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Abstract: Disordered eating contributes to weight gain, obesity, and type 2 diabetes (T2D), but the
precise mechanisms underlying the development of different eating patterns and connecting them
to specific metabolic phenotypes remain unclear. We aimed to identify genetic variants linked to
eating behaviour and investigate its causal relationships with metabolic traits using Mendelian
randomization (MR). We tested associations between 30 genetic variants and eating patterns in
individuals with T2D from the Volga-Ural region and investigated causal relationships between
variants associated with eating patterns and various metabolic and anthropometric traits using data
from the Volga-Ural population and large international consortia. We detected associations between
HTR1D and CDKAL1 and external eating; between HTR2A and emotional eating; between HTR2A,
NPY2R, HTR1F, HTR3A, HTR2C, CXCR2, and T2D. Further analyses in a separate group revealed
significant associations between metabolic syndrome (MetS) and the loci in CRP, ADCY3, GHRL,
CDKAL1, BDNF, CHRM4, CHRM1, HTR3A, and AKT1 genes. MR results demonstrated an inverse
causal relationship between external eating and glycated haemoglobin levels in the Volga-Ural sample.
External eating influenced anthropometric traits such as body mass index, height, hip circumference,
waist circumference, and weight in GWAS cohorts. Our findings suggest that eating patterns impact
both anthropometric and metabolic traits.

Keywords: Mendelian randomization; eating behaviour; DEBQ; genetic predictors

1. Introduction

Individual eating behaviour can manifest in different ways and may lead to the
excessive consumption of calorie-dense foods, contributing to weight gain, obesity, and
type 2 diabetes (T2D). Being overweight plays a substantial role in the progression of
T2D and can reduce the effectiveness of treatment [1]. Insulin resistance tends to increase
with increasing adipose tissue, especially in the visceral region, and eating disorders
significantly contribute to obesity [2]. The impact of eating behaviour on T2D risk can
be further compounded by the presence of other risk factors, such as family history and
genetic predisposition [3].

Additionally, a concept related to eating behaviour known as food reinforcement
explores how much effort an individual is willing to exert to obtain tasty food [4]. Research
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indicates that there are individual differences, with obese individuals showing a greater
incidence of food addiction and greater attachment to food than non-obese individuals [5].
Understanding the functions of the food reward system, particularly its regulation by
neurotransmitters, is crucial role in addressing potential food addiction, overeating, and
obesity [6].

Ongoing debates surround how brain dysfunction impacts metabolic disorders, includ-
ing the role of the cholinergic pathway. Neuronal nicotinic cholinergic receptors influence
central and peripheral mechanisms related to eating behaviour and energy balance [7,8].
Variations in the gamma-aminobutyric acid receptor subunit alpha-2 (GABRA2) and GRB2-
associated binding protein 2 (GAB2) genes are linked to behavioural problems, substance
use, drinking behaviour, and obesity [9–11]. Neuropeptide Y (NPY) and its receptor NPY2R
are crucial in regulating appetite control, particularly in the context of obesity and diabetes
in the hypothalamus [12]. Genes in the leptin–melanocortin pathway, such as leptin (LEP),
leptin receptor (LEPR), melanocortin-4 receptor (MC4R), adenylyl cyclase 3 (ADCY3), and
brain-derived neurotrophic factor (BDNF) genes, are established contributors to obesity
and insulin resistance [13]. Additionally, gastric inhibitory polypeptide (GIPR) and ghrelin
signalling are critical in food addiction disorders and T2D [14,15].

Oxidative stress and chronic inflammation are believed to be crucial in the pathophysi-
ology of type 2 diabetes (T2D) [16]. Genes such as sirtuin-1 (SIRT1), C-reactive protein (CRP),
C-X-C motif chemokine receptor 2 gene (CXCR2), as well as chemokines and interleukins
such as interleukin 12 (IL12A) and C-X-C motif chemokine ligand 8 (CXCL8), are strongly
associated with insulin resistance and T2D [17,18]. CXCL8, a major adipocytokine, inhibits
insulin-induced protein kinase B (AKT) phosphorylation in adipocytes, contributing to
insulin resistance [19]. The phosphoinositide 3-kinase (PI3K)/AKT signalling pathway,
crucial for proliferation, differentiation, and metabolism, is dysregulated in metabolic
disorders, including obesity, diabetes, and insulin resistance [20]. Genome-wide association
analyses (GWASs) reveal that mutations in the CDK5 regulatory subunit-associated protein
1-like 1 (CDKAL1) gene can impair insulin secretion, elevating T2D risk [21].

Mendelian randomization (MR) is a method that utilizes genetic variants as instru-
mental variables to discern causality between a modifiable exposure (typically a risk factor)
and an outcome (such as a disease or health condition) [22]. By capitalizing on the random
assignment of genetic variants at birth, unaffected by environmental influences or reverse
causation, MR effectively distinguishes genuine causal relationships from associations
uncovered in observational studies [23]. MR not only corroborates the findings of observa-
tional research but also identifies adjustable factors that could serve as drug targets and
offer insights for shaping public health policies [23]. MR studies in the context of eating
behaviour are relatively new but have the potential to provide valuable insights into the
causal relationships between genetic variants, eating behaviours, and health outcomes such
as T2D [24,25].

GWASs have identified numerous variants linked to metabolic traits, primarily in
European populations, limiting the transferability of their results globally. Multi-ancestry
studies are vital in understanding genetic contributions to diseases like T2D [26]. The
population of the Volga-Ural region, with its blend of European and Asian influences,
presents a promising genetic research opportunity due to its multi-ethnic composition
shaped by migration between Europe and Asia. Recent studies indicate that among young
adults residing in the Volga-Ural region, approximately 13.2% were found to exhibit food
addiction as assessed by DEBQ [27]. Additionally, the prevalence of metabolic syndrome
(MetS) in this population was reported to be approximately 26.7% [28].

To conclude, it is widely accepted that disordered eating contributes to weight gain,
obesity, and T2D. However, the underlying mechanisms linking various eating patterns
with certain metabolic phenotypes remain obscure. Our aim was to bridge this gap by
identifying genetic variants associated with eating behaviour and to explore the causal
relationship between eating behaviour and metabolic traits using an MR approach.



Nutrients 2024, 16, 1166 3 of 14

2. Materials and Methods
2.1. Study Group

The study group included 200 people with type 2 diabetes (T2D) (≥40 years) and
397 healthy participants without diabetes or any other chronic conditions recruited between
2014 and 2022 at the Ufa City Hospital N◦ 21 and at the Bashkir State Medical University
Clinic (Ufa, Russian Federation). The recruitment process for both the T2D and control
groups was previously described elsewhere [29,30]. The inclusion criteria for the T2D
group were as follows: aged 40 years and older, had a T2D diagnosis established according
to WHO criteria (1999–2013) [31], and lacked clinical symptoms of other types of diabetes
not related to other participants in the study. The inclusion criteria for the control group
were as follows: aged 40 years and older, no clinical or laboratory symptoms of metabolic
disorders, no family history of diabetes, and not related to other participants in the study.

Additionally, the study group included 279 people with metabolic syndrome (MetS)
recruited between 2012 and 2017 at the Bashkir State Medical University Clinic. MetS was
defined as fulfilling at least three of the following criteria: waist circumference greater
than 102 cm (men) or 88 cm (women), blood pressure (BP) greater than 130/85 mmHg,
fasting triglyceride (TG) level greater than 1.7 mmol/L, fasting high-density lipoprotein
(HDL) cholesterol level less than 1.03 mmol/L (men) or 1.3 mmol/L (women), and fasting
glucose (FG) greater than 5.6 mmol/L [32,33]. To reduce the probability of errors due to
sample stratification, all study participants were selected from populations historically
rooted in the Volga-Ural region of the Russian Federation. The ethnic origin (up to the third
generation) and the presence or absence of a family history of diabetes for all participants
were established by conducting direct interviews with the potential participants.

2.2. Ethics, Consent, and Permissions

The study was performed in accordance with the Helsinki Declaration. The study
protocol was approved by the Local Ethical Committee of the Institute of Biochemistry and
Genetics of Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC
RAS), Ufa, Russia (Ufa, Protocol No 8, 14 March 2012). All participants provided written
informed consent.

2.3. Anthropometric Measurements and Biochemical Assays

Anthropometric measurements were performed in accordance with the WHO guidelines [34].
Body weight was measured to the nearest 1 kg using a lever balance while the partic-
ipants were wearing light indoor clothing. Height was measured to the nearest 1 cm
using a stadiometer with the participants standing barefoot. Waist and hip circumfer-
ences were estimated to the nearest 1 cm using a tape measure. Waist circumference was
assessed at the midpoint between the last rib and the iliac crest at the end of a normal
expiration. Hip circumference was measured with the participants standing at the level
of the largest lateral extension of the hips. Body mass index (BMI; kg/m2) was calcu-
lated as body weight (kg) divided by height squared (m2). The waist-to-hip ratio (WHR)
was calculated by dividing waist circumference by hip circumference. BP was measured
three times for each participant in both arms at 1 min intervals after 5 min of rest in the
seated position with a standard sphygmomanometer, and the average of three consecutive
measurements was taken as a reference. Phases I and V of Korotkoff sounds were identi-
fied as SBP and DBP, respectively [35]. Blood samples were collected after an overnight
(12 h) fast and 2 h after the meal (for the 2 h postprandial test). Plasma glucose was
measured by the glucose oxidase technique, and plasma insulin levels were measured by
an electrochemiluminescence immunoassay (Cobas Integra, Roche, Basel, Switzerland).
The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated as
(fasting insulin [µIU/mL] × fasting glucose [mmol/L])/22.5 [36]. HbA1c was measured
by high-performance liquid chromatography (ADAMS A1c HA-8182, Arkray, Inc., Ky-
oto, Japan). Total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), and
low-density lipoprotein (LDL) levels were measured via photometry (Olympus, Hamburg,
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Germany). C-reactive protein levels were measured via the chemiluminescent immunoas-
say IMMULITE 2000 (Siemens Medical Solutions Diagnostics, Deerfield, IL, USA). Tumour
necrosis factor alpha was measured by ELISA (enzyme-linked immunosorbent assay) using
the “Vector-Best” test system in Russia. Biochemical parameters (albumin, alanine amino-
transferase, aspartate aminotransferase, gamma glutamyltransferase, creatinine, urea) in
blood serum were determined using a Cobas Integra 400 plus biochemical analyser (Cobas
Integra, Roche, Basel, Switzerland). The modified Ferriman–Gallwey score was used to
assess hirsutism in female participants by summing hair growth in nine body areas (up-
per lip, chin, chest, arm, upper abdomen, lower abdomen, upper back, lower back, and
thighs) scored from 1 (minimal terminal hairs present) to 4 (equivalent to a hairy man) [37].
The clinical characteristics of the study groups are shown in Table 1 and more detailed
description is provided in Supplementary Tables S5 and S6.

Table 1. Clinical characteristics of the study group.

Parameter

All Men Women

Control
(N = 397)

T2D
(N = 200)

MetS
(N = 279)

Control
(N = 201)

T2D
(N = 57)

MetS
(N = 80)

Control
(N = 196)

T2D
(N = 143)

MetS
(N = 199)

Age (years) 49.65 ± 10.88 61.49 ± 9.55 57.01 ± 6.97 47.24 ± 11.06 60.44 ± 9.78 56.19 ± 7.50 52.12 ± 10.13 61.92 ± 9.46 57.35 ± 6.73
External Eating 3.33 ± 1.02 3.54 ± 0.74 NA 3.09 ± 1.07 3.35 ± 0.55 NA 3.48 ± 0.96 3.62 ± 0.79 NA

Emotional Eating 2.64 ± 1.27 4.46 ± 1.1 NA 2.18 ± 1.3 4.24 ± 1.07 NA 2.92 ± 1.16 4.54 ± 1.1 NA
Restraint 2.86 ± 1.13 2.89 ± 0.75 NA 2.56 ± 1.28 2.83 ± 0.86 NA 3.05 ± 0.98 2.91 ± 0.71 NA

Height (cm) 173.26 ± 8.21 161.7 ± 7.96 169.43 ± 7.23 176.32 ± 6.25 168.79 ± 6.76 175.72 ± 4.57 163.24 ± 5.41 158.87 ± 6.53 166.90 ± 6.53
Weight (kg) 79.38 ± 13.09 80.97 ± 15.46 89.29 ± 5.46 82.79 ± 12.12 86.82 ± 16.19 93.06 ± 5.95 68.20 ± 9.46 78.64 ± 14.57 87.77 ± 4.42

BMI (kg/m2) 27.68 ± 4.5 30.92 ± 5.25 31.17 ± 2.45 27.39 ± 4.26 30.41 ± 5.07 30.11 ± 2.00 27.98 ± 4.73 31.12 ± 5.32 31.60 ± 2.49
Cholesterol
(mmol/L) 5.09 ± 0.64 5.43 ± 1.14 5.88 ± 0.71 5.17 ± 0.55 5.57 ± 0.95 5.91 ± 0.72 5.06 ± 0.67 5.38 ± 1.21 5.86 ± 0.71

Triglycerides
(mmol/L) 1.48 ± 0.6 1.68 ± 1.33 1.72 ± 0.51 1.48 ± 0.61 1.93 ± 1.45 1.74 ± 0.47 1.48 ± 0.60 1.58 ± 1.28 1.71 ± 0.53

HDL (mmol/L) 1.09 ± 0.37 1.2 ± 0.51 1.01 ± 0.13 1.07 ± 0.34 1.27 ± 0.58 0.96 ± 0.10 1.09 ± 0.38 1.17 ± 0.48 1.02 ± 0.13
LDL (mmol/L) 2.96 ± 1.08 3.05 ± 1.43 3.17 ± 0.19 3.03 ± 0.98 3.18 ± 1.57 3.23 ± 0.16 2.93 ± 1.11 3 ± 1.37 3.15 ± 0.20

HbA1c (%) 4.89 ± 0.6 7.48 ± 0.99 5.28 ± 1.00 4.87 ± 0.65 7.47 ± 0.94 5.12 ± 0.91 4.89 ± 0.58 7.48 ± 1.01 5.34 ± 1.03
Fasting Glucose

(mmol/L) 4.88 ± 0.71 7.22 ± 1.95 5.33 ± 1.38 4.79 ± 0.66 7.2 ± 2 5.19 ± 1.31 4.90 ± 0.73 7.22 ± 1.93 5.38 ± 1.41

2 h glucose
(mmol/L) NA 9.93 ± 2.2 6.58 ± 2.42 NA 10.17 ± 2.36 6.35 ± 2.48 NA 9.83 ± 2.13 6.67 ± 2.40

C-peptide
(ng/mL) 2.31 ± 0.94 2.65 ± 5.39 NA 2.39 ± 0.87 2.18 ± 0.94 NA 2.28 2.83 ± 6.34 NA

T2D—type 2 diabetes, MetS—metabolic syndrome, N—sample size, BMI—body mass index, LDL—low-density
lipoproteins, HDL—high-density lipoproteins, HbA1c—glycated haemoglobin. Data are presented as mean
values ± standard deviation.

2.4. Eating Behaviour

Eating behaviour was assessed in people with T2D and control individuals using the
Dutch Eating Behaviour Questionnaire (DEBQ) [38]. The DEBQ categorizes individuals into
three main patterns: emotional eating, external eating, and restraint eating [38]. Emotional
eating pertains to the inclination to eat in response to emotions or stress rather than physical
hunger. External eating involves responding to external food cues, such as the sight or
aroma of food, which can lead to overindulgence in food-rich environments. Restraint
eating encompasses deliberate dietary control and efforts to limit food intake, but this
can sometimes backfire, resulting in episodes of overeating (known as binge eating) and
weight fluctuations [39]. The questionnaire included 33 items to account for three eating
styles: the Emotional Eating Scale (13 items), the External Eating Scale (10 items), and the
Restraint Scale (10 items). The only reverse-keyed item is item 21 (“Do you find it hard to
resist eating delicious foods?”). Responses are given on a 5-point Likert scale ranging from
1 “never” to 5 “very often”. The average score is calculated for each subscale by adding
scores obtained from single items and dividing them by the number of items contained in
one subscale. The DEBQ was translated into Russian by Yu.L. Savchikova [40].

2.5. Genotyping and Quality Control

Whole venous blood samples were obtained from each participant, stored at −4 ◦C,
and used for total DNA extraction. DNA extraction and genotyping were performed
using standard procedures as previously described [29,30,41–47]. Genetic variants were
selected for the analysis based on the results of the Phenome-Wide Association Studies
(PheWASs). The variants selected for the study included those associated with metabolic
traits (cholesterol levels, fat mass, T2D) and related disorders, including inflammatory
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diseases and complications caused by T2D (Supplementary Table S7). Allelic discrimination
was performed by real-time polymerase chain reaction (PCR) with a Bio-Rad CFX96 (Bio-
Rad Laboratories, Inc., Hercules, CA, USA) using TaqMan SNP genotyping assays (Thermo
Fisher Scientific, Waltham, MA, USA). For quality control, 5% of the genotyped samples
were randomly selected for regenotyping, and all the newly obtained results were identical
to the previously determined genotyping data.

2.6. Association Analysis

Associations between the studied loci and eating behaviour, clinical parameters, T2D
status, and MetS status were explored by linear or logistic regression analysis under the
additive genetic model adjusted for age and sex with PLINK 1.9 [48]. The additive ge-
netic model assumes that having two risk alleles has twice the impact on the outcome
compared to carrying one risk allele. Given that many of the examined biomarkers (glu-
cose, HbA1c, lipids, blood pressure, etc.) can be influenced by specific treatments, we
performed the adjustment for medication status accordingly. Specifically, individuals un-
dergoing glucose-lowering therapy were excluded from the analysis, those undergoing
lipid-lowering therapy had their LDL values adjusted by dividing by 0.7, TC adjusted
by dividing by 0.8, and HDL adjusted by dividing by 1.05 [49]. Individuals taking anti-
hypertensive medications had their blood pressure levels adjusted by adding 10 mmHg
and 15 mmHg to their diastolic blood pressure (DBP) and systolic blood pressure (SBP),
respectively [50]. Sex-specific biomarkers (such as testosterone and Ferriman–Gallwey
score) were analysed separately in the relevant sex groups. All traits exhibiting non-normal
distribution underwent log-transformation. We applied the Benjamini–Hochberg pro-
cedure to control for the expected ratio of false-positive classifications (false discovery
rate—FDR) [51]. PFDR values less than 0.05 were considered significant.

2.7. Mendelian Randomization

To assess causality between eating behaviour and metabolic traits, we performed
two-sample MR with eating behaviour patterns as the exposure and MetS and clinical
parameters of MetS patients as an outcome using two independent datasets (Figure 1).
Subsequently, we performed MR analysis to evaluate the causal relationship between eating
behaviour and MetS and other cardiometabolic traits using openly available summary
statistics data from published genome-wide association studies (Supplementary Table S6).

The single-nucleotide polymorphisms (SNPs) significantly associated with emotional
eating (rs6313 at the HTR2A gene locus) and external eating (rs623988 at HTR1D and
rs9295474 at CDKAL1) or their proxies (rs604030 for rs623988, r2 = 1.0; rs2206739 for
rs9295474, r2 = 0.986; Supplementary Table S6) were used as genetic instruments for the
MR analyses. Causal effects estimated via MR are valid only if the following core as-
sumptions hold true: (1) the genetic instrument has a true effect on the exposure, (2) it
affects the outcome through its effect on the exposure, and (3) it is independent of any
measured and unmeasured confounding factors of the exposure–outcome relationship.
Summary statistics used for the MR analyses included UK Biobank data (height, weight,
waist circumference, hip circumference, BMI, total cholesterol (TC), triglyceride (TG), sys-
tolic blood pressure (SBP), diastolic blood pressure (DBP), and HbA1c), obtained from
http://www.nealelab.is/uk-biobank/, accessed on 1 February 2024). The GWAS summary
statistics for MetS in the UK Biobank participants were assessed via [53]. The data on
glycaemic traits (FG, FI, 2 h glucose, and HOMA-IR) were obtained from MAGIC investi-
gators and were downloaded from www.magicinvestigators.org [54]. The HDL and LDL
data were obtained from the Global Lipids Genetics Consortium [55]. For the WHR, we
used summary statistics data from the GIANT Consortium [56]. The data on the SNPs
included for each trait are provided in Supplementary Table S6. All MR analyses were
performed using the MRCIEU/TwoSampleMR R software package version 0.5.7 [57]. We
utilized the Strengthening the Reporting of Observational Studies in Epidemiology Using

http://www.nealelab.is/uk-biobank/
www.magicinvestigators.org
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MR (STROBE-MR) approach to ensure the clarity and transparency of the reporting of
our results.
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Figure 1. Two-sample Mendelian randomization. MR relies on the following three core assumptions:
(1) the instrument is independent of measured and unmeasured confounders of the association
between the exposure (eating behaviour measured with DEBQ) and outcome (metabolic syndrome
and 17 anthropometric and metabolic parameters in people with metabolic syndrome); (2) the genetic
variant(s) being used as an instrument is associated with the exposure; and (3) there is no independent
pathway between the instrument (SNPs for eating behaviour) and outcome (metabolic syndrome
and 17 anthropometric and metabolic parameters in people with metabolic syndrome) other than
through the exposure (eating behaviour)—otherwise known as horizontal pleiotropy or the exclusion
restriction assumption [52].

3. Results
3.1. Association Analysis

We examined the associations between genetic variants in 26 genes involved in neu-
rotransmitter signalling and oxidative stress/chronic inflammation pathways and eating
behaviour patterns in people with T2D (n = 295) from the Volga-Ural region of the Eurasian
continent using linear regression analysis with the additive genetic model adjusted for age
and sex. We found that HTR1D rs623988 and CDKAL1 rs9295474 polymorphisms were
associated with external eating, while HTR2A rs6313 was associated with emotional eating
(Table 2, Supplementary Table S1).

Logistic regression analysis adjusted for age and sex was conducted for the people
with T2D and healthy controls (n = 597), and the results revealed that HTR2A rs6313,
NPY2R rs1047214, HTR1F rs56398417, HTR3A rs1062613, HTR2C rs6318, and CXCR2
rs2230054 were associated with T2D. Restrained eating was suggested to be (at p < 0.05)
associated with the HTR1D rs623988, BDNF rs11030107, MC4R rs17782313, and CXCL8
rs4073 genetic variants, but these associations did not reach significance after Benjamini–
Hochberg adjustment for multiple testing (Supplementary Table S1).

Further analyses of a second sample group of people with MetS (n = 279) and controls
(n = 397) revealed significant associations between MetS and polymorphic loci in the
CRP (rs2794521), ADCY3 (rs17799872), GHRL (rs696217), CDKAL1 (rs9295474), BDNF
(rs11030107), CHRM4 (rs2067482), CHRM1 (rs2067477), HTR3A (rs1062613), and AKT1
(rs3803300) genes (Table 2). Moreover, the genetic variant in the HTR2C gene (rs6318)
was associated with height, BMI, and waist circumference; ADCY3 (rs17799872) with BMI;
and SIRT1 rs3758391 with the WHR, in people with MetS (Table 2). The CDKAL1 variant
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(rs9295474) was significantly associated with the serum ALB concentration (PFDR = 0.02)
(Table 2); suggestive associations (at p < 0.05) detected between this polymorphism and
other metabolic parameters (CRP, fibrinogen, K+, uric acid), including glycaemic traits
(such as FG, HbA1c, and HOMA-IR), did not survive adjustment for multiple testing
(Supplementary Table S2).

Table 2. Significant associations between the studied loci and eating behaviour patterns and
metabolic traits.

Gene SNP EA NEA EAF N Beta/OR SE P PFDR

Emotional eating

HTR2A rs6313 A G 0.47 286 0.36 0.11 0.001 0.041

External eating

HTR1D rs623988 A G 0.29 295 0.32 0.08 1.20 × 10−4 3.60 × 10−3

CDKAL1 rs9295474 C G 0.64 294 0.22 0.08 0.003 0.047

Type 2 diabetes

CXCR2 rs2230054 T C 0.44 595 1.8 0.15 8.87 × 10−5 8.87 × 10−4

HTR1F rs56398417 C T 0.84 597 2.61 0.24 5.01 × 10−5 7.52 × 10−4

NPY2R rs1047214 T C 0.62 400 1.82 0.17 4.56 × 10−4 3.42 × 10−3

HTR3A rs1062613 T C 0.19 596 2.13 0.18 4.03 × 10−5 7.52 × 10−4

HTR2A rs6313 A G 0.47 572 1.58 0.15 0.002 0.012
HTR2C rs6318 C G 0.09 593 2.07 0.24 0.002 0.012

Metabolic syndrome

CRP rs2794521 C T 0.21 621 6.64 0.17 4.83 × 10−28 1.45 × 10−26

ADCY3 rs17799872 A G 0.09 641 1.90 0.19 0.001 0.004
GHRL rs696217 T G 0.08 639 2.20 0.18 2.02 × 10−5 1.51 × 10−4

CDKAL1 rs9295474 G C 0.36 634 1.70 0.13 4.26 × 10−5 2.56 × 10−4

BDNF rs11030107 G A 0.13 627 1.91 0.17 1.23 × 10−4 0.001
CHRM4 rs2067482 T C 0.08 641 0.45 0.28 0.005 0.017
CHRM1 rs2067477 A C 0.04 637 3.33 0.26 3.80 × 10−6 3.80 × 10−5

HTR3A rs1062613 T C 0.19 636 2.10 0.16 2.53 × 10−6 3.79 × 10−5

AKT1 rs3803300 A G 0.03 637 2.48 0.31 0.003 0.012

Height

HTR2C rs6318 C G 0.09 242 −3.60 0.89 7.32 × 10−5 0.002

Body mass index

ADCY3 rs17799872 A G 0.09 245 1.13 0.30 1.90 × 10−4 0.003
HTR2C rs6318 C G 0.09 242 1.53 0.34 1.28 × 10−5 3.83 × 10−4

Waist circumference

HTR2C rs6318 C G 0.09 242 4.88 1.36 3.90 × 10−4 0.012

Waist–hip ratio

SIRT1 rs3758391 C T 0.52 234 0.01 0.00 0.001 0.040

Albumin

CDKAL1 rs9295474 G C 0.36 237 −1.48 0.43 0.001 0.020

SNP—single-nucleotide polymorphism; EA—effect allele; NEA—non-effect allele; EAF—effect allele frequency;
N—sample size; Beta—effect size (for emotional and external eating, height, BMI, waist circumference, WHR,
and albumin); OR—odds ratio (for T2D and MetS); SE—standard error; P—level of significance; PFDR—level of
significance with the Benjamini–Hochberg adjustment.

3.2. Mendelian Randomization

We conducted two-sample MR analysis using the group of people with T2D for
exposure evaluation and the group of people with MetS and the control group for the
outcome assessment. The results showed that external eating behaviour was inversely asso-



Nutrients 2024, 16, 1166 8 of 14

ciated with glycated haemoglobin (HbA1c) in people with MetS (beta = −0.347, SE = 0.158,
p = 0.016) (Supplementary Table S3). Next, we performed two-sample MR using genome-
wide summary statistics from the UK Biobank (BMI, cholesterol, SBP, DBP, HbA1c, height,
hip circumference, waist circumference, weight, triglycerides), the meta-analyses of glucose
and insulin-related traits consortium or MaGIC (2 h glucose, fasting glucose, fasting in-
sulin, HOMA-IR), the Global Lipids Genetics Consortium or GLGC (LDL), and the Genetic
Investigation of Anthropometric Traits or GIANT Consortium (waist–hip ratio). The results
demonstrated that external eating was also associated with BMI (beta = −0.009, SE = 0.008,
p = 0.005), height (beta = −0.009, SE = 0.008, p = 0.040), hip circumference (beta = −0.022,
SE = 0.010, p = 5.81 × 10−6), waist circumference (beta = −0.009, SE = 0.005, p = 0.001), and
weight (beta = −0.018, SE = 0.010, p = 8.54 × 10−6) (Figure 2, Supplementary Table S4).
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4. Discussion

We investigated the impact of distinctive eating behaviour patterns on metabolic
traits. Our primary focus was on 26 genes that fall within the domains of neurotransmitter
signalling and oxidative stress/chronic inflammation pathways. We found associations
between HTR2A rs6313 and emotional eating, as well as HTR1D rs623988 and CDKAL1
rs9295474 with external eating (Table 1). CDKAL1 rs9295474 exhibited strong association
with T2D in multi-ethnic cohorts from Southeast Asia [58], with its polymorphisms poten-
tially affecting insulin resistance in response to varying levels of dietary fat and protein
intake [59]. Moreover, CDKAL1 rs9295474 was notably associated with hypertension SBP
and DBP in individuals of European ancestry [60]. Intriguingly, according to our data,
CDKAL1 rs9295474 was associated with albumin (beta = −1.48, PFDR = 0.02), which may
have implications for future treatments as albumin is a proposed drug carrier for neu-
romedin U, a neuropeptide involved in the regulation of food intake, with a powerful
anorexigenic ability [61]. Decreased levels of albumin were linked to increased food intake,
inflammation, and obesity, potentially due to its ability to bind ghrelin, thus implicating it
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in the appetite regulation [62–64]. HTR2A rs6311 was associated with anorexia nervosa and
binge eating disorder [65,66], while HTR1D SNPs were linked with anorexia nervosa [67].

We subsequently explored the causal relationship between eating behaviour patterns
and metabolic traits utilizing the robust framework of MR. This analysis was initially
conducted on two distinct cohorts of individuals from the Volga-Ural region of Eurasia, as
delineated in Supplementary Table S4, and further extended to include a broader perspec-
tive through the utilization of summary statistics gleaned from GWASs, as also detailed in
Supplementary Table S4.

Previous research links external eating to insulin resistance, while restraint and emo-
tional eating predict obesity and overweight in adolescents [68]. Our findings showed
a compelling causal relationship between external eating and glycaemic traits, namely,
HbA1c, which was particularly pronounced within the Volga-Ural sample. Furthermore, we
observed a noteworthy influence of external eating on various anthropometric phenotypes
within the GWAS cohorts. These results were consistent with the prior literature docu-
menting associations between the three DEBQ subscales and weight-related characteristics,
including weight at 20 years, weight in adulthood, and BMI [69–72]. A counterintuitive
inverse relationship between external eating and weight and BMI has also been found
in population-based studies of adolescents [73] and in adults with long-standing type 2
diabetes [74]. However, the link between external eating and BMI is less clear in obese
individuals and healthy adults. A recent meta-analysis failed to ascertain significant cor-
relations between external eating and BMI [75]. The BMI polygenic score was previously
shown to be negatively associated with external eating [76]. A possible explanation for
these findings is that either parents limit the amount and type of food available to their
teenaged children or that they control their weight with compensatory behaviours such
as physical activities [77]. Regarding people with diabetes, functional magnetic resonance
imaging (fMRI) studies have shown increased responses to depicted foods in the frontal
cortex and insula compared to participants without diabetes. This frontal brain activity
was associated with external eating, as well as dietary self-efficacy and self-care, suggesting
that as a result of the need to follow a life-long restrictive diet, people with diabetes have
developed greater cognitive control over their food intake [74]. It has also been suggested
that uncontrolled eating acts as an intermediate phenotype explaining the link between
broad psychological constructs and food intake/BMI [78].

Interestingly, in our study, we could not detect any causal relationship between emo-
tional eating and the studied metabolic parameters. This observation held true both within
the Volga-Ural sample and when extrapolating our findings using GWAS summary statis-
tics. This is intriguing, given prior hypotheses suggesting that emotional eating precedes
external eating, which, in turn, contributes to weight gain [71].

In the context of our research, we analysed the causal relationships between quanti-
tative eating traits (emotional eating, external eating, and dietary restraint) measured in
people with T2D and unaffected individuals and between metabolic and anthropometric
characteristics in people with MetS. Study limitations include the particular composition
of our study dataset that may have introduced certain confounding variables into our
analyses. Moreover, we recognize that the causal relationships elucidated in our study
may manifest differently in a broader-population-based cohort. In particular, the causal
relationship between external eating and Hba1C detected in the Volga-Ural study sample
might reflect the effect of glucose-lowering drugs. The somewhat limited sample size, espe-
cially in the T2D groups, may have constrained our ability to detect associations between
eating behaviour and variants with smaller effect sizes. As such, we emphasize that the
generalization of our study results to other populations necessitates rigorous validation
through independent replication efforts.

Study strengths include the novelty of genetic loci associated with eating behaviour
patterns, assessed using the DEBQ, in people with T2D and healthy individuals, as well as
the application of a robust the two-sample MR approach to explore the potential causal links
between eating behaviour patterns and a wide range of metabolic traits in an independent
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sample of individuals with MetS. Our study benefits from utilizing our own data from
the Volga-Ural region of Eurasia, as well as GWAS results from large consortia such as the
MaGIC, GLGC, GIANT Consortium, and the UK Biobank.

Our study’s findings offer insight into the biological mechanisms connecting eating
behaviour with metabolic disorders like diabetes, potentially serving as a basis for devel-
oping strategies to enhance metabolic health. A notable advantage of this approach is the
stability of molecular genetic markers throughout an individual’s life, enabling their use
from birth onward.

5. Conclusions

Using a Mendelian randomization approach, we demonstrated a strong causal rela-
tionship between external eating and glycaemic traits (HbA1c) in individuals from the
Volga-Ural region of Eurasia. Using genome-wide data, we established that external eat-
ing influenced various anthropometric traits, including height, weight, body mass index,
and waist and hip circumference. Subsequent investigations are warranted to unveil the
molecular mechanisms underpinning the observed relationships.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nu16081166/s1, Supplementary Table S1: Associations of the
studied loci with the patterns of eating behaviour and type 2 diabetes, Supplementary Table S2:
Associations of the studied loci with metabolic syndrome and related traits, Supplementary Table
S3: Causal relationship between eating behaviour patterns and anthropometric and cardiometabolic
phenotypes identified by Mendelian Randomization, Supplementary Table S4: Causal relationship
between eating behaviour pat-terns and anthropometric and cardiometabolic phenotypes identified
by Mendelian Randomization using genome-wide data, Supplementary Table S5: Clinical character-
istics of people with metabolic syndrome and the control group, Supplementary Table S6: Clinical
characteristics of people with type 2 diabetes and the control group, Supplementary Table S7: The list
of studied loci, Supplementary Table S8: Summary statistics for the loci significantly associated with
eating behaviour in genome-wide associated studies for metabolic disorders.
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