GGCCGGTCATTACCTTTTCGT
BCMA GCGCAACAGTGTTTCCACAG CGCTTGGATCACAGTAAGGCT
TACI ATGGCATTCTGCCCCAAAGAT ATGGTCGTAGTACCTGCCTTG
pIgR ATGAGGCTCTACTTGTTCACGC CGCCTTCTATACTACTCACCTCC
CXCR5 ATGAACTACCCACTAACCCTGG TGTAGGGGAATCTCCGTGCT
CXCL13 GGCCACGGTATTCTGGAAGC GGGCGTAACTTGAATCCGATCTA
CCR6 CCTGGGCAACATTATGGTGGT CAGAACGGTAGGGTGAGGACA
IL-21 GGACCCTTGTCTGTCTGGTAG TGTGGAGCTGATAGAAGTTCAGG
CCL9 CCCTCTCCTTCCTCATTCTTACA AGTCTTGAAAGCCCATGTGAAA
CCL20 GCCTCTCGTACATACAGACGC GCCTCTCGTACATACAGACGC

2.5. Separation of sIgA-Coated Bacteria

Ten mg of feces (wet weight) was washed with PBS (including 0.5% L-cysteine), and
the bacteria pellets were collected. Bacterial pellets were blocked by goat serum and
incubated by biotinylated anti-mice IgA and streptavidinized magnetic beads. sIgA-coated
bacteria were collected through the adsorption of magnetic beads by magnetic poles as
previously described. A suspension of bacteria was made in PBS with 0.5% L-cysteine
(PBSL). After that, the suspension was incubated for 20 min with 500 µL of goat serum.
The bacterial sediment was then recovered following a 5 min centrifugation at 6000× g and
4 ◦C. After the bacterial mass was suspended in PBSL, 500 µL of carboxyl magnetic beads
and 20 µL of IgA antibody were each added and incubated for 20 min. Lastly, sIgA-coated
bacteria from the bacterial sediment were separated using a magnetic rack washed with
PBS three times for DNA extraction.

2.6. DNA Extraction and 16S rRNA Gene Sequencing

MP Biomedicals (Irvine, CA, USA) manufactured the FastDNA Spin Kit for Feces,
which was used to extract DNA from fecal samples. The sIgA-coated bacteria isolated
as specified in Section 2.5 was taken to extract bacterial DNA. Briefly, a Lysing Matrix E
tube included in the MP Biomedicals kti was filled with bacterial sediment. After adding
and vortexing for 10 to 15 s, 825 µL of sodium phosphate buffer and 275 µL of pre-lysis
dissolving solution were added. Centrifugation at 14,000× g for 5 min was then performed,
and the supernatant was disposed of. The mixture was then mixed with 978 µL of sodium
phosphate buffer and 122 µL of MT buffer, shaken, and broken for 90 s (30 s at once) at
70 HZ on the high-throughput tissue grinder. The tube was then centrifuged for 10 min at
14,000 rcf. Finally, the FastDNA Spin Kit for Feces was used to purify the bacterial DNA in
the supernatant.

The 16S rRNA gene’s V3–V4 region was then amplified by PCR using the extracted
DNA as a template, in accordance with previously outlined procedures [30]. The integrity of
the PCR products was assessed using Agarose gel electrophoresis, and the concentration of
the PCR products was ascertained using Nanodrop (Thermo Fisher Scientific Inc, Waltham,
MA, USA). For creating a library, PCR products of the same quality were extracted from
each sample. A sequencing process was performed on the amplified products using an
Illumina MiSeq (San Diego, CA, USA). DADA2 was used to file the raw data, which were
then examined using Qiime 2 [31].

2.7. Statistical Analyses

The mean ± standard error of the mean (SEM) was used to show the results. When
the data had a normal distribution, one-way analysis of variance (ANOVA) was utilized
to compare the differences between groups of more than two. The post hoc Tukey’s test
was employed to evaluate statistically significant variations across groups. When the data
were not normally distributed, the Kruskal–Wallis test was used to compare the medians
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between the groups [32]. The male and female mice were contrasted with their respective
control groups. The alpha diversity of male and female mice was evaluated using Qiime2,
which included the Chao1 and Shannon indexes, relative to their respective control groups.
By using the R (version 4.3.2) packages “vagan”, “ape”, and “ggplot2”, PCoA (Principal
Co-ordinates Analysis), based on the distance between the Bray–Curtis matrix, was used to
compute beta diversity [32]. The Qiime 2 was used for data and bioinformation analysis.
The sequences excluded the expected, errors and samples were screened for chimeras. The
accession number for sequencing was PRJNA884502. Also, *, p < 0.05, **, p < 0.01, and
***, p < 0.001, compared to the control group in every figure. The mean ± SEM (n = 8 per
group) represented the data.

3. Results
3.1. B. longum Subsp. infantis Influenced IgA and sIgA Levels in the Colon of Mice

Strains I4MI, I10TI, and B6MNI increased the level of IgA in both female and male
mice (p < 0.05, Figure 2A), whereas only B6MNI increased the level of sIgA significantly
in female mice (p < 0.01, Figure 2B). Additionally, I4MI, I4MNI, I8TI, I10TI, and B6MNI
increased the level of IgA (p < 0.05, Figure 2C) significantly, but no significance was found
for the increase of the level of sIgA in male mice (Figure 2D).

Nutrients 2024, 16, 1148 5 of 15 
 

 

using an Illumina MiSeq (San Diego, CA, USA). DADA2 was used to file the raw data, 
which were then examined using Qiime 2 [31].  
2.7. Statistical Analyses 

The mean ± standard error of the mean (SEM) was used to show the results. When 
the data had a normal distribution, one-way analysis of variance (ANOVA) was utilized 
to compare the differences between groups of more than two. The post hoc Tukey’s test 
was employed to evaluate statistically significant variations across groups. When the data 
were not normally distributed, the Kruskal–Wallis test was used to compare the medians 
between the groups [32]. The male and female mice were contrasted with their respective 
control groups. The alpha diversity of male and female mice was evaluated using Qiime2, 
which included the Chao1 and Shannon indexes, relative to their respective control 
groups. By using the R (version 4.3.2) packages “vagan”, “ape”, and “ggplot2”, PCoA 
(Principal Co-ordinates Analysis), based on the distance between the Bray–Curtis matrix, 
was used to compute beta diversity [32]. The Qiime 2 was used for data and bioinfor-
mation analysis. The sequences excluded the expected, errors and samples were screened 
for chimeras. The accession number for sequencing was PRJNA884502. Also, *, p < 0.05, **, 
p < 0.01, and ***, p < 0.001, compared to the control group in every figure. The mean ± SEM 
(n = 8 per group) represented the data. 

3. Results 
3.1. B. longum Subsp. infantis Influenced IgA and sIgA Levels in the Colon of Mice 

Strains I4MI, I10TI, and B6MNI increased the level of IgA in both female and male 
mice (p < 0.05, Figure 2A), whereas only B6MNI increased the level of sIgA significantly 
in female mice (p < 0.01, Figure 2B). Additionally, I4MI, I4MNI, I8TI, I10TI, and B6MNI 
increased the level of IgA (p < 0.05, Figure 2C) significantly, but no significance was found 
for the increase of the level of sIgA in male mice (Figure 2D).  

 
Figure 2. B. longum subsp. infantis influenced the level of IgA and sIgA of female (A,B) and male 
mice (C,D). (A) the level of IgA; (B) the level of sIgA; (C) the level of IgA; (D) the level of sIgA. *, p 
< 0.05, **, p < 0.01, ***, p < 0.001, compared to corresponding control group. 

3.2. B. longum Subsp. infantis Influenced IgA Synthesis Genes 
Based on the above results, B. longum subsp. infantis I4MI, I5TI, I10TI, and B6MNI for 

female mice, and I4MI, I5TI, I8TI, and B6MNI for male mice were selected for subsequent 
analysis. The IgA synthetic pathway in the colon was also assessed by qRT-PCR. For fe-
male mice, B. longum subsp. infantis I4MI upregulated the relative expression of BAFF, 
BCMA, and PIgR (p < 0.01, Figure 3B,D,F) significantly. I5TI increased the relative 

Figure 2. B. longum subsp. infantis influenced the level of IgA and sIgA of female (A,B) and male
mice (C,D). (A) the level of IgA; (B) the level of sIgA; (C) the level of IgA; (D) the level of sIgA.
*, p < 0.05, **, p < 0.01, ***, p < 0.001, compared to corresponding control group.

3.2. B. longum Subsp. infantis Influenced IgA Synthesis Genes

Based on the above results, B. longum subsp. infantis I4MI, I5TI, I10TI, and B6MNI for
female mice, and I4MI, I5TI, I8TI, and B6MNI for male mice were selected for subsequent
analysis. The IgA synthetic pathway in the colon was also assessed by qRT-PCR. For female
mice, B. longum subsp. infantis I4MI upregulated the relative expression of BAFF, BCMA,
and PIgR (p < 0.01, Figure 3B,D,F) significantly. I5TI increased the relative expression of
BAFF, APRIL, BCMA, and PIgR (p < 0.01, Figure 3B–F). B6MNI increased the relative expres-
sion of BAFF, APRIL, BCMA, and PIgR (p < 0.05, Figure 3B–F). No significant differences
were found in TGF-β and TACI expression (Figure 3A,E). For male mice, I5TI, I8TI, and
B6MNI upregulated BAFF and BCMA relative expression (p < 0.05, Figure 3H,J). Whereas
I4MI only upregulated expression of the BAFF gene (p < 0.05, Figure 3H). No significant
differences were found in TGF-β, APRIL, TACI, and PIgR expression (Figure 3G,I,K,L).
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Figure 3. B. longum subsp. infantis influences the related genes for IgA+ plasma cell production
in the colon of females (A–F) and males (G,H). (A) the expression of TGF-β; (B) the expression of
BAFF; (C) the expression of APRIL; (D) the expression of BCMA; (E) the expression of TACI; (F) the
expression of PIgR; (G) the expression of TGF-β; (H) the expression of BAFF; (I) the expression of
APRIL; (J) the expression of BCMA; (K) the expression of TACI; (L) the expression of PIgR. * p < 0.05,
**, p < 0.01, ***, p < 0.001, compared to corresponding control group.

3.3. B. longum Subsp. infantis Influenced IgA+ Plasmocyte Synthetic-Related Genes in PPs

PPs are an important site for an organism to produce IgA based on the stimulation of
extrinsic factors. IgA+ plasmacyte synthetic-related genes were detected by qRT-PCR. In
female mice, the relative expression of TGF-β and IL-21 was significantly higher in I4MI
and B6MNI compared to those in control mice (p < 0.05, Figure 4D,H), and the relative
expression of CXCR5 and CCR6 was significantly higher in I10TI and B6MNI compared to
those in the control mice (p < 0.05, Figure 4E,G). Furthermore, I5TI increased the relative
expression of CCL20 (p < 0.01, Figure 4J), and B6MNI increased the relative expression of
PIgR (p < 0.05, Figure 4K). In male mice, the relative expression of BAFF, BCMA CCL9,
and CCL20 was significantly higher in I4MI, I5TI, I8TI, and B6MNI compared to those
in the control group (p < 0.05, Figure 4L,M,T,U). The TACI expression was significantly
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higher in I5TI, I10TI, and B6MNI groups (p < 0.01, Figure 4N). The TGF-β expression was
significantly higher in I8TI and B6MNI groups (p < 0.05, Figure 4O). Moreover, I8TI and
B6MNI also increased the relative expression of CXCL13 and IL-21, respectively (p < 0.05,
Figure 4Q,S).
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Figure 4. B. longum subsp. infantis influenced IgA production-related gene expression in PPs in
females (A–K) and males (L–V). (A) BAFF; (B) BCMA; (C) TACI; (D) TGF-β; (E) CXCR5; (F) CXCL13;
(G) CCR6; (H) IL-21; (I) CCL9; (J) CCL20; (K) PIgR; (L) BAFF; (M) BCMA; (N) TACI; (O) TGF-β;
(P) CXCR5; (Q) CXCL13; (R) CCR6; (S) IL-21; (T) CCL9; (U) CCL20; (V) PIgR. * p < 0.05, **, p < 0.01,
***, p < 0.001, compared to corresponding control group.

3.4. B. longum Subsp. infantis Influenced IgA Synthesis-Related Genes in Jejunum and Ileum

The small intestine, as part of the intestinal tract, plays an equally important immuno-
logical role in maintaining host health. The relative expression of IgA synthesis-related
genes in the jejunum was detected. No significant difference was found in the expression



Nutrients 2024, 16, 1148 8 of 15

of IgA synthesis-related genes in the jejunum of female mice (Figure 5A–F). For male mice,
I5TI increased the relative expression of TACI mRNA (p < 0.05, Figure 5K).
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Figure 5. B. longum subsp. infantis influenced IgA+ plasmacyte synthesis-related gene expression
in the jejunum of female (A–D) and male mice (E–H). (A) TGF-β; (B) BAFF; (C) APRIL; (D) BCMA;
(E) TACI; (F) PIgR; (G) TGF-β; (H) BAFF; (I) APRIL; (J) BCMA; (K) TACI; (L) PIgR. * p < 0.05,
compared to corresponding control group.

B. longum subsp. infantis influenced IgA synthesis-related genes in the ileum of mice.
For IgA+ synthesis-related genes, I4MI and I5TI increased the relative expression of BAFF
(p < 0.05, Figure 6B) and TACI in females, respectively (p < 0.05, Figure 6E). Additionally,
I4MI, I5TI, and B6MNI upregulated of BAFF expression in males (p < 0.05, Figure 6H).
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female (A–D) and male mice (E–H). (A) TGF-β; (B) BAFF; (C) APRIL; (D) BCMA; (E) TACI; (F) PIgR;
(G) TGF-β; (H) BAFF; (I) APRIL; (J) BCMA; (K) TACI; (L) PIgR. * p < 0.05, compared to corresponding
control group.

3.5. Variety of sIgA-Coated Bacterial Composition

For female mice, no significant differences were found in Chao 1 and Shannon indexes
(Figure 7A,B). For PCoA, no significant differences were found for sIgA-coated bacteria
among the five groups (Figure 7E). Additionally, Escherichia-Shigella remained the dominant
sIgA-coated bacteria in the control, I4MI (32.90%), I5TI (42.72%), I10TI (60.12%), and B6MNI
(19.23%) groups (Figure 8A).
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Figure 8. Effects of B. longum subsp. infantis on the composition of sIgA-coated bacteria. (A,B) sIgA-
coated bacterial stacking plot at genus level. (C–F) Significant difference of sIgA-coated bacteria in
male mice. * p < 0.05, **, p < 0.01, ***, p < 0.001, compared to corresponding control group.
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For male mice, Chao 1 and Shannon indexes were significantly higher in the I4MI,
I5TI, I8TI, and B6MNI groups compared with the control group (p < 0.05, Figure 7C,D).
PCoA results for sIgA-coated bacteria showed bacterial composition among groups was
different (Figure 7F). sIgA-coated Escherichia-Shigella was dominant in the control (85.90%),
I5TI (44.18%), and B6MNI (34.7%) groups, whereas sIgA-coated Lactobacillus was dom-
inant in the I4MI (26.79%) and I8TI groups (16.40%, Figure 8B). I4MI, I8TI, and B6MNI
increased sIgA-coated Alistipes (p < 0.05, Figure 8C) and Lactobacillus (p < 0.05, Figure 8D)
and decreased the relative abundance of Escherichia-Shigella (Figure 8E). I4MI, I5TI, and
I8TI treatments also increased the relative abundance of unclassified Muribaculaceae
(p < 0.05, Figure 8F).

4. Discussion

In this study, we assessed IgA level-related cytokines and genes, as well as alterations
in the makeup of sIgA-coated bacteria, in mice aged 1–3 weeks after gavage with eight
strains of B. longum subsp. infantis. According to our research, B. longum subsp. infantis
can regulate colonic IgA levels in both male and female mice, but it is unable to regulate
the IgA synthetic gene in the ileum and jejunum. Furthermore, these effects rely on the
intestinal niches and are strain specific.

IgA, an important immunoglobulin in the intestine, plays a critical role in intestinal
mucosal immunity regulation [33]. According to studies, Bifidobacterium can increase
the production of IgA by interacting with intestinal immune cells, regulating immune
response, and promoting the function of the intestinal mucosal barrier. These mechanisms
all contribute to the maintenance of intestinal health and the enhancement of the intestinal
immune system. Additionally, this is one of the key ways that Bifidobacterium contributes to
preserving the balance of the gut microbiota, avoiding intestinal disorders. For instance,
it has been demonstrated that B. animalis HY8002 raises the IgA level in PP cells [21], and
B. longum subsp. infantis M-63 can also significantly increase fecal IgA levels [20]. In this
study, B. longum subsp. infantis I4MI, I10TI, and B6MNI increased IgA in the colon of
females. In addition, I4MI, I4MNI, I8TI, I10TI, and B6MNI increased IgA in male mice.
BAFF and its receptor in the colon [33], irreplaceable at the IgA level, were activated by
B. longum subsp. infantis in both males and females. B. longum subsp. infantis increases IgA
secretion; however, it has a distinct effect on the genes involved in IgA synthesis. Different
cell types, including dendritic cells, macrophages, and epithelial cells, create B-activating
factor (BAFF), which can support B cell survival, proliferation, and differentiation and
keep the body’s B cell level stable. [34]. BCMA is a receptor for BAFF, which plays an
important role in the maturation and function of B cells [35]. When BAFF binds to BCMA,
it can trigger a series of downstream signal transduction pathways, thereby promoting
the survival and differentiation of B cells [35]. APRIL can bind to both BCMA and TACI
to activate B cells, promoting IgA synthesis and secretion [36]. The results showed that
B. longum subsp. infantis mainly affects the binding of BAFF and APRIL with BCMA,
activates B cells to promote IgA production, and has no significant effect on TACI.

IgA synthesis occurs in intestinal PPs, which are crucial, and the process of producing
IgA in plasma cells is far more intricate than it is in the intestinal lamina propria [37]. More
external stimulation is needed for PPs to produce IgA plasma cells, such as IL-21, which
enhances immune cells’ antigen-specific response, and CCL9 and CCL20, chemokines that
draw DC into M cells [38,39]. In this study, B. longum subsp. infantis stimulated more genes
related to IgA plasma cell production in PPs in male mice. The majority of these genes are
found in the B cell activating factors and their receptors. This might suggest that B. longum
subsp. infantis functions as an antigen in mice to deactivate B and M cells and imprint
immunological memory in later life [40]. IgA synthesis-related genes were also found in
the ileum and jejunum, but in this investigation, B. longum subsp. infantis only had an
effect on IgA synthesis genes in the colon. This might be the case because different regions
of the intestine have varied functional compositions, and the microorganism’s colonization
habitats dictate how it functions [41,42]. For instance, the oligosaccharides found in human
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breastfeeding, which nourish Bifidobacterium, are difficult for the bacteria to digest and
instead stay in the colon to support bacterial development. Meanwhile, B. longum subsp.
infantis has an absolute advantage in the infant stomach because it has more genes for
breaking down HMO than other Bifidobacterium species, such as B. breve and B. bifidum [29].

IgA dimers are transported from the submucosa to the mucosal surface by the secretory
component (SC), an auxiliary component of the secretory IgA molecule that is produced
and released by mucosal epithelial cells [43]. sIgA is formed when the secretory component
binds to IgA and is released into the intestinal lumen via PIgR [44]. Loss of the mRNA
of PIgR results in a lack of sIgA in the intestine [45]. It has been suggested that raising
mice’s sIgA levels after weaning may have an impact on the composition and activity of
the gut microbiota [46], and this effect is maintained and amplified when the mice reach
adulthood. However, B6MNI was the sole treatment that enhanced IgA in the colon of
female mice, while having no effect on IgA synthesis in the jejunum or ileum. This finding
may be explained by strain variations and intestinal niches [47]. Furthermore, B6MNI was
isolated from human breastmilk, whereas the remaining seven strains were obtained from
the feces of infants. The functions of strains may also be impacted by their various origins.
To find out if these eight strains of B. longum subsp. infantis vary in their genomes and
metabolites in vitro and in vivo, more research is required.

The composition and relative abundance of bacteria coated with sIgA are varied with
age and are supposed to be biomarkers of disease occurrence [1]. For example, infants with
necrotizing enterocolitis showed a lower relative abundance of Bifidobacteriaceae [48]. sIgA-
coated anaerobic bacteria significantly increase within 6–12 months [1]. This study showed
the sIgA-coated bacteria were not influenced in female mice gavaged with B. longum subsp.
infantis, in contrast to a study where Lactobacillus reuteri was gavaged in mice [49]. The age
of the mice and the method of gavage differ between the results of the prior study and ours.
As a result, several variables affect the changes in the composition of sIgA-coated bacteria.
Nonetheless, there was a significant impact on the sIgA-coated bacteria in male mice. In the
sIgA-coated version, the relative number of helpful bacteria rose, while that of opportunistic
pathogenic bacteria was considerably decreased. Previous research has documented sex-
dependent differences in the composition of the gut microbiota [50]. The gut microbiota
of recipient mice differed according to gender when the fecal microbiota from certain
pathogen-free female mice was transplanted into germ-free mice [51,52]. According to
another study, females have a larger abundance of Bifidobacterium in the mucosa-associated
microbiome [52]. Because soy iso-flavones, chemically similar to estrogen, significantly
increase Bifidobacterium, there may be a connection between estrogen and this sex-specific
variance in gut microorganisms. The varying outcomes of the probiotic intervention
might have been caused by variations in the bacteria of the male and female mice. These
findings suggest that an important window of immunological development is influenced
by early-life microbiome colonization. For newborns at risk of microbiota imbalances
that might impair immune development and increase vulnerability to illness, gender-
specific microbial formulations should be developed via a knowledge of the bacteria and
mechanisms involved.

Many nutrients may be obtained from a varied diet, which is advantageous for pre-
serving the diversity of the gut microbiota and encouraging the development and regrowth
of intestinal Bifidobacterium. Conversely, a single food structure can cause the amount
of bifidobacteria in the colon to drop, which would upset the gut microbiota’s delicate
equilibrium. Breast milk is mostly consumed by infants throughout their first six months
of life, and the IgA it contains helps babies grow normally. Of course, the other nutrients it
contains—beef milk oligosaccharides, microbes, proteins, and fats—can help support the
health of a newborn. However, there are factual and subjective variables that contribute
to infants using formula milk. Although the nutritional content of formula milk is close
to that of breast milk, it still cannot be compared to breast milk [18]. Thus, in the era of
food nutrition, supplementing with probiotics to support baby health and make up for
formula milk’s shortcomings has become a worry. According to this study, the structure of
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the gut microbiota and IgA levels are affected differently by supplementing with different
strains of B. longum subsp. infantis. This further demonstrates that the regulatory actions of
probiotics vary depending on the strain. These elements will also control intestinal mucosal
immunity in the early years, which promotes healthy growth in later life. Probiotic dietary
supplements can fairly and successfully make up for subhealth conditions brought on by a
variety of circumstances.

The application value of B. longum subsp. infantis promoting IgA production in
mice in clinical aspects lies in its potential to enhance mucosal immunity and protect
against infections. IgA is an important antibody and plays a crucial role in defending
against pathogens at mucosal surfaces. By stimulating the production of IgA, B. longum
subsp. infantis can help strengthen the immune response in the gut and respiratory tract,
reducing the risk of infections. This probiotic strain may also have the potential to modulate
immune responses and reduce inflammation, which could be beneficial in managing
various immune-related conditions. Further research and clinical trials are needed to
validate these potential clinical benefits and explore the specific applications of B. longum
subsp. infantis in human health.

The limitation of this article is the lack of analysis of the characteristics of the strains
themselves. Additional analysis should be performed to explain the relationship between
the gene of strains and its ability to increase the level of IgA secretion.

5. Conclusions

Given to mice ranging in age from one to three weeks, B. longum subsp. infantis
increased colonic IgA levels in both male and female mice, as well as sIgA levels in female
mice. It also regulated genes that promote IgA in the colon and in PPs. In terms of boosting
IgA levels, eight strains of B. longum subsp. infantis exhibited strain-specific effects; among
them, B6MNI exhibited more pronounced effects than the other strains. Furthermore, the
effects of B. longum subsp. infantis on mice were intestinal niche-dependent.
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