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Abstract: Nitrate (NO3
−) obtained from the diet is converted to nitrite (NO2

−) and subsequently
to nitric oxide (NO) within the body. Previously, we showed that porcine eye components contain
substantial amounts of nitrate and nitrite that are similar to those in blood. Notably, cornea and
sclera exhibited the capability to reduce nitrate to nitrite. To gain deeper insights into nitrate
metabolism in porcine eyes, our current study involved feeding pigs either NaCl or Na15NO3 and
assessing the levels of total and 15N-labeled NO3

−/NO2
− in various ocular tissues. Three hours after

Na15NO3 ingestion, a marked increase in 15NO3
− and 15NO2

− was observed in all parts of the eye;
in particular, the aqueous and vitreous humor showed a high 15NO3

− enrichment (77.5 and 74.5%,
respectively), similar to that of plasma (77.1%) and showed an even higher 15NO2

− enrichment
(39.9 and 35.3%, respectively) than that of plasma (19.8%). The total amounts of NO3

− and NO2
−

exhibited patterns consistent with those observed in 15N analysis. Next, to investigate whether nitrate
or nitrite accumulate proportionally after multiple nitrate treatments, we measured nitrate and nitrite
contents after supplementing pigs with Na15NO3 for five consecutive days. In both 15N-labeled
and total nitrate and nitrite analysis, we did not observe further accumulation of these ions after
multiple treatments, compared to a single treatment. These findings suggest that dietary nitrate
supplementation exerts a significant influence on nitrate and nitrite levels and potentially NO levels
in the eye and opens up the possibility for the therapeutic use of dietary nitrate/nitrite to enhance or
restore NO levels in ocular tissues.

Keywords: dietary nitrate; nitrite; nitric oxide; porcine eye

1. Introduction

Dietary nitrate, abundant in green leafy vegetables and beetroots, has been demon-
strated to enhance NO bioavailability through two-step reduction mechanisms [1–3]. Once
it is ingested, nitrate can be reduced to nitrite by oral commensal bacteria [4,5] and, to
some extent, by mammalian molybdenum (Mo)-containing enzymes such as xanthine
oxidoreductase (XOR) [6–8]. Nitrite ions can then be further reduced to NO via several
mechanisms [9–12]. Numerous studies demonstrated the beneficial effects of dietary nitrate
consumption on the cardiovascular system, such as lowering blood pressure and increas-
ing blood flow [13–15], as well as improving exercise efficiencies [16–18]. Interestingly,
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recent epidemiological studies have shown that the intake of dietary nitrate was inversely
associated with the development of several eye diseases, such as age-related macular de-
generation and glaucoma [19–23]. Also, some eye diseases, namely myopia and glaucoma,
are known to be linked to a reduction in NO bioavailability [24,25].

NO has been considered a crucial regulator for intraocular pressure, due to its roles in
enhancing aqueous humor outflow via the relaxation of trabecular meshwork [26,27]. The
importance of NO signaling in the eye via nitric oxide synthase (NOS) pathways for the
regulation of ocular blood flow has been recognized [28,29], since all three NOS isoforms
have been identified in mammalian ocular tissues [30]. Recently, the FDA approved an
NO-donating prostaglandin analogue, latanoprostene bunod, for reducing intraocular
pressure in patients with an open-angle glaucoma or ocular hypertension [31]. However,
the contribution of the nitrate–nitrite–NO reduction pathways to NO bioavailability and
involvement in physiological and pathophysiological phenomena in the eye has not been
greatly appreciated so far. Given that the nitrate–nitrite–NO pathways are considered
significant sources of bioavailable NO in various organ systems, it is now thought that NO
produced from nitrate reduction pathways could play a role in the ocular system. In our
previous report, we showed that several ocular components in pigs contain substantial
amounts of nitrate and nitrite ions [32]. More importantly, the cornea and sclera exhibited a
nitrate reduction activity, suggesting that dynamic nitrate–nitrite–NO pathways may exist
and take part in ocular signaling pathways. However, questions remain on the extent of
the contribution of each NO source, namely NOS and nitrate reduction pathways, to the
overall NO metabolism in the eye. One of the quantitative methods used to calculate the
contribution of each NO source is to use stable isotope-labeled supplements and monitor
the amount of tracers accumulated in target tissues. Previously, we and others have used
15N-labeled nitrate, nitrite, or arginine to determine the incorporation of these supplements
in plasma or other tissues such as skeletal muscle [33–36]. Specifically, in a rat study, we
showed that the eyes took in dietary nitrate more efficiently than other major organs (liver
or skeletal muscle); also, the amount of nitrite generation from the exogenous nitrate was
higher in the eyes compared to that in the liver and skeletal muscle [37], which suggests
that the eye is an active organ that can metabolize dietary nitrate. In the present study, we
examined the nitrate metabolism in the eye in more detail by obtaining different parts of
porcine ocular tissues after 15N-labeled nitrate administration.

2. Materials and Methods
2.1. Animal Study

This research was conducted as part of the animal protocols approved by the IACUC
(Institutional Animal Care and Use Committee, protocol # 2020-017) of Medstar Health
Research Institute, in compliance with the Animal Welfare Act and the Guide for the Care
and Use of Laboratory Animals, 8th ed. Both male and female Yorkshire domestic cross
swine, weighing between 35 and 40 kg, sourced from Thomas D. Morris, Inc. (Reisterstown,
MD, USA) were used. On arrival, animals were acclimated for a minimum of 72 h and
housed in an AAALAC (Association for Assessment and Accreditation of Laboratory
Animal Care)-accredited facility with environmental enrichment. Animals were fed twice
daily with a commercial chow (Teklad miniswine diet, 8753C, Envigo, Madison, WI, USA).
Fresh water was provided ad libitum via an automated system. Na15NO3 (0.15 mmol/kg)
or NaCl (0.15 mmol/kg) were given orally with a moist food ball of swine chow.

On the day of terminal tissue collection, pigs were sedated with a cocktail mixture of
ketamine (15–20 mg/kg, Zoetis, Parsippany, NJ, USA) and xylazine (3–5 mg/kg, Covetrus,
Dublin, OH, USA) and were then maintained under 3–5% isoflurane with 2 L/min oxygen
anesthesia, with a mechanical ventilator, during the entire procedure. Both the left and
right femoral veins were cannulated via ultrasound-guided percutaneous access; the left
or right common carotid artery and jugular vein were accessed using a 2–3-inch ventral
midline neck skin incision. Tygon 3350 silicone tubing (Saint-Gobain, Williamsburg, MI,
USA) was connected to all venous sheaths and animals were heparinized (≥200 IU/Kg).
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Blood removal began 15 min after heparin administration with all three venous access lines.
Euthanasia was accomplished with a single intravenous injection of saturated potassium
chloride (4.6 mL per 10 kg body weight, IV bolus, using a 4.2 M KCl concentration), while
the animals were maintained on isoflurane gas anesthesia, as per the AVMA (American
Veterinary Medical Association, Schaumburg, IL, USA) guidelines. Perfusion began im-
mediately after euthanasia, with the arterial sheath attached to warm 0.9% NaCl solution
(Baxter Healthcare, Mississauga, ON, Canada) with heparin (2000 IU/L, Fresenius Kabi,
Melrose Park, IL, USA). A total of 8 L of heparinized 0.9% NaCl solution was perfused
before ocular tissue collection.

2.2. Sample Preparation for Nitrate and Nitrite Measurements

Standard chemiluminescence assays for measuring nitrite and nitrate contents were
performed according to previously published protocols [38,39]. Blood was drawn from the
femoral artery into vacutainer tubes containing sodium citrate (Becton Dickinson, Franklin
Lakes, NJ, USA) and was immediately centrifuged to obtain platelet-free plasma using a
PDGTM platelet centrifuge (Bio/Data, Horsham, PA, USA). Tissue samples were collected
and proteins from all samples were precipitated by adding methanol (dilution 1:1), followed
by subsequent centrifugation at 11,000× g for 15 min at 4 ◦C. Supernatants were used to
determine nitrite and nitrate contents using chemiluminescence (Sievers 280i Nitric Oxide
Analyzer, GE Analytical Instruments, Boulder, CO, USA).

2.3. Preparation of Samples for Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS)

To measure nitrate content using LC-MS/MS, nitrate ions in all samples were first
enzymatically reduced to nitrite by bacterial nitrate reductase from Aspergillus niger (N7265,
Sigma-Aldrich, St. Louis, MO, USA), as previously described [40,41], with some mod-
ification. Briefly, the sample (20 µL) was mixed with 96 µL of a mixture consisting of
nitrate reductase (0.1 U/mL) and nicotinamide adenine dinucleotide phosphate (NADPH,
100 µM) and was incubated for 2 h at room temperature. Then, nitrite ions in the samples
were derivatized with 2,3-diaminonaphthalene (DAN, D2757, Sigma-Aldrich) for 30 min
at 37 ◦C to yield 2,3-naphthotriazole (NAT). NaOH (58 mM) was added to terminate the
reaction. For measuring nitrite content only, the samples (50 µL) were directly subjected to
DAN derivatization.

2.4. Determination of 15NO3
− or 15NO2

− Percent Using LC–MS/MS

High-performance liquid chromatography (HPLC)-grade solvents and LC–MS mod-
ifiers were purchased from Sigma-Aldrich (St. Louis, MO, USA). Detection and quan-
tification were achieved using ultra-performance liquid chromatography–tandem mass
spectrometry (UPLC–MS/MS), utilizing a Thermo Scientific Vanquish UPLC (Thermo
Fisher Scientific, Waltham, MA, USA) with a Thermo Scientific Altis triple quadrupole
mass spectrometer, with a heated electrospray ionization (HESI-II) in positive ion mode
(3500 V). In total, 50 µL of sample was mixed with 200 µL of acetonitrile (ACN), vortexed
for 5 min, and was then centrifuged at 4 ◦C at 17,000× g for 15 min. The supernatant was
transferred to an LC–MS vial for analysis. The injection volume was 1 µL. A Waters Cortecs
T3, 2.1 × 100 mm, 1.6 µm column was maintained at 35 ◦C. Solvent A consisted of H2O
with 0.1% formic acid (FA) and Solvent B consisted of ACN with 0.1% FA. The flow rate
was 250 µL/min, the gradient was 25% B at 0 min for 0.25 min, increasing to 65% B at
5 min, further increasing to 90% B at 5.5 min, remained at 90% B until 7.5 min, and then
decreased to 25% B at 8 min. The total running time was 10 min. Samples were analyzed in
triplicates. Quantitation of 14NAT and 15NAT were based on multiple reaction monitoring
(MRM) transitions m/z, 170.062 → 115.042 and 171.062 → 115.042, respectively. The result
was based on the percentage ratio of 15NAT/(14NAT + 15NAT).
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2.5. Statistical Analysis

Values represent average ± standard deviation. The statistical significance of the
results was tested using a one-way ANOVA. * denotes p < 0.05.

3. Results

To assess the effect of dietary nitrate supplementation on the amounts of nitrate and
nitrite ions incorporated in different parts of the eye, we orally administered either placebo
(NaCl) or Na15NO3 (0.15 mmol/kg) to Yorkshire domestic pigs (35–40 kg), then collected
and dissected each eye into several different components at either the 3 h or 24 h time point,
following administration. The cornea, sclera, lens, retina, optic nerve, and aqueous and
vitreous humor were harvested. In addition, the lacrimal gland, ocular muscle, and plasma
were collected for comparison.

Figure 1 shows the total concentrations of nitrate (Figure 1A) and its relative changes
(Figure 1B) in ocular tissues after the nitrate administration. Nitrate levels in all ocular
tissues and plasma were significantly higher when supplemented with Na15NO3, compared
to NaCl at 3 h; plasma exhibited the highest fold change among all the samples (a 4-fold
increase), but aqueous and vitreous humor showed the highest fold changes in ocular
tissues (3.9- and 3.5-fold increase, respectively), followed by the sclera, lacrimal gland,
and cornea (2.9-, 2.8-, and 2.6-fold increase, respectively). The values of nitrate at 24 h
after Na15NO3 supplementation were similar or slightly higher than the control NaCl, but
considerably lower than those observed at the 3 h time point.
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Figure 1. Total nitrate concentration (panel A) and its relative change (panel B) in porcine plasma and
ocular tissues after Na15NO3 administration. (A) Tissue samples were homogenized using a bead ho-
mogenizer, then centrifuged (17,000× g, 30 min) after mixing with methanol for deproteinization [39].
The supernatant was used for nitrate measurement using a standard chemiluminescence method
with vanadium chloride [38]. Data are plotted as average ± standard deviation (n = 4 for 3 h groups,
n = 3 for 24 h groups, * p < 0.05 compared to NaCl 3 h). N represents an individual animal. (B) The
change in each tissue at 3 h and 24 h after Na15NO3 administration relative to NaCl administration.

In Figure 2, we analyzed the concentrations of nitrite (Figure 2A) and its relative
changes (Figure 2B) in ocular tissues. The administration of Na15NO3 caused a substantial
rise in nitrite concentration at 3 h in the cornea, sclera, and aqueous and vitreous humor,
compared to NaCl administration. However, there were no significant changes in the retina,
optic nerve, ocular muscle, and lacrimal gland, in terms of nitrite levels. The fold changes
also show similar results in these ocular tissues (1.4-, 1.3-, 1.6-, and 1.4-fold increase in the
cornea, sclera, and aqueous and vitreous humor, respectively, and minimal alterations were
observed in other ocular tissues).
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mogenizer, then centrifuged (17,000× g, 30 min) after mixing with methanol for deproteinization [39].
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Na15NO3 administration relative to NaCl administration.

Next, to provide a precise assessment of the incorporation of dietary nitrate (supple-
mented Na15NO3) and its metabolite, nitrite, into ocular tissues, we employed LC–MS/MS,
as described in the Section 2 (Materials and Methods Section), to calculate the percent
of 15N-labeled nitrate and nitrite in the tissue samples. The baseline level of 15N-labeled
nitrate or nitrite obtained from NaCl-supplemented pigs was approximately 2% in all
samples. Figure 3A shows the amount of 15NO3

−, based on the ratio of 15N/(15N + 14N),
in plasma and various ocular tissues. After 3 h of nitrate administration, the percent of
15NO3

− in all samples was significantly higher than that in NaCl-administered samples.
Among the ocular tissues, the aqueous and vitreous humor showed the highest incorpo-
ration of exogenous nitrate (77.5% and 74.5%, respectively), which was similar to that of
plasma (77.1%). However, 24 h after nitrate administration, the percentage of 15NO3

− in
all samples decreased markedly, but still remained higher than the baseline observed in
NaCl-administered pig samples. In Figure 3B, we analyzed the percentage of 15NO2

−,
which directly represents the reduction amount derived from the supplemented Na15NO3
in plasma and ocular tissues. In plasma, 3 h after the Na15NO3 administration, 19.8% of
nitrite was 15N-labeled. Interestingly, aqueous and vitreous humor had even higher levels
of 15NO2

− compared to plasma (39.9% and 35.3%, respectively), although these values
were not statistically different from plasma. All other ocular tissues had slightly lower
levels of 15NO2

− than plasma, but all exhibited significantly higher levels of 15NO2
− 3 h

after the Na15NO3 administration, compared to NaCl.
The subsequent question we investigated was the extent of nitrate/nitrite accumula-

tion following Na15NO3 administration for five consecutive days, in comparison to a single
administration. In Figure 4, we compared the total concentration of nitrate (Figure 4A) and
nitrite (Figure 4B) in plasma and ocular tissues between single and multiple treatments.
However, we did not observe any significant differences in any of the ocular tissues or
plasma between single and multiple treatments, although there was a slight upward trend
in nitrite levels noted in the cornea, sclera, and aqueous and vitreous humor in 5-day treat-
ments compared to a single treatment. Furthermore, our analysis of 15NO3

− and 15NO2
−

did not reveal any significant differences between single and multiple nitrate treatments
(Figure 5).



Nutrients 2024, 16, 1154 6 of 11Nutrients 2024, 16, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 3. 15N-labeled nitrate (panel A) and nitrite (panel B) content in porcine plasma and ocular 
tissues after Na15NO3 administration. Porcine eyes were dissected into cornea, sclera, aqueous hu-
mor, lens, vitreous humor, retina, and optic nerve. Tissue samples including the ocular muscle (su-
perior and medial rectus) and lacrimal gland were homogenized using a bead homogenizer [39], 
then centrifuged (17,000× g, 30 min). 15N-labeled nitrate and nitrite contents were measured using 
LC–MS/MS. All nitrate ions in samples were first reduced to nitrite by bacterial nitrate reductases 
(Aspergillus niger). Then, nitrite derivatization using DAN was performed to yield NAT. The result 
was based on the percentage ratio of 15NAT/(14NAT + 15NAT). Data are plotted as average ± standard 
deviation (n = 4 for 3 h groups, n = 3 for 24 h groups. N represents an individual animal. * p < 0.05 
compared to NaCl 3 h, # p < 0.05 compared to NaCl 24 h. 

The subsequent question we investigated was the extent of nitrate/nitrite accumula-
tion following Na15NO3 administration for five consecutive days, in comparison to a single 
administration. In Figure 4, we compared the total concentration of nitrate (Figure 4A) 
and nitrite (Figure 4B) in plasma and ocular tissues between single and multiple treat-
ments. However, we did not observe any significant differences in any of the ocular tissues 
or plasma between single and multiple treatments, although there was a slight upward 
trend in nitrite levels noted in the cornea, sclera, and aqueous and vitreous humor in 5-
day treatments compared to a single treatment. Furthermore, our analysis of 15NO3− and 
15NO2− did not reveal any significant differences between single and multiple nitrate treat-
ments (Figure 5). 

 
Figure 4. Total nitrate and nitrite concentration in porcine plasma and ocular tissues after supple-
menting Na15NO3 for five consecutive days. (A,B) Ocular tissues and plasma were collected from 1-
day- and 5-day-treated animals and were prepared for nitrate and nitrite analysis with a standard 
chemiluminescence method [38]. Data are plotted as average ± standard deviation (n = 4). N repre-
sents an individual animal. 
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tissues after Na15NO3 administration. Porcine eyes were dissected into cornea, sclera, aqueous
humor, lens, vitreous humor, retina, and optic nerve. Tissue samples including the ocular muscle
(superior and medial rectus) and lacrimal gland were homogenized using a bead homogenizer [39],
then centrifuged (17,000× g, 30 min). 15N-labeled nitrate and nitrite contents were measured using
LC–MS/MS. All nitrate ions in samples were first reduced to nitrite by bacterial nitrate reductases
(Aspergillus niger). Then, nitrite derivatization using DAN was performed to yield NAT. The result was
based on the percentage ratio of 15NAT/(14NAT + 15NAT). Data are plotted as average ± standard
deviation (n = 4 for 3 h groups, n = 3 for 24 h groups). N represents an individual animal. * p < 0.05
compared to NaCl 3 h, # p < 0.05 compared to NaCl 24 h.
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4. Discussion

Recent epidemiological studies have suggested a potential link between dietary nitrate
intake and the reduced prevalence of ocular diseases such as glaucoma and age-related
macular degeneration [19–23]. However, there is limited information available regarding
how nitrate metabolism might influence various physiological pathways in the eye, through
the nitrate–nitrite–NO reductive pathways. Although the earlier studies showed that NO
contributes to regulating ocular blood flow and intraocular pressure [42–44], the majority
of studies considered the NOS-mediated NO pathways as the sole source of NO.

In the present study, we aimed to investigate the contribution of the nitrate–nitrite–NO
pathways in the porcine eye by examining the levels of nitrate and nitrite ions in various
ocular components and surrounding tissues, such as the ocular muscle and lacrimal gland,
following supplementation with either sodium chloride (placebo) or sodium nitrate. Since
NO can be generated endogenously by different NOS isoforms in ocular tissues and can
be, subsequently, oxidized to nitrite and nitrate, it became essential for us to establish
an efficient method to distinguish between diet-derived nitrate/nitrite and NOS-derived
nitrate/nitrite ions, to gain a better understanding of how dietary nitrate contributes to the
NO pathways.

To determine the amount of diet-derived nitrate and nitrite, we employed an isotope-
labeled nitrate (Na15NO3). The monitoring of dynamic changes in the levels of 15NO3

−

and 15NO2
− in ocular tissues following Na15NO3 administration provided clear evidence

that significant elevations of endogenous nitrate and nitrite concentrations in the eye can,
indeed, be achieved through dietary nitrate supplementation. All ocular tissues collected
3 h after Na15NO3 administration exhibited a significant increase in nitrate concentration
(Figure 1A). When we calculated the relative changes compared to NaCl supplementation
(Figure 1B), we found that nitrate treatment led to a 4.0-fold increase in plasma and, to our
surprise, comparable increases in nitrate levels were observed in the aqueous and vitreous
humor (3.9- and 3.5-fold increases, respectively). Additionally, all other ocular tissues also
showed significant increases in nitrate concentration, with the sclera and cornea showing a
relatively higher uptake compared to other parts such as the lens, retina, and optic nerve.
These results indicate that ocular tissues actively transport exogenously administered
nitrate into the eye and this can be partially attributed to the widespread expression of the
nitrate transporter, sialin, in porcine ocular tissues [32]. In addition, we, and others, have
previously confirmed that the chloride channel (CLC) family can play a role in transporting
nitrate ions [45,46] and ocular tissues expressing CLC [47]. However, further investigation
is needed to understand the precise mechanisms by which these proteins facilitate nitrate
transport in the eye. We also noted that the lacrimal glands, responsible for tear production,
showed a substantial incorporation of dietary nitrate (2.8-fold) and this suggests tears may
play a significant role in efficiently distributing dietary nitrate onto the ocular surface.

Consistent with the findings regarding total nitrate levels, the analysis of 15NO3
−

content using LC–MS/MS 3 h after supplementation revealed marked increases in both
ocular and plasma samples (Figure 3A). Notably, both the aqueous and vitreous humor
exhibited the highest percent of 15NO3

− (77.5 and 74.5%, respectively), which are very
close to that of plasma (77.1%). Samples from the cornea, sclera, optic nerve, ocular muscle,
and lacrimal gland contained similar amounts of 15NO3

−, approximately ranging from 59
to 64%. The retina (48.8%) and lens (44.8%) exhibited the lowest incorporation of 15NO3

−

among ocular tissues. Our current results do not allow us to precisely determine how
much 15NO3

− was taken up directly through tears and entered the cornea and other ocular
tissues, and it is not possible for us to estimate how much 15NO3

− came from the circulation
into these ocular tissues. However, it is clear that the eye is an active organ, capable of
absorbing nitrate ions from the diet. In our previous study with rats, we compared the
15NO3

− incorporation in skeletal muscle, liver, and eye after Na15NO3 administration in
drinking water for 3 days [37]. Surprisingly, the eye showed much higher 15NO3

− contents
(44.3%) compared to skeletal muscle (16.9%) and liver (10.9%), which suggests that eye
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tissues effectively absorb and utilize dietary nitrate and could benefit from nitrate therapy
in situations where there is a need to increase NO levels in pathological conditions.

In contrast to nitrate, our analysis of total nitrite concentrations in ocular tissues did
not reveal any statistically significant changes, although there was a tendency towards
increases in all samples, particularly in the cornea and sclera, 3 h after the nitrate admin-
istration (Figure 2). However, 15NO2

− analysis showed marked increases in plasma and
all ocular tissues following nitrate supplementation (Figure 3B). This finding suggests
that nitrate ions derived from diets and endogenous NOS systems actively participate in
dynamic metabolic pathways, where they are converted into nitrite within tissues and are
subsequently re-distributed. Since nitrate and nitrite ions travel from/to the circulation
via either concentration-dependent diffusion or active transport facilitated by membrane
transporters, the levels of nitrate and nitrite within tissues can vary based on physiological
needs. Our results indicate that total nitrite concentrations may not fully represent the
amount of nitrite generated from exogenously added nitrate. This implies the existence of a
delicate balance within cells to maintain these anions in optimal ranges, thereby supporting
NO homeostasis. However, we currently lack precise knowledge regarding how cells
determine the utilization of newly introduced dietary nitrate versus the existing nitrate
pool produced by NO oxidation. Consuming the existing (“in-cell”) nitrate/nitrite first
and then replenishing the endogenous pool of these anions through supplementation may
be necessary to preserve stable NO signaling. Further research is needed to elucidate the
intricate mechanisms underlying these processes.

Upon ingestion, a portion of dietary nitrate becomes involved in metabolic pathways,
while the remainder is excreted in urine [48]. Previous studies have shown that elevated
nitrate levels in plasma and skeletal muscle return to the baseline 24 h after a bolus ad-
ministration [49]. Our present results also demonstrate that total nitrate levels were not
statistically different between the NaCl and Na15NO3 groups 24 h after administration
(Figure 1). However, we noted that the 15NO3

− and 15NO2
− contents in ocular tissues

remained statistically higher in the Na15NO3 group compared to the NaCl group at the
24 h mark (Figure 3A,B). This led us to investigate whether repetitive nitrate administration
for five consecutive days could result in even higher levels of both total and 15N-labeled
nitrate/nitrite compared to a bolus administration (Figures 4 and 5). However, our re-
sults revealed no notable differences in nitrate/nitrite levels between the 1-day and 5-day
treatment groups in either plasma or ocular tissues. These results suggest that there is no
imperative need to supply dietary nitrate for an extended duration to achieve supraphysio-
logical levels of nitrate and nitrite, at least in the eye. Nevertheless, it may be important to
supply dietary nitrate daily to ensure a persistent source of NO when required.

Dietary nitrate consumption can be a very efficient means of achieving elevated NO
levels within the body. Once absorbed from the diet, nitrate can travel and be re-distributed
to various tissues in the form of nitrate itself or as nitrite after conversion, while NO is
rapidly scavenged within the blood and tissues [50,51]. In a previous study, we demon-
strated the existence of reductive nitrate pathways in the porcine eye, highlighting the
capability of the cornea and sclera tissues to convert nitrate to nitrite [32]. Importantly, the
environment within the eye is known to be relatively hypoxic [52] and the aqueous humor
contains approximately 20 times higher concentrations of ascorbic acid than plasma [53,54],
which contributes to creating favorable conditions for nitrite reduction to NO [9] in the eye.
Collectively, these studies, along with our current results, suggest that nitrate reductive
pathways may serve as a crucial mechanism for maintaining NO homeostasis in the eye.
Further investigations at the cellular level are needed to uncover the precise regulatory
mechanisms through which ocular cells effectively utilize dietary nitrate. Understanding
these mechanisms can provide valuable insights into the role of dietary nitrate in ocular
health and may lead to potential therapeutic applications.
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5. Conclusions

In the present study, we supplemented pigs with 15N-labeled sodium nitrate to eval-
uate the influence of exogenous nitrate on the levels of NO metabolites in the eye. We
demonstrated that dietary nitrate administration directly raises the endogenous levels of
nitrate and nitrite in ocular tissues, as well as in circulation, using LC–MS/MS. Given the
critical roles of NO in enhancing the aqueous humor outflow and subsequently reducing
intraocular pressure, boosting the nitrate–nitrite–NO reductive pathways to elevate NO
bioavailability in the eye could be a safe and effective approach to improving ocular health.
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