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Abstract: Polygonati Rhizoma (PR) has certain neuroprotective effects as a homology of medicine
and food. In this study, systematic pharmacology, molecular docking, and in vitro experiments were
integrated to verify the antidepressant active ingredients in PR and their mechanisms. A total of
seven compounds in PR were found to be associated with 45 targets of depression. Preliminarily, DFV
docking with cyclooxygenase 2 (COX2) showed good affinity. In vitro, DFV inhibited lipopolysac-
charide (LPS)-induced inflammation of BV-2 cells, reversed amoeba-like morphological changes,
and increased mitochondrial membrane potential. DFV reversed the malondialdehyde (MDA) over-
expression and superoxide dismutase (SOD) expression inhibition in LPS-induced BV-2 cells and
decreased interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6 mRNA expression levels
in a dose-dependent manner. DFV inhibited both mRNA and protein expression levels of COX2
induced by LPS, and the activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3)
and caspase1 was suppressed, thus exerting an antidepressant effect. This study proves that DFV
may be an important component basis for PR to play an antidepressant role.
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1. Introduction

Depression is one of the most widespread and serious mental disorders globally,
mainly manifested as despair, insomnia, and even suicide [1]. With the increased social
pressures in life, the prevalence and incidence of depression continue to rise [2], especially
in the background of the COVID-19 outbreak [3]. It is becoming a worldwide public health
problem [4]. It is urgent to actively seek effective antidepressant drugs and elucidate their
pharmacological mechanisms.

Polygonati Rhizoma (PR), Chinese name “Huangjing”, is a medicinal and dietary
homolog of the Polygonatum Mill. in Liliaceae [5]. PR was first recorded in Shen Nong Ben
Cao Jing (Eastern Han Dynasty, 25–220 AD) and has been applied as a traditional Chinese
medicine (TCM) and nutritional supplement, with a history of more than 2000 years [6,7].
The theory of TCM points out that the key pathogenesis of depression is related to the
shortcoming of five viscera and blood [8]. PR has the effects of nourishing the blood,
heart, and liver, invigorating the spleen, tonifying the middle, moistening the lungs, and
producing fluid. It has been used to treat depression in recent years with good effects [9].
Our previous studies found that saponins of PR effectively ameliorate the behavioral indi-
cators of depression-model mice, reverse the abnormal expression of 5-hydroxytryptamine
(5-HT) and other neurotransmitters in mice [10,11], and regulate the level of trace ele-
ments in depression-model mice [12]. Further, it has been proven to improve chronic
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stress-induced depression in rats through the 5-HT-related pathways [13,14]. However,
due to the complexity of the components of Chinese herbal medicines, the mechanism of
the specific compound has not yet been clearly explained by current studies. Researchers
have proposed combining systemic pharmacology with molecular docking techniques to
screen active compounds in complex components and predict their targets [15–17]. De-
lightedly, the researcher used these two techniques to successfully clarify the potential
therapeutic effect of PR on COVID-19 and osteoporosis [5,18]. Researchers have combined
systematic pharmacology and in vitro and in vivo experimental validation to elucidate the
targeted kinase inhibitory activity of PR [19], and combined with metabolomics, to prelim-
inarily reveal the key active ingredients of PR and its potential for treating Alzheimer’s
disease (AD) [20]. This provides a feasible approach for exploring the mechanism of PR in
treating depression.

The microglia is a weighty member of the immune cells in the brain, and it partic-
ipates in the immune defense and homeostasis maintenance of the systema nervosum
centrale [21]. Lipopolysaccharide (LPS)-activated BV-2 microglia is a classic model com-
monly used to study the inflammatory state and interventional regulation of the nervous
system in vitro [22–24]. In this study, we investigated the core chemicals and targets of
PR in treating depression by integrating systemic pharmacology and molecular dock-
ing. Among them, the compound DFV associated with the core target, also known as
Liquiritigenin or 7,4′-dihydroxyflavanone, has attracted our attention. DFV belongs to
the flavonoid compounds in PR. Previous studies have shown that DFV has liver pro-
tection [25], anti-myocardial ischemia [26], anti-breast cancer [27], and bone protection
effects [28,29]. In these studies, DFV demonstrated strong anti-inflammatory and an-
tioxidant stress-resistance abilities. Based on the important roles of oxidative stress and
inflammatory response in depression, as well as the progress of anti-inflammatory drugs
in the treatment of depression, this study aims to explore the targets and molecular reg-
ulatory mechanisms of DFV antidepressant therapy. Previous researchers have explored
the therapeutic effects and molecular mechanisms of DFV in a mice depression model
in vivo and found that DFV alleviates depression-like behavior in mice by regulating the
PI3K/Akt/mTOR-mediated brain-derived neurotrophic factor and tropomyosin-related
kinase B signaling pathway [30,31]. These studies have laid a certain foundation for the
application of DFV in treating depression. To explore the antidepressant targets and related
molecular regulatory mechanisms of DFV, this study combined systemic pharmacology
and in vitro experiments to carry out related work. An LPS-induced BV-2 cells model
was applied to assess the effects of DFV on protein regulation and oxidative stress-related
processes. These results could provide innovative ideas and evidence for DFV to treat
depression. The framework of this research is shown in Figure 1.
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Figure 1. Flow chart of mechanism research of PR in treating depression (created with BioRen-
der.com, accessed on 10 March 2024). 
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All the compounds in PR were obtained from the Traditional Chinese Medicine Sys-
tems Pharmacology Database and Analysis Platform (TCMSP, https://tcmsp-e.com/, ac-
cessed on 5 November 2022) [32]. For drugs that play a role in the systema nervosum 
centrale, with the exception of common drug active parameter settings, the blood–brain 
barrier (BBB) permeability plays a crucial role [33]. This parameter is important to assess 
the ability of a compound to enter the central nervous system. The BBB is a highly specific 
vascular interface that maintains brain homeostasis by separating the blood chamber from 
the central nervous system. The value of BBB ≥ −0.3 was considered to have a moderate-
to-strong degree of central penetration [34]. As stated by the recommended conventional 
ADME parameter (absorption, distribution, metabolism, and excretion), oral bioavailabil-
ity (OB) is used as a significant pointer to identify the characteristics of bioactive molecules 
for oral administration, and the screening critical condition was set to OB ≥ 30% [35]. The 
“drug-like” (DL) level of a compound greater than or equal to 0.18 was the selection crite-
ria for “drug-like” compounds in traditional Chinese medicine [36]. The half life (HL) of 
a drug determines the time scale at which the compound may trigger treatment. The 
screening critical condition of HL was set to be not less than 4 h [37]. 
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2. Material and Methods
2.1. Retrieval and Screening of Active Compounds in Polygonati Rhizoma

All the compounds in PR were obtained from the Traditional Chinese Medicine Sys-
tems Pharmacology Database and Analysis Platform (TCMSP, https://tcmsp-e.com/,
accessed on 5 November 2022) [32]. For drugs that play a role in the systema nervosum
centrale, with the exception of common drug active parameter settings, the blood–brain
barrier (BBB) permeability plays a crucial role [33]. This parameter is important to assess
the ability of a compound to enter the central nervous system. The BBB is a highly specific
vascular interface that maintains brain homeostasis by separating the blood chamber from
the central nervous system. The value of BBB ≥ −0.3 was considered to have a moderate-
to-strong degree of central penetration [34]. As stated by the recommended conventional
ADME parameter (absorption, distribution, metabolism, and excretion), oral bioavailability
(OB) is used as a significant pointer to identify the characteristics of bioactive molecules
for oral administration, and the screening critical condition was set to OB ≥ 30% [35].
The “drug-like” (DL) level of a compound greater than or equal to 0.18 was the selection
criteria for “drug-like” compounds in traditional Chinese medicine [36]. The half life (HL)
of a drug determines the time scale at which the compound may trigger treatment. The
screening critical condition of HL was set to be not less than 4 h [37].
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2.2. Target Acquisition of Candidate Compounds in Polygonati Rhizoma

The targets of all candidate compounds screened by ADME were gained from the
TCMSP and Drugbank database (https://go.drugbank.com/, accessed on 5 November
2022). It was standardized and converted by the Uniprot database (https://www.uniprot.
org/, last accessed on 10 November 2022) for the gene symbol of protein targets [38].

2.3. Acquisition of Depression-Related Targets

The keyword “Depression” was entered, respectively, in the PharmGKB database
(https://www.pharmgkb.org/, accessed on 9 November 2022) [39], the Therapeutic Target
Database (TTD, http://db.idrblab.net/ttd/, accessed on 9 November 2022) [40], the Online
Mendelian Inheritance in Man database (OMIM, https://www.omim.org/, accessed on 9
November 2022) [41], the Genetic Association Database (GAD, https://geneticassociationdb.
nih.gov/, accessed on 5 November 2022) [42], and the DisGeNET database (https://www.
disgenet.org/, accessed on 5 November 2022) to obtain targets related to depression [43].
Genes from different databases were compared, deleting duplicates to obtain all relevant
targets for depression.

2.4. Networks Construction

Cytoscape3.8.0 software was used to draw the PR candidate compounds–targets
network, depression-related targets network, and PR candidate compounds–depression
targets network. The topology parameters of these networks were obtained by using the
network-analysis plug-in in the software [44].

2.5. Enrichment Analysis

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, https:
//david.ncifcrf.gov/, accessed on 11 November 2022) was applied to analyze the enrich-
ment results of the targets of PR in treating depression, including gene ontology (GO)
analysis and KEGG analysis. GO analysis has the function of unifying the expression
of genes and gene-product attributes of all species, including biological processes (BP),
cellular components (CC), and molecular functions (MF) [45]. KEGG is a knowledge base
for the biological interpretation of fully sequenced genomes through pathway mapping [46].
KEGG pathways, GO-MF, GO-BP, and GO-CC were selected for analysis in the enrichment
section. The entries were selected for further analysis when their feature annotation with a
significant p-value (corrected by Bonferroni and Benjamini algorithms, p < 0.05) [47].

2.6. Molecular Docking

The 3D structures of DFV were downloaded from the Pubchem platform (https:
//pubchem.ncbi.nlm.nih.gov/compound/114829, accessed on 12 November 2022) as a
ligand. The crystal structure of cyclooxygenase 2 (COX2, PDB ID: 5IKR) was obtained
from the PDB platform (https://www.rcsb.org/structure/5IKR, accessed on 12 November
2022) as a receptor [48]. We used the CB-Dock (https://cadd.labshare.cn/cb-dock/php/
blinddock.php, accessed on 12 November 2022) database platform to execute the online-
docking program [49], with a grid-box size of (X: 31.8585, Y: 27.2645, Z: 71.9915). Their
binding affinity was estimated based on the Vina score [50].

2.7. Reagents

BV-2 cells were obtained from Fuheng Biology (Shanghai, China). DFV (Liquiditi-
genin) was purchased from MCE (Shanghai, China). LPS (Mutant of E. coli O111: B4.)
was provided by Sigma Aldrich (St. Louis, MO, USA). Dulbecco modified Eagle medium
(DMEM) and fetal bovine serum (FBS) were provided by Gibco (Grand Island, NE, USA);
0.25% trypsin and penicillin streptomycin were obtained from Beyotime (Beijing, China).
Dimethyl sulfoxide (DMSO) was purchased from Abcam (Shanghai, China). The Superox-
ide dismutase (SOD) and malondialdehyde (MDA) test kits, cell counting kit-8 (CCK-8),
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BCA Protein Assay Kit, and SDS-PAGE gel preparation kit were provided by Beyotime
(Beijing, China).

2.8. CCK8 Assay

Cell counting kit-8 was used to evaluate the viability of BV-2 cells. The cell concentra-
tion of 3 × 103 cells/well was inoculated into a 96-well plate. One hundred µL of medium
containing the corresponding concentration of drugs were added when the cells adhered
to the wall and fused to 70–80% and were incubated for a certain time. Then, 10 µL CCK-8
were added to each hole. After 1 h of incubation, the optical density (OD) was measured
with a Spectra MAX iD3® Multi-mode microplate reader (Sunnyvale, CA, USA) at 450 nm
wavelength. Cell viability was calculated as cell viability = (OD (treatment group) − OD
(blank))/(OD (control group) − OD (blank)) × 100%.

2.9. SOD and MDA Detection

BV-2 cells were tiled on 6-well plates. After 12 h culture in the cell incubator, BV-2 cells
were preincubated with DFV (5, 10, 25 µM) for 1 h and then treated with LPS (2 µg/mL)
for 24 h. After treatment, the cells were washed with PBS twice, and 150 µL of RIPA lysate
were added to each well to fully lysate the cells. After centrifugation at 4 ◦C at about
12,000× g for 10 min, the supernatant was taken as the sample to be tested. The protein
concentration of each sample was quantified by the BCA kit. Then, the SOD and MDA
levels in the supernatant were detected. Specific operations were carried out according to
the operating instructions of the BCA protein-concentration assay kit, total SOD activity
assay kit, and MDA Assay Kit (Beyotime, Beijing, China) [51]. The OD of each hole was
measured with a Spectra MAX iD3® multi-mode microplate reader (Molecular Devices,
Sunnyvale, CA, USA). The absorbance of SOD activity was measured at 450 nm, and that
of MDA content was measured at 532 nm. The BCA was used to calculate the protein
concentration by determining the absorbance value at 562 nm.

2.10. Quantitative Real-Time PCR Assay

Total RNA was extracted from the BV-2 cells of different treatment groups using
the EZ-Press RNA purification kit (EZ Bioscience, Roseville, CA, USA). Then, a Reverse
Transcription Kit (EZ Bioscience, Roseville, CA, USA) was used to convert the extracted
RNA into cDNA using specific primers (EZ Bioscience, Roseville, CA, USA) to amplify
the cDNA templates. The mRNA levels of various genes (COX2, TNF-α, IL-1β, and IL-6)
compared with GAPDH were evaluated by 2−∆∆Ct. The primer sequences used in this
study refer to previous studies [52–54] (Table 1).

Table 1. The primer sequences of COX2, TNF-α, IL-6, IL-1β, and GAPDH.

Gene Name Sequences

COX2 (F) 5′-TGAGCATCTACGGTTTGCTG-3′

(R) 5′-TGCTTGTCTGGAACAACTGC-3′

TNF-α (F) 5′-AAAATTCGAGTGACAAGCCTGTAG-3′

(R) 5′-CCCTTGAAGAGA-ACCTGGGAGTAG-3′

IL-6 (F) 5′-AGATACAAAGAAATGATGGATGCTA-3′

(R) 5′-TCTTGGTTGAAGATATGAATTAGAG-3′

IL-1β (F) 5′-GTGTCTTTCCCGTGGACCTT-3′

(R) 5′-CGTTGCTTGGTTCTCCTTG-3′

GAPDH (F) 5′-TAGATTATTCTCTGATTTGGTCGTATTGG-3′

(R) 5′-GCTCCTGGAAGATGGTGATGG-3′

2.11. Morphologic Observation of BV-2 Cells and Rhodamine123 Staining

The cells were spread in 6-well plates containing slides and grouped and treated in the
same way as before. After the treatment, the 6-well plates containing slides were rinsed with
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PBS three times. The cells were marked with Rhodamine123 (Beyotime, Shanghai, China)
in a dark environment for a few minutes [55]. The dye solution in the hole was discarded,
and the 6-well plate was washed with PBS three times. The slide was taken out and placed
on a glass support containing an anti-fluorescence quenching agent (Beyotime, Shanghai,
China) and photographed under a fluorescence microscope (Olympus, Tokyo, Japan).

2.12. Western Blot Analysis

After different treatments, the BV-2 cells were washed with cold PBS twice, and the
cells were fully lysed with RIPA lysate containing 1% protease inhibitor. The lysate was
collected and centrifuged at 4 ◦C at 12,000 rpm for 25 min. Part of the supernatant was taken
for protein-concentration determination, and the remaining supernatant was mixed with
the loading buffer and boiled at 100 ◦C for 10 min. Fifty µg of protein were injected into the
pore of 12% and 8% SDS polyacrylamide gel to isolate proteins with different molecular
weights. The protein was then transferred at a constant voltage to a PVDF membrane
(Millipore, Bedford, MA, USA). The membrane was immersed in TBST solution containing
5% skim milk and slowly shaken at room temperature for 1 h. Wash the protein band with
TBST three times. Anti-β-actin (1:1000) (Affinity, Changzhou, China), Anti-COX2 (1:1000)
(Bioss, Beijing, China), anti-NLRP3 (1:1000) (GeneTex, Southern California, CA, USA), and
anti-Caspase-1 (1:500) (Wanleibio, Shenyang, China) antibodies were used to incubate the
protein bands at 4 ◦C overnight. On the second day, protein bands were incubated with
either goat anti-rabbit (1:10,000) or goat anti-mouse secondary antibody (1:10,000) (ZSGB
BIO, Beijing, China) for 1 h. All protein bands were measured by ECL Western blot assay.

2.13. Statistical Analysis

The results of the in vitro verification experiment were obtained by three repeated
experiments, expressed as mean ± SEM. For the comparison of more than two groups, a
one-way analysis of variance (ANOVA) and an unpaired t-test were used with GraphPad
prism software(version 9). It was considered that p < 0.05 was a significant difference
between the two groups, and p < 0.01 was extremely significant.

3. Results
3.1. Acquisition of Candidate Compounds and Targets in Polygonati Rhizoma

A total of 38 compounds in PR were obtained from the TCMSP database. The detailed
information about the ADME parameters of the compounds is provided in Supplementary
Table S1. The parameter-screening conditions of the active candidate compounds were set
as BBB ≥ −0.3, OB ≥ 30%, DL ≥ 0.18, and HL ≥ 4. A total of seven candidate compounds
were obtained (Table 2).

These compounds included flavonoids such as DFV (MOL001792), baicalein (MOL002714),
(2R)-7-hydroxy-2-(4-hydroxyphenyl) chroman-4-one (MOL004941) and 4′,5-Dihydroxyflavone
(MOL006331). Beta-sitosterol (MOL000358) and sitosterol (MOL000359) were classified as
sterol compounds. Diosgenin (MOL000546) belongs to saponins.

Table 2. Parameter information of candidate compounds.

Mol ID Molecular Name OB (%) DL BBB HL Structure

MOL001792 DFV 32.76 0.18 −0.29 17.89
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The information on targets corresponding to the seven candidate compounds was exca-
vated from the TCMSP and the Drugbank database (Supplementary Table S2). MOL001792
corresponded to 12 target proteins and 31 genes. MOL002714 corresponded to 37 tar-
get proteins and 94 genes. MOL000358 corresponded to 38 target proteins and 73 genes.



Nutrients 2024, 16, 1167 8 of 19

MOL000359 corresponded to three target proteins and 11 genes. MOL0004941 corresponded
to 15 target proteins and 34 genes. MOL000546 corresponded to 16 target proteins and
55 genes. MOL006331 corresponded to eight target proteins and 19 genes. The candidate
compounds–targets network of PR is shown in Figure 2. The network contained 194 nodes
and 317 edges, of which 7 nodes were compounds and 187 nodes were their targets.
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Figure 2. PR candidate compounds–targets network. Cytoscape 3.8.0 software was used to construct
the association between PR and candidate targets, and different shapes and colors were used to
render the compound and target features represented by nodes in the network for differentiation.
The green hexagonal nodes represented candidate compounds in PR, the rose-red circular nodes rep-
resented the matching targets of the compounds, and the edges represented association relationships
between nodes.

3.2. Targets Collection for Depression

By inputting the keyword “depression”, 23 genes were obtained from the PharmGKB
database, 76 genes were collected from the OMIM database, 683 genes were gathered from
the DisGeNET database, 43 genes were obtained from the TTD database, and 185 genes
were obtained from the GAD database. After merging the same genes, a great sum
of 832 depression-related genes was obtained (Supplementary Table S3), and then, the
depression-targets network was constructed (Figure 3A). By comparing PR targets and de-
pression targets, we found 45 potential targets for PR intervention in depression (Figure 3B).
After integrating the candidate compounds–targets network of PR with the depression-
targets network, we obtained the PR candidate compounds–targets–depression targets joint
network (Figure 3C).
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Figure 3. The construction of depression targets network and interacting with PR-related targets.
(A) Depression-targets network. The blue diamond nodes represented depression, while the purple
circular nodes represented depression-related targets. (B) The common targets between PR and
depression are shown in the Venn diagram. (C) PR candidate compounds–targets–depression targets
joint network. The yellow nodes represented common targets for PR and depression. The rose-red
nodes represented other targets in PR that were not related to depression. Purple nodes represented
depression targets unrelated to PR. Green nodes represented candidate compounds of PR. The blue
diamond node represented depression.

3.3. PR–Depression Targets Network Construction and Enrichment Analysis

First, depression targets unrelated to PR were removed (Figure 4A). Ultimately, by
removing PR targets that are not associated with depression, the candidate compounds–
depression targets a network of PR was obtained (Figure 4B). By enrichment analysis
of genes in the network, these genes were involved in pathways in cancer, neuroactive
ligand–receptor interaction, Kaposi sarcoma-associated herpesvirus infection, pathways of
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neurodegeneration−multiple diseases, etc. (Supplementary Table S4). The first 30 entries in
the result list were shown based on the p-value (Figure 4C). Similarly, we found that these
genes were involved in BP, including response to a drug, response to xenobiotic stimulus,
have positive regulation of the apoptotic process, response to lipopolysaccharide, etc.
Specific information on each item is displayed in Supplementary Table S5, and Figure 4D
shows the top-10 entries according to p-value. In terms of CC, these genes participated
in the postsynaptic membrane, an integral component of the presynaptic membrane,
presynaptic membrane, neuron projection, etc. (Supplementary Table S6, Figure 4D).
With respect to MF, these genes were associated with identical protein binding, enzyme
binding, neurotransmitter receptor activity, protein homodimerization activity, and so on
(Supplementary Table S7, Figure 4D).

Nutrients 2024, 16, 1167 10 of 20 
 

 

neurodegeneration−multiple diseases, etc. (Supplementary Table S4). The first 30 entries 
in the result list were shown based on the p-value (Figure 4C). Similarly, we found that 
these genes were involved in BP, including response to a drug, response to xenobiotic 
stimulus, have positive regulation of the apoptotic process, response to lipopolysaccha-
ride, etc. Specific information on each item is displayed in Supplementary Table S5, and 
Figure 4D shows the top-10 entries according to p-value. In terms of CC, these genes par-
ticipated in the postsynaptic membrane, an integral component of the presynaptic mem-
brane, presynaptic membrane, neuron projection, etc. (Supplementary Table S6, Figure 
4D). With respect to MF, these genes were associated with identical protein binding, en-
zyme binding, neurotransmitter receptor activity, protein homodimerization activity, and 
so on (Supplementary Table S7, Figure 4D). 

 
Figure 4. Construction of PR candidate compound−depression targets network and enrichment 
analysis of PR antidepressant targets. (A) PR candidate compounds−depression targets−other 

Figure 4. Construction of PR candidate compound−depression targets network and enrichment
analysis of PR antidepressant targets. (A) PR candidate compounds−depression targets−other
targets network. (B) PR candidate compounds−depression targets network (C) Advanced bubble
map of KEGG enrichment analysis of targets. (D) Advanced bubble chart of the top-ten entries in BP,
CC, and MF of target GO enrichment analysis.



Nutrients 2024, 16, 1167 11 of 19

3.4. Molecular Docking of COX2 with Correlative Compounds

After analyzing the topological features of the nodes in the PR–depression targets
network, it was found that COX2 has a more significant degree value (6) in the target
nodes (Supplementary Table S8). On the whole of COX2-related compounds, DFV was
selected as the intervention drug for subsequent experimental verification. Prior to this,
we first observed the binding conformation between the ligand and the receptor. The
structure of DFV is shown in Figure 5A. Then, we performed molecular docking of DFV
with COX2 (PDB: 5IKR), and the binding conformation is shown in Figure 5B. The docking
result showed that the Vina score for its docking score was −8.9 kcal/mol. The amino acid
residues surrounding the compound were CYS36, CYS37, HIS39, CYS41, ARG44, GLY45,
VAL46, CYS47, TYR130, GLY135, LEU152, PRO153, PRO154, PRO156, GLN461, GLU465,
TYR466, LYS468, and ARG469.
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3.5. Effect of DFV on Expression of Inflammatory Cytokines in LPS-Induced BV-2 Cells

We first investigated the effects of LPS on the viability of BV-2 cells at different con-
centrations. The results of the CCK8 assay showed that the viability of BV-2 cells was
enhanced when LPS concentration was 2 µg/mL (p < 0.05) (Figure 6A). Subsequently, we
determined the toxicity of DFV to BV-2 cells at different concentrations. There was insignif-
icant cytotoxicity of DFV to BV-2 cells in the concentration range of 0–50 µM (Figure 6B).
Further, we determined the effects of different concentrations of DFV on a BV-2 cell-culture
system containing 2 µg/mL LPS. The results showed that 5 µM DFV significantly inhibited
enhanced BV2 cell viability induced by LPS (p < 0.05) (Figure 6C). By determining the gene
expression of several inflammatory cytokines in different treatment groups, it was found
that the expressions of IL-1β, TNF-α, and IL-6 in BV-2 cells were significantly increased
after LPS induction compared with the control group (p < 0.05). However, pre-incubation
with DFV in a culture system containing LPS, mRNA levels of IL-1β, TNF-α, and IL-6 in
BV-2 cells were reduced dose dependently compared with those in the LPS group. More-
over, when the concentration of DFV was 25 µM, the decrease was statistically significant
(p < 0.05) (Figure 6D).

3.6. Effect of DFV on MDA and SOD Release in LPS-Induced BV-2 Cells

By determining the MDA and SOD levels in BV-2 cells, LPS (2 µg/mL) significantly
increased the production of MDA and reduced the level of SOD in BV-2 cells. Cells
pretreated with DFV showed a dose-dependent inhibition of MDA and an increase of SOD
and showed a strong ability to reverse the LPS effect when the DFV concentration was
25 µM (p < 0.01) (Figure 6E).
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3.7. Effect of DFV on Mitochondrial Membrane Potential of LPS-Induced BV-2 Cells

Through the same above treatment, the cells were added to LPS and photographed
under the microscope 24 h later. It was found that BV-2 cells were activated in the culture
system containing 2 µg/mL, showing an amoeba-like appearance. BV-2 cells pretreated
by DFV showed insignificant activation after LPS induction (Figure 6F). Subsequently,
the cells were stained with rhodamine123. The results showed that, compared with the
control group, the LPS group significantly decreased the mitochondrial membrane potential
and fluorescence intensity due to the activation and inflammatory response of BV-2 cells.
Compared with the LPS group, the mitochondrial fluorescence of the BV-2 cells pretreated
with DFV was prominently enhanced (Figure 6F).
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(C) DFV inhibited the viability of BV-2 cells in a culture system containing 2 µg/mL LPS. (D) DFV
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morphological changes and increases mitochondrial membrane potential in LPS-induced BV-2 cells.
Data are rendered as mean ± SEM. Compared with the control group, * p < 0.05, ** p < 0.01. Compared
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3.8. Effects of DFV on the Expression of COX2, NLRP3, and Caspase1 in LPS-Induced BV-2 Cells

Molecular docking showed that DFV had good affinity and stable conformation with
COX2. The results of qPCR and Western blot showed that the expression levels of the
COX2 gene and protein in BV-2 cells were significantly increased when LPS existed in the
system. The gene and protein levels of COX2 in DFV-pretreated cells were inconspicuously
increased, while they were significantly decreased compared with the LPS group. COX2
mRNA expression significantly decreased at DFV 10 µM (Figure 7A), and COX2 protein
expression significantly decreased at DFV 25 µM (p < 0.05) (Figure 7B). It indicated that
the effect was dose dependent. At the same time, for NLRP3 and caspase1, as downstream
inflammatory proteins closely related to COX2, as expected, the expression levels of NLPR3
and cleaved-caspase1 were apparently increased in LPS-induced BV-2 cells, while the
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level of caspase1 remained unchanged in all groups. Expression levels of NLPR3 and
cleaved caspase1 were markedly lower in DFV-pretreated cells than in the LPS group
dose-dependently. The effects had statistical significance at a DFV concentration of 25 µM
(p < 0.05) (Figure 7C).
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4. Discussion

Traditional Chinese Medicinal herbs of the genus Polygonatum have been used as
a tonic in China, India, Pakistan, Iran, and Japan [56]. The crude extract and some pure
compounds of PR have many pharmacological effects, such as anti-aging, anti-diabetes, anti-
fatigue, and anti-cancer [57]. The neuroprotective effects of PR have also received attention.
Studies have shown that PR has pharmacological effects against AD with the mechanism
of preventing deposition of the Aβ protein [20], improving learning and memory function,
and reducing neuronal apoptosis [56].

Similarly, depression is a mental disorder with several neurodegenerative pathophysi-
ological mechanisms that are associated with neuroinflammatory activity in response to
external stimuli in specific areas of the brain. Therefore, intervening in neuroinflammatory
processes is also considered an effective means of fighting depression [58,59]. LPS-induced
astrocyte activation is a commonly used in vitro model of neuroinflammation, simulating
stress stimuli in the central nervous system. The immune response of the central nervous
system stimulated by stress is characterized by rapid activation of microglia and astrocytes
and proinflammatory cytokines. This process includes the release of IL-1 β, TNF-α, and
prostaglandin E2 (PGE2). Excessive COX2 enzyme activity can promote the production of
PGE2, a pro-inflammatory factor [60]. In the LPS-induced depression mouse model, the
transcription function of the CREB/ATF-2 family is upregulated, leading to an overexpres-
sion of COX2. This induces excessive activity in the inflammatory response, leading to
behavioral depression in mice [61]. As a key protein in the pathogenesis of neuroinflamma-
tion, COX2 is increasingly valued for its role in the transmission and cascade amplification
of inflammation. Among them, the p38 MAPK/ATF-2 signaling pathway has been shown
to play a role in inducing COX2-derived PGE2 production in inflammation in brain injury
and inflammatory diseases [62]. Currently, many studies have also shown that the activa-
tion of COX2 is an important factor mediating the development of depression [63,64]. COX2
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produces prostaglandin-endoperoxide synthase (PTGS) under the regulation of specific
stimulus events, such as responding to physiological stress responses, infection, and inflam-
mation. Usually, COX2 and PTGS2 are combined to represent [65–68]. In this study, after
conducting network-feature topology analysis on the PR candidate compounds–depression
targets network, it was found that COX2 and PTGS2 have the same degree value, which is
the largest value among the targets. Therefore, we selected COX2 as the core target in our
study. The research results found that six candidate compounds in PR are directly related
to COX2. PR is rich in various active ingredients, including polysaccharides, saponins, and
flavonoids. Flavonoids are important secondary metabolites of PR and vital indicators for
measuring the quality of PR from various habitats [69]. Studies have shown that the content
of DFV in the same lifetime of PR is lower than β-sitosterol but higher than other active
compounds [70]. β-sitosterol has been proven to exist as a potential active ingredient in
antidepressant formulations in multiple network pharmacology studies [71,72]. Therefore,
this study selected DFV with a smaller molecular weight (MW: 256.27) as the compound to
be validated. DFV is a flavonoid compound widely present in Chinese herbal medicines
such as PR, Glycyrrhizae radix et rhizome (Pharmacopoeia of China, 2015), Isatidis folium
(Pharmacopoeia of China, 2015), Hedysari Radix (Pharmacopoeia of China, 2015), Epimedii
folium (Pharmacopoeia of China, 2015), etc. The liver- and heart-protective effects of DFV
have been extensively studied [26,73–75]. In addition, there have been some reports on the
neuroprotective effects of DFV that we are concerned about. DFV also exhibits a protective
effect on glutamate-mediated neuronal cell death [76]. Similarly, DFV also has neuropro-
tective effects on Aβ (25–35)-induced neurotoxicity [77]. In this study, we first predicted
the molecular docking conformation of DFV and COX2 and found that they have good
affinity. It is generally believed that, when the absolute value of the molecular docking
score is greater than seven, small molecules and proteins are more likely to bind [78,79].
We found and demonstrated that COX2 can be an effective target for DFV in antidepressant
therapy. We also affirmed that the mRNA and protein expressions of COX2 were increased
by LPS in BV-2 cells. It leads to the upregulation of NLRP3 and promotes caspase1 cleavage.
This process triggers the release of inflammatory factors in cells, such as TNF-α, IL-6, and
IL-1β. This may be an important reason for the activation of BV-2 cells and the occurrence
of amoeba-like morphological changes, while DFV reversed these effects of LPS. This may
be one of the molecular regulatory mechanisms for its anti-depression effect.

5. Conclusions

In conclusion, we used systemic pharmacology to screen active compounds in Polyg-
onati Rhizoma and their anti-depression targets primitively and found that DFV may
be an important component of PR in exerting antidepressant effects. Molecular docking
preliminarily confirmed the binding affinity between DFV and COX2. In vitro, DFV re-
versed the overexpression of MDA and inhibition of SOD expression in LPS-induced BV-2
cells. Further, DFV was found to inhibit COX2 overexpression induced by LPS, which
further inhibited the transitional activation of NLRP3 and caspase1 in BV-2 cells. This was
manifested by the reduced release of inflammatory cytokines, such as TNF-α, IL-6, and
IL-1β, and the recovery of reduced mitochondrial membrane potential (Figure 8). These
results proved the compound basis and pharmacological mechanism of the anti-depression
of Polygonati Rhizoma. However, we must also declare that the work of this study still
has limitations in the construction of animal models, confirmation of the efficacy of DFV
in vivo, and validation of its pharmacological mechanisms. We will conduct more in-depth
research on these aspects in our current and future work.
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