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Abstract: In spite of amazing progress in food supply and nutritional science, and a 

striking increase in life expectancy of approximately 2.5 months per year in many countries 

during the previous 150 years, modern nutritional research has a great potential of still 

contributing to improved health for future generations, granted that the revolutions in 

molecular and systems technologies are applied to nutritional questions. Descriptive and 

mechanistic studies using state of the art epidemiology, food intake registration, genomics 

with single nucleotide polymorphisms (SNPs) and epigenomics, transcriptomics, 

proteomics, metabolomics, advanced biostatistics, imaging, calorimetry, cell biology, 

challenge tests (meals, exercise, etc.), and integration of all data by systems biology,  

OPEN ACCESS 



Nutrients 2012, 4 1899 

 

will provide insight on a much higher level than today in a field we may name molecular 

nutrition research. To take advantage of all the new technologies scientists should develop 

international collaboration and gather data in large open access databases like the 

suggested Nutritional Phenotype database (dbNP). This collaboration will promote 

standardization of procedures (SOP), and provide a possibility to use collected data in 

future research projects. The ultimate goals of future nutritional research are to understand 

the detailed mechanisms of action for how nutrients/foods interact with the body and 

thereby enhance health and treat diet-related diseases.  

Keywords: molecular nutrition; nutrigenomics; genomics; transcriptomics; proteomics; 

metabolomics; systems biology; adipokines; myokines 

 

1. Introduction 

Mankind has gone through several revolutions concerning dietary habits. A large break-through was 

the mastering of fire to be able to cook or fry foods making nutrients more bioavailable in particular to 

children. This more systematic use of fire related to butchering took place in several places of the 

world in parallel about 400,000 to 200,000 years ago [1,2]. Another striking period of human history is 

represented by the Neolithic Revolution with development from a foraging life-style (gathering and 

hunting) mostly associated with nomadic activities, to an agricultural activity of people settled in 

permanent areas of fertile land. Early activity of this type is described in particular along large rivers 

(Euphrates, Tigris and Nile; [3]). Introduction of fire and agriculture made it possible to feed more 

people and are prerequisites for development of the amazing expansion of the global population from 

about 5 million people 10,000 years ago up to 7 billion people today [4]. These few examples of 

nutrition illustrate the obvious fact that healthy and sufficient food is essential for population growth.  

1.1. Population Growth and Life Expectancy 

Throughout most of human history, the pace of growth of the global population has been very 

slow [5]. World population reached 1 billion around 1800, and after another 125 years it was 2 billion. 

The world is currently in a period of faster population growth, increasing from 3 to 7 billion within the 

space of the past half-century [6]. In 2011, there was ~135 million births and 57 million deaths, a net 

increase of 78 million people [4]. According to the latest medium-fertility projections the world 

population will continue to grow throughout this century, reaching 9.3 billion in 2050 and 10.1 billion 

in 2100, obviously with a large degree of uncertainty. With the present trends there is a marked 

increase in age of most populations, both in the group of working age (15–65 years) and in the elderly 

(above the age of 60 years).  

During the last 150 years the life expectancy has increased by about 32 years in Norway for boys 

born in 2011 up to 79 years, while the life expectancy has increased by about 34 years for girls up to 

83 years [7]. A similar trend is seen internationally with an increase during the last century of about 

2.5 months per year. This striking increase in life expectancy in several countries is probably due to 
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factors like improved quality of drinking water, more effective sewer systems, improved personal 

hygiene, effective vaccination programs and improved diet. 

1.2. Modern Nutrition Research 

In spite of the fact that life expectancy has increased markedly during the last few centuries all 

populations may benefit from optimized nutrition to reduce incidence of obesity, type 2 diabetes 

mellitus (T2D), cardiovascular diseases as well as several types of cancers and infectious diseases. 

Nutritional science should be focused on preventing development of diseases as well as supporting the 

repair processes important for curing already fully developed diseases [8]. Traditional nutrition 

research has contributed significantly to modern biomedicine and obviously promoted prolonged life 

expectancy. However, it is still a large potential for improving diet and health for many groups in 

economically developing as well as developed countries. This potential can be exploited by designing 

good studies and applying new and advanced techniques, mostly based on molecular methods and 

advanced biostatistics.  

1.3. Nutrigenomics and Molecular Nutrition 

The National Institute of Health defines Genomics as the study of all of a person‘s genes, including 

interactions of those genes with each other and with the person‘s environment [9]. Genomics includes 

the scientific study of complex diseases such as T2D and cancer because these diseases are typically 

caused more by a combination of genetic and environmental factors (genetic interactions and  

gene-environment interactions) than by individual genes. Nutrigenomics is by definition a broader 

field of science than genomics. It is the study of the genome-wide influence of nutrition and the 

subsequent time-dependent response in transcriptomics, proteomics, and metabolomics to describe the 

phenotype of a biological system [10,11]. 

The concept of nutrigenomics has been introduced in particular in association with the 

establishment of the FP6 Network of Excellence named just Nutrigenomics Organisation [12], and 

with the publication of Müller & Kersten‘s paper ―Nutrigenomics: Goals and Perspectives‖ [10]. The 

concept of nutrigenomics has often been focused on the effects of nutrients and other food constituents 

on gene expression, in particular as ligands for transcription factors exemplified with the discovery of 

the nuclear receptors retinoid X receptors (RXRs) and peroxisome proliferator-activated receptors 

(PPARs) with retinoic acid and fatty acids (FAs) as ligands, where nutrients like FAs and derivatives 

of retinol can alter transcription of DNA to RNA. The influence of genetic variation on absorption, 

metabolism, elimination or biological effects of nutrients have also traditionally been included in the 

concept of nutrigenomics to optimize nutrition according to the subject‘s genotype.  

Although several great discoveries have been described with the nutrigenomic approaches, the 

understanding of how nutrients execute their biological effects also depends on mechanisms not acting 

through the genome (Figure 1). The concept of ―molecular nutrition research‖ is broader than 

―nutrigenomics‖, and may be defined as ―Science concerned with the effect of nutrients and foods/food 

components on whole body physiology and health status at a molecular and cellular level‖. The precise 

determination of molecular mechanisms underlying human health and disease offers a great potential 

for promoting health, and lowering mortality and morbidity, and includes the science of nutrigenomics. 
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Figure 1. Molecular mechanisms of nutrients exemplified by fatty acids. 
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In this review we will focus on old and in particular new technologies to describe the mechanisms 

of action by which nutrients execute their biological functions under different physiological conditions. 

It is a great potential for improving health by understanding the interaction between nutrients/foods 

and body functions, and thereby improve dietary prevention and treatment of diseases affecting people 

in affluent as well as poor societies. 

2. Nutrition and Metabolism Are Complicated 

2.1. Nutrition Is Demanding 

In order to improve nutritional knowledge we have to consider the complexity of nutrition as 

outlined in Table 1. 

Table 1. Nutrition is complicated due to many variables. 

• We eat ~1.5 kg food & drink ~2 L liquid/day; 

• About 40 essential nutrients are known; 

• Thousands of known compounds in foods without known biological functions; 

• Thousands of unknown compounds in foods without known biological functions; 

• About 10
13

 cells in the body & about 10
14

 bacteria in the GI tractus; 

• Mostly unknown and complicated interplay between diet and the microbiome; 

• Many organs & some hundreds of cell types are found in the body; 

• About 25,000 genes in human cells; 

• Human genome includes 3 billion base pairs; 

• Some millions single nucleotide polymorphisms (SNPs); 

• A large epigenetic variation between individuals due to environmental factors; 

• About 100,000 transcripts (mRNA); 

• About 100,000 proteins; 

• About 1000 lipids & thousands of water-soluble metabolites. 

Nutrition is complicated because of the multitudes of essential nutrients, known and unknown 

chemical compounds without known biological functions, different cell types and the extensive 

microbiological activity in the intestine, combined with a great genetic and epigenetic variation. All 

the variable factors allow an extensive variation between individuals as well as between different 

physiological states like fasted, fed, cold, warm, rested, exercised, exhausted, male and female, 

menstrual cycle, pregnant, lactating and age ranging from newborn to old. This extensive complexity 

of nutritional science demands advanced approaches to unravel the relations between diet and health 

for different ages, sexes and environmental conditions. 

2.2. Fatty Acid Metabolism Is Complex 

To illustrate the complexity of nutrition research we will describe some aspects of metabolism and 

mode of action of FAs (Figure 1). 

An adult consumes approximately 85 g of triacylglycerol (TAG) daily. During digestion, free FAs 

(FFAs) and monoacylglycerols are released and absorbed in the small intestine. In the intestinal 
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mucosa cells, FFAs are reesterified to TAG, incorporated in chylomicrons, transported to systemic 

circulation, and hydrolyzed to FFAs in capillaries mainly in muscle and adipose tissue. 

FFAs enter cells mainly by FA transporters in the plasma membrane and are bound to FA-binding 

proteins (FABP) (Figure 2), activated to acyl-CoA before they are shuttled via acyl-CoA-binding 

protein (ACBP) to mitochondria or peroxisomes for oxidation to form ATP and heat, or to 

endoplasmic reticulum for esterification to different classes of lipids such as phospholipids, cholesteryl 

esters and TAG. FFA stored as TAG in lipid droplets may undergo lipolysis and reesterification. 

Glucose may be transformed to FFA (de novo lipogenesis) if there is a surplus of glucose/energy in the 

cells (Figure 2). 

Figure 2. Simplified view of fatty acid metabolism. 

 

2.3. Ligands for Transcription Factors/Altered Gene Expression 

FAs or their derivatives (acyl-CoA or eicosanoids) and phospholipids may interact with nuclear 

receptor proteins that bind to certain regulatory regions (promoter) of DNA and thereby alter 

transcription of these genes (Figure 1) [13]. The receptor protein may in combination with a FA 

function as a transcription factor. The first example described of this was PPAR. FAs as well as 

eicosanoids can bind directly to PPARα and PPARγ [14,15]. Strong activators of PPARα and PPARγ 

are unsaturated FAs such as oleic acids, linoleic acid (18:2, n-6), alpha-linolenic acid (18:3, n-3) and 

arachidonic acid (AA, 20:4, n-6). FAs may also influence expression of several glycolytic and 

lipogenic genes independent of PPAR. Polyunsaturated FAs (PUFA) may influence proliferation of 
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white blood cells along with the cells tendency to die by programmed cell death (apoptosis) or necrosis. 

Thus, FAs may be important for regulation of gene transcription and thereby regulate metabolism, cell 

proliferation and cell death. 

2.4. Eicosanoids  

Eicosanoids are signal molecules formed from 20 carbon atoms PUFA derived from the diet. The 

most common precursor for eicosanoids is AA. These multitudes of signal molecules are called 

leukotrienes, prostaglandins, thromboxanes, prostacyclins, lipoxins and hydroxy-FAs. Eicosanoids are 

important for several cellular functions like platelet aggregability, cellular chemotaxis and cell growth. 

Eicosanoids are mostly synthesized in cells where they execute their effects, and they are rapidly 

formed and degraded. Different cell types produce various types of eicosanoids with different 

biological functions. For example, platelets mostly make thromboxanes, whereas endothelial cells mainly 

produce prostacyclins. Eicosanoids derived from very long-chain n-3 PUFA (mostly eicosapentaenoic 

acid (EPA, 20:5, n-3) are usually less potent than eicosanoids derived from n-6 PUFA [16]. 

2.5. Substrate Specificity 

FAs may execute their action by having a different ability to interact with enzymes or receptors, as 

compared to other FAs. For example, EPA is a poorer substrate than all other examined FAs for 

esterification to cholesterol [17] and diacylglycerol [18]. Some n-3 PUFA are preferred substrates for 

certain desaturases [19]. The preferential incorporation of n-3 PUFA into some phospholipids, is 

caused by n-3 PUFA being preferred substrates for the enzymes responsible for phospholipid synthesis.  

2.6. Membrane Fluidity 

When large amounts of n-3 PUFA are ingested, there is a high incorporation of these FA in 

membrane phospholipids, which may alter physical characteristics of the membranes. The very large 

amount of DHA in phosphatidylethanolamine and phosphatidylserine in certain areas of the retinal rod 

outer segments is probably crucial for the function of membrane phospholipids in light transduction, 

because these lipids are located close to the rhodopsin molecules. The flexibility of membranes from 

blood cells in animals fed fish oil, is markedly increased, and may be important for the 

microcirculation. Increased incorporation of very long-chain n-3 PUFA into plasma lipoproteins 

changes the physical properties of low-density lipoproteins (LDL) promoting reduced melting point of 

core cholesteryl esters [20].  

2.7. Lipid Peroxidation 

Lipid peroxidation products may act as biological signals. A major concern with intake of PUFA 

has been the high degree of unsaturation and thereby the possibility of promoting peroxidation of LDL. 

Modified LDL may be endocytosed by macrophages and initiate development of atherosclerosis. 

Oxidatively modified LDL has been found in atherosclerotic lesions, and LDL rich in oleic acid seems 

to be more resistant to oxidative modification than LDL enriched with n-6 PUFA in rabbits. It should 

be recalled that the dietary amount of saturated FAs, trans-FAs and cholesterol are the lipids that 
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strongly correlate to development of coronary heart diseases, whereas the amount of dietary PUFA is 

related to reduced incidence of these diseases. Several studies suggest it is important to have the proper 

amount of antioxidants with the PUFA to decrease the risk of lipid peroxidation [21]. 

2.8. Acylation of Proteins 

Some proteins are acylated with stearic (18:0), palmitic (16:0) or myristic acid (14:0) [22], thereby 

influencing anchoring or folding of certain proteins, which may be crucial for the function of these 

proteins. Although the saturated FAs are most commonly covalently linked to proteins, also PUFA 

may acylate proteins [23]. 

A few aspects of FA metabolism in cells have been focused in this section (Figure 2) but  

an extensive complexity of FA metabolism can be illustrated by the network of associations outlined in 

Figure 3. In this figure multivariate analysis identifies a strong relationship between dietary n-3 PUFA, 

adipose tissue gene expression and markers of metabolic health [24]. 

Figure 3. Network of associations between dietary intake, adipose gene expression, and 

phenotypic markers. Green nodes: nutrients; yellow: lipid, fatty acid, and apolipoprotein 

variables in blood; red: inflammatory and oxidative stress markers in blood; blue: gene 

expression (enzyme) in adipose tissue. Solid line: positive correlation/covariance; dashed 

line: negative correlation/covariance. Note: This figure is adapted with permission  

from [24], Copyright © 2011 Morine et al. 
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3. Methods in Modern Nutrition Research  

Nutrients may influence gene expression ―directly‖ as ligands for nuclear receptors or by inducing 

epigenetic modifications. However, nutrients are also essential building blocks (essential amino acids), 

may act as coenzymes in chemical reactions (vitamins), can be converted into bioactive products (fatty 

acids), inhibit oxidation of other molecules (antioxidants), or serve as energy sources.  

New and advanced molecular techniques provide opportunities in nutritional science. These 

technologies are often based on the different omics (genomics, epigenomics, transcriptomics, 

proteomics and metabolomics) (Figure 4). Some molecular methods, which can be applied in nutrition 

research (Table 2) will be put in context and explained in the sections below. 

Figure 4. Dietary factors may interact with multiple biological processes. (Genomics) 

nutrients interact with genes and alter functional outcomes like dietary treatment of 

phenylketonuria; (epigenomics) nutrients may induce epigenetic changes like fatty acids 

promote methylation of the PGC-1α promoter; (transcriptomics) nutrients may influence 

gene expression as ligands for nuclear hormone receptors; (proteomics) nutrients  

may post-translationally modify proteins, e.g., protein-energy malnutrition leads to  

post-translational modifications of transthyretin; and (metabolomics) nutrients may change 

the metabolomic signature in the blood, e.g., carotenoids are biomarkers of fruit and 

vegetable intake. 
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Table 2. Methods in nutritional research. 

Research Area Technologies Assessed Parameters 

Epidemiology Observational 

Experimental 

Association between diet and health outcomes 

and effects of controlled dietary changes 

Genomics Microarray  

Next generation sequencing 

Association between genetic variation  

(e.g., SNPs, alleles) and phenotypic traits 

Epigenomics Bisulfite sequencing 

ChiP-sequencing  

DNA methylation and histone modification 

Transcriptomics Microarray 

RNA sequencing 

mRNA levels and splice variants 

Proteomics Chromatography 

Electrophoresis 

Mass spectrometry 

Protein microarrays 

Protein composition and  

posttranslational modifications 

Metabolomics Gas liquid chromatography 

Liquid chromatography 

Mass spectrometry  

Nuclear magnetic resonance 

Metabolites 

Microbiota Sequencing the 16S rRNA gene 

Metaomics (includes all omics 

described above) 

Microbe species composition; genome, 

transcriptome, proteome and metabolome of 

the microbiotic community 

Imaging CT 

MRI 

PET  

SPECT 

Optical imaging 

Whole body dynamic non-invasive detection of 

body composition (fat and lean mass), gene 

regulation and molecular tracers and probes 

Calorimetry Indirect calorimetry 

Direct calorimetry 

Energy intake and expenditure 

Cognition Cognitive tests (K-ABC, Fagan, 

ERP, Kendrick object learning, 

Trail making, Digit symbol, 

Block design, Mini-mental state 

examination, Oral word 

association), EEG 

IQ (sequential & simultaneous processing, 

nonverbal abilities, recognition memory) 

Systems biology Mathematical modeling 

Statistical methods 

Integrate large data sets to understand complex 

physiological systems 

SNP: Single nucleotide polymorphism; ChIP: chromatin immunoprecipitation; CT: computed tomography; 

MRI: nuclear magnetic resonance imaging; PET: positron emission tomography; SPECT: single photon 

emission computed tomography; K-ABC: Kaufman assessment battery for children; ERP: evoked response 

potentials; EEG: electroencephalography. 

3.1. Nutritional Epidemiology 

Epidemiology is the study of determinants and occurrence of disease in human populations [25]. 

The main objective in nutritional epidemiology is to study the role of nutrition in causes and prevention 

of disease to ensure the highest quality of health recommendations [26,27]. Epidemiological research 
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plays an important complementary role to experimental investigations in animals and in vitro, and can 

be used effectively to generate hypothesis for mechanistic studies [25,28]. 

The key advantage of nutritional epidemiology is its direct relevance to human health, in contrast to 

findings from in vitro studies and animal experiments, which cannot be extrapolated directly to 

humans. However, the methods for collecting data on food intake are inaccurate and not easily 

reproducible [25,26]. Thousands of foods with different origin and composition are consumed in the 

modern societies. Although individual food habits are more limited than for the whole population, 

there is a big variation from day to day and seasonal, in addition to a significant change through the 

different stages of life [29,30]. No matter what methods are used for collection of dietary intake like  

24 h recall, food frequency questionnaires or weighed food registration, we have serious challenges 

with under- and over-reporting or adjustments of food intake due to the data collection. Moreover, 

interpretation of data from epidemiological studies can be difficult because bias and confounding 

factors may affect the results [25,26]. Determining causality is impossible in observational 

epidemiological studies, whereas experimental studies give stronger evidence for causality. The 

disease process is often complex, and multiple risk factors may interact in development of disease. 

Observational epidemiology is primarily used to obtain disease information, measure prevalence and 

develop hypothesis about disease etiologies. Experimental epidemiology is focused on testing 

hypothesis and establishing the effect of dietary changes on health outcomes.  

Identification of a link between an exposure and health outcome often begins with an 

epidemiological study. An example is the association between obesity and elevated concentrations of 

several plasma amino acids. The type of dietary protein turns out to be associated with the risk of 

obesity, suggesting that specific amino acids may contribute to regulation of body weight [31–33]. 

Notably, in large epidemiologic studies, plasma total concentration of the sulfur-containing amino acid 

cysteine (tCys) is strongly and independently associated with fat mass and odds of obesity in adult 

populations [34,35]. Recently, the cysteine-fat mass relationship has been confirmed in younger 

subjects. Plasma tCys was associated with body fat percent and obesity in 984 children and adolescents 

(4–19 years) [36], and with waist circumference in 677 prepubertal children (6 to 11 years) [37]. 

However, because these findings are derived from non-experimental studies (Figure 5), interpretation 

must be performed carefully; high plasma concentration of tCys might promote obesity or obesity may 

influence cysteine metabolism and raise plasma tCys. Another possibility is that confounding factors 

may increase tCys and predispose for obesity, or that tCys might be a marker associated with obesity 

or obesity-related morbidity.  

To further clarify the molecular pathways and mechanisms linking cysteine and obesity, in vitro and 

animal studies have been carried out. Earlier in vitro studies have demonstrated that cysteine stimulates 

de novo lipogenesis and inhibits lipolysis [38,39]. Dietary cysteine supplementation decreases 

metabolic rate, induces lipogenic enzymes and increases adiposity in rodents, whereas dietary 

restriction of the precursor methionine has opposite effects [40,41]. This is consistent with human 

studies observing that vegetarian diets (low in methionine) are associated with low weight gain [32] 

and T2D risk [42]. Further evidence that cysteine is causally related to fat mass comes from studies in 

rodents as well as humans showing that genetic enzyme defects increasing or decreasing cysteine 

formation increase or reduce body weight, respectively [43,44]. Moreover, epidemiological and cell 

biological data suggest a redox mechanism, possibly via H2O2 signaling pathways [38,45], although 
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this needs further investigation. Thus, cellular, animal and epidemiological data point to an obesogenic 

action of cysteine [46], although more research is required before we can conclude that cysteine is 

important for development of obesity. 

Collective data from cellular, animal, and human studies are required to identify mechanisms, 

consequences and importance of potential links between the exposure and outcome, as illustrated by 

the possible involvement of cysteine in human obesity. No epidemiological study can alone provide an 

absolute answer about the effect of the exposure on the outcome [28]. When an association between a 

risk factor and the outcome is supported by evidence from a large number of observational studies, 

basic sciences about biological mechanisms, and experimental epidemiology, causality is strengthened 

and dietary guidelines may be provided [27] (Figure 5). 

Figure 5. Epidemiological methods related to other studies in nutritional science. 

Observational epidemiology includes cohort, case-control and cross-sectional studies, 

whereas experimental epidemiology includes field trials, community trials and intervention 

studies. Observational studies help formulate hypothesis to be tested in subsequent 

experimental studies. Mechanistic studies are important for understanding physiological 

and biological mechanisms at cellular, tissue, and whole body level. When evidence is 

supported by a large number of data from in vitro, animal, and epidemiological studies 

dietary recommendations can be made. 

 

3.2. Genomics  

The suffix ―-ome‖ comes from the Greek for all, every, or complete. Genomics refer to the study of 

all the genes (the genome) of an individual, including interactions of those genes with each other and 

with the individual‘s environment [9]. Strictly speaking, genomics does not include transcriptomics 

and epigenomics. Thus, in this section we focus on the interaction between diet and the genome and 

present separate sections on epigenomics and transcriptomics.  
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The physiological effect of a nutrient depends on multiple processes such as digestion and 

absorption in the gastrointestinal tract, transport in the blood, uptake and metabolism in a variety of 

cells, and excretion via the kidneys and gastrointestinal tract. Each of these processes involves multiple 

gene products with polymorphisms, which potentially can alter the host‘s physiological response to diet.  

Single nucleotide polymorphisms (SNPs) are defined as variations in DNA sequence where one of 

the four nucleotides is substituted for another [47]. SNPs may either have no consequence or a 

significant effect on the function of the gene product. Human genome-wide association studies 

(GWAS) take advantage of the inter-individual differences due to genetic polymorphisms by 

examining the statistical association between millions of SNPs in a large population and the 

phenotypic trait of interest [48]. Recent GWAS have provided many loci implicated in the 

development of chronic diseases such as T2D [49]. However, these loci explain only a small fraction 

of the total genetic component. For example, obesity has an estimated heritability of about 65%, 

whereas large human GWAS explain less than 3% of the genetic component [50].  

Identifying the relevant genes contributing to complex diseases is difficult, because several genes 

with small effects contribute to overall heritability. Moreover, GWAS alone does not have sufficient 

power to demonstrate interactions among genes or between genes and the environment, and it is 

difficult to move from locus to disease pathway directly in humans [51]. To simplify genetic analysis, 

natural variations relevant to disease have been studied in rodents. This has traditionally involved 

linkage-mapping methods with crosses between strains to identify quantitative trait loci (QTLs). The 

advantage of performing GWAS in inbred strains of mice is that we can control environmental 

exposure, select strains with large phenotypic variations, and map genes for complex traits with high 

resolution compared to linkage mapping [52]. An association-based approach called the hybrid mouse 

diversity panel, using more than hundred classical inbred strains, has the potential to identify  

gene-environment interactions and to map genes with a resolution of less than a megabase [53].  

Recent follow-up studies to large human GWAS have been designed to show gene-diet interactions. 

The studies were focused on if specific dietary compounds might modulate the phenotypic effect of a 

certain genetic variant. A classical example of gene-diet interactions is the dietary treatment of 

phenylketonuria (PKU). PKU is a genetic disorder caused by a mutation in the gene encoding the 

hepatic enzyme phenylalanine hydroxylase. This enzyme is required to metabolize phenylalanine into 

tyrosine. In PKU the enzyme is absent, and too much phenylalanine accumulates in the body causing 

mental retardation. However, when newborns are diagnosed with PKU they can get a phenylalanine-free 

diet, which prevents the neurotoxic effects of high blood levels of phenylalanine [54]. The FTO  

(fat mass and obesity associated) gene is a good example on how variation in gene sequence interacts 

with environmental factors to determine phenotype, because carriers of one or more ―risk‖ alleles have 

a 1.5 kg higher body weight per allele [55,56]. Although the absolute effect size is modest, it should 

not be underestimated at a population level, as the association potentially may influence body weight 

of up to half of the world‘s population [57]. Observational studies suggest that high dietary saturated 

fat intake accentuate the susceptibility for obesity in carriers of the FTO risk allele [58,59]. 

Furthermore, a recent meta-analysis showed a 27% attenuation of the association between FTO risk 

allele and the degree of obesity in physically active adults, highlighting the importance of physical 

activity at least in some individuals predisposed to obesity [60]. 
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Thus, it is important to know how different genotypes may interact with environmental factors to 

understand the effect of genetic polymorphisms on health. 

3.3. Epigenomics 

One of the first assumptions of adverse environmental impact on normal fetal development was 

described by Barker and Osmond [61], often referred to as Barker hypothesis. By using epidemiological 

data they linked low birth weight with increased risk of death from cardiovascular disease [61]. 

Several other studies have made similar observations associating early adverse conditions with 

metabolic dysfunction later in life; the Dutch famine cohort showed increased risk of cardiovascular 

diseases 4–5 decades later among children born to mothers who experienced extremely severe 

undernutrition during the first trimester of pregnancy [62]. These interesting epidemiological data in 

addition to major advances in the field of genetics led to a new research field investigating the 

connection between epigenetic modifications and environmental effects such as dietary intake. 

Epigenetic refers to modifications impacting gene expression occurring without changes in nuclear 

DNA base sequence [63]. Epigenomics can be defined as the study of the complete set of epigenetic 

modifications in a cell or a tissue at a given time. 

The human body consists of more than 200 different cell types with the same DNA sequence but 

unique gene expression patterns. The difference in gene expression between the cells is mainly 

governed by epigenetic modifications, including changes in DNA methylation and histone 

modification. DNA methylation is one of the major epigenetic modulators [64]; it can suppress gene 

expression by modulating the access of the transcript machinery to the chromatin or by recruiting 

methyl-binding proteins [65]. Because DNA methylation is mitotically stable, the assumption has been 

that environmental factors were unlikely to induce significant changes in DNA methylation pattern in 

normal adult tissues. However, recent studies support the notion that environmental factors affect 

metabolic functions through epigenetic modifications.  

Twin studies have shown that DNA methylation profiles were more divergent in older twins than in 

infant twin pairs, suggesting that environmental factors may influence the epigenome [66].  

Diet-induced weight loss for 8 weeks in obese men altered DNA methylation in peripheral blood 

mononuclear cells of specific genes [67]. Changes in DNA-methylation levels among humans with 

metabolic diseases were associated with alterations in expression of genes involved in mitochondrial 

function, including PGC-1α [68]. Reduced PGC-1α activity is linked with the pathogenesis of 

metabolic diseases as it increases metabolic and cardiovascular risk and precedes the development of 

T2D [69,70]. Interestingly, whereas palmitate and oleate can acutely induce methylation of the  

PGC-1α promoter, exercise induces hypomethylation of PGC-1α in skeletal muscle [71,72]. The 

hypomethylation of the PGC-1α promoter in response to exercise was paralleled with an increase in 

PGC-1α mRNA content [72].  

Transgenerational epigenetic inheritance refers to phenotypes present in successive generations 

caused by epigenetic modifications passed via the gametes [73]. Until recently, epigenetic modifications 

have been considered erased during gametogenesis or early embryogenesis. However, novel findings 

have shown that epigenetic marks are not always cleared between generations [74]. A well-studied 

model of transgenerational epigenetic inheritance is the Agouti mice [63]. The groundbreaking study 
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of Wolff and colleagues showed that methyl-supplementation of the maternal diet induced epigenetic 

regulation and altered the Agouti gene expression in the offspring causing altered fur color [75].  

A striking example of transgenerational effect on metabolic disease was published by Ng et al. [76]. 

They showed that when male rats were fed a high-fat diet before mating their female offspring 

inherited programmed β-cell dysfunction. This phenotype was associated with variation in the 

methylation pattern of the Il13ra2 gene. In humans, the epigenetic state at birth may predict later 

childhood adiposity [77]. In two independent cohorts greater methylation of RXRA at birth was 

strongly correlated with larger adiposity in later childhood. Furthermore, early carbohydrate intake 

during pregnancy was inversely associated with childhood adiposity [77]. 

The study of microRNAs is often classified to be part of epigenetics. MicroRNAs are small  

non-coding RNA molecules derived from hairpin precursors, usually between 20 and 30 nucleotides in 

length [78]. They can mediate post-transcriptional silencing for about 30% of protein-encoding genes 

in mammals by pairing with complementary sites in the 3′ untranslated regions of target genes. 

Interestingly, a recent study showed that exogenous plant food microRNAs can regulate target genes in 

mammals [79]. Zhang et al. [80] showed that MIR168a, a plant microRNA, may pass through the 

gastrointestinal epithelium and enter the blood and organs. Furthermore, they showed by in vitro and  

in vivo studies that MIR168a can bind to the human/mouse LDL receptor adaptor protein 1 (LDLRAP1) 

mRNA, inhibit hepatic LDLRAP1 expression, and reduce LDL removal from plasma. 

In conclusion, several lines of evidence indicate that some of the effects of diet and physical activity 

are induced via epigenetic modifications. 

3.4. Transcriptomics 

Transcriptomics refers to the complete collection of gene transcripts in a cell or a tissue at a given 

time [10], and may be used to study gene transcription in response to dietary changes [81]. The nuclear 

hormone receptor superfamily of transcription factors is probably the most important group of nutrient 

sensors, which influence gene expression. Numerous nuclear hormone receptors, such as RXR, 

PPARs, and liver X receptor (LXR), bind nutrients and undergo a conformational change that results in 

the coordinated dissociation of co-repressors and the recruitment of co-activator proteins to enable 

transcription activation. 

RNA microarray technologies and sequencing can be used to evaluate the interactions between diet 

and genes measured as changes in genetic expression. When applied together with traditional 

biochemical methods, transcriptomics provide more extensive information about nutrition status and 

metabolic responses to diet. Transcriptomics is mainly used for three different purposes in nutrition 

research (reviewed in [10]); first, it can provide information about the mechanism underlying the 

effects of a certain nutrient or diet; second, transcriptomics can help to identify genes, proteins or 

metabolites that are altered in the pre-disease state and might act as molecular biomarkers; third, 

transcriptomics can help to identify and characterize pathways regulated by nutrients. 

Human dietary intervention studies have successfully used transcriptomics to show that diet induces 

alterations in gene expression [79,82]. However, an important challenge in human transcriptomics 

studies is the inaccessibility of human tissues. Blood, subcutaneous adipose tissue, and skeletal muscle 

are among the tissues, which can be relatively easily collected. Thus, animal studies can be good 
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supplements to human studies to understand how nutrients affect gene regulation in a variety of tissues. 

A good example on how transcriptomics can be used is the study of Caesar and colleagues [83]. The 

authors set out to study the effects of expanding mesenteric adipose tissue in a murine model. They 

performed microarray analysis on mesenteric, subcutaneous, and epididymal adipose tissues after up to 

12 weeks of high fat feeding. Interestingly, they discovered that high fat feeding induced similar 

reduction in subcutaneous and mesenteric adipose tissue de novo lipogenesis, whereas the gene 

expression in epididymal adipose tissue was unaffected. Follow-up analysis with targeted lipidomics 

and biochemical analysis showed that de novo lipogenesis was down-regulated in the distal epididymal 

adipose tissue and that this specialized adipose tissue might promote elongation and desaturation of 

some essential PUFA for spermatogenesis. 

3.5. Proteomics 

Proteomics represents the large-scale study of the entire set of proteins expressed in a given cell, 

tissue, or organism at a defined time-point. Most biological functions are transmitted via proteins like 

enzymes, receptors and structural components. Studying proteins directly is necessary because gene 

expression levels do not always correspond to protein abundance because protein levels are determined 

by regulatory input from synthesis to degradation. Secondly, pre-mRNA transcripts might give rise to 

several proteins because of alternative splicing. Thirdly, subcellular localization is important for 

biological effects. In addition, posttranslational modifications and interactions with other proteins or 

RNA affect protein action and activity. Diet can induce post-translational modifications of proteins. 

One example is the study of Henze and colleagues showing that protein-energy malnutrition leads both 

to changes in transthyretin concentration in the blood and post-translational modifications of the 

protein [84]. 

Several review articles on the use of proteomics in nutrition research have been published [85–87]. 

The focus has been on identifying new health biomarkers and bioactive peptides in foods. Among the 

potential approaches for studying the proteome in large scale, chromatography combined with  

mass spectrometry (MS) has become a leading method (Figure 6). Other techniques include one- and 

two-dimensional gel electrophoresis and antibody-based assays such as protein microarrays [88]. 

Figure 6. A common workflow in a proteomic experiment. Protein samples can be derived 

from tissues, plasma, cultured cells or organelle fractions. Proteins are digested (1) and the 

resulting peptides are separated by chromatography (2), ionized (3) and the mass-to-charge 

ratio (m/z) is measured in an initial scan (4). To identify the amino acid sequence, peptides 

are selected for fragmentation and subjected to MS/MS (5). Finally, bioinformatics tools 

are used to identify and/or quantify the proteins in the sample (6). 
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Current MS technology makes it possible to analyze several thousand proteins in a single  

sample, and is used for identification and quantification of proteins, as well as characterization of  

post-translational modifications and protein interactions [89,90]. Several approaches are used, but the 

method often involves digesting proteins in the sample into peptides (e.g., with trypsin) and 

fractionating the peptides (often with liquid chromatography (LC)) before subjecting the sample to MS 

analysis. Peptides are ionized and the mass-to-charge ratio measured. Most often two or several mass 

analyzers are used in sequence separated by a fragmentation step. This is called tandem MS, or 

MS/MS. The generated spectra can be used to determine the amino acid sequence, and thereby identify 

the proteins by bioinformatics tools. This approach was used in a study investigating the skeletal 

muscle secretome [91]. Skeletal muscle secretes peptides in response to muscle contraction that exert 

either paracrine or endocrine effects. These peptides are termed myokines, and might be involved in 

mediating the beneficial effects of physical activity on health. Proteins secreted by cultured human 

myotubes were identified by LC-MS analysis of the conditioned cell culture medium. Two hundreds 

and thirty-six proteins were detected, and 15 of the secreted proteins had enhanced mRNA expression 

in biopsies from m. vastus lateralis and/or m. trapezius of healthy individuals after 11 weeks of 

strength training. 

MS can also be used for relative or absolute quantification of peptides, and the different methods 

either apply labeling of peptides before MS analysis or use label-free approaches based on spectral 

features [90]. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) are stable isotope 

containing tags that covalently bind all peptides in a sample [92]. Stable isotope labeling with amino 

acids in cell culture (SILAC) is a metabolic labeling technique where cells (and their proteomes) are 

labeled by growing them in medium containing heavy or light isotopes of essential amino acids [93]. 

Heavy isotope-labeled model organisms (such as rodents) are also available, allowing in vivo  

studies [94]. These labeling techniques have in common that differentially labeled samples are pooled 

and peptides sequenced and quantified simultaneously in one run.  

Forner et al. used SILAC to compare the mitochondrial proteomes of white and brown adipose 

tissue in mice [95]. This was achieved by comparing each tissue to a SILAC labeled control fraction 

from cultured cells. Several interesting differences were found [95]. Hwang et al. used a label-free 

method to analyze changes in protein abundance in skeletal muscle in relation to insulin resistance, and 

found a reduced abundance of mitochondrial proteins (among others) as compared to muscle tissue of 

healthy subjects [96]. To determine changes in lysine acetylation of mitochondrial proteins during 

energy restriction, a study on mice used a label-free approach and found dramatic, tissue-specific  

alterations [97]. Acetylation of mitochondrial proteins was primarily regulated in brown adipose tissue 

and liver. In liver, MS was used to identify specific proteins with altered acetylation, and 72 candidate 

proteins involved in metabolic pathways were found. 

Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that is emerging in 

the field of metabolomics as well as proteomics as a complement to untargeted shotgun methods [98]. 

This method is particularly useful when predetermined sets of proteins, such as those constituting 

cellular networks or sets of candidate biomarkers, need to be measured across multiple samples in a 

consistent, reproducible and quantitatively precise manner. 
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In recent years there has been a striking technological progress in the field of proteomics. 

Application of tryptic digestion, chromatography, MS, antibodies and bioinformatics in combination 

with other biochemical techniques, opens many new opportunities in future nutritional research. 

3.6. Metabolomics 

Metabolomics refers to the types and concentrations of all metabolites in a biological sample. 

Biological metabolites are specific products of genomic, transcriptomic and proteomic processes of the 

host or external organisms, as well as intrinsic and extrinsic influence on these. The characteristics and 

concentrations of all small molecules, water- as well as lipid-soluble, provide a potential for measuring 

flux through all important biological pathways, and thereby allow detailed understanding of how 

metabolites interact with tissue components of functional importance [99]. Metabolomics can also be 

used to identify biomarkers for intake of specific nutrients and health. For example it has recently been 

shown in an meta-analysis that blood concentrations of carotenoids, a biomarkers for fruit and 

vegetable intake, are more strongly associated with reduced breast cancer risk than are carotenoids 

assessed by dietary questionnaires [100].  

Ideally, metabolomics should have the ability to provide a detailed snapshot of biological processes 

at any particular point in time. In nutritional research, such an approach may provide an opportunity to 

identify changes in metabolic pathways induced by nutrients or other life-style factors, to explore 

relationships between environmental factors, health and disease, and to discover novel  

biomarkers [101,102]. However, due to the diverse chemical nature of low-molecular metabolites, 

including lipids, amino acids, peptides, nucleic acids, organic acids, vitamins, thiols and carbohydrates, 

the global, untargeted analysis represent a tough challenge. Although development of analytical 

platforms enables separation, detection, characterization and quantification of a large number of 

metabolites from only minor amounts of biological samples [103], targeted metabolomics are most 

often used [104].  

Targeted analysis, where a pre-defined set of metabolites are monitored, may be used for 

assessment of single nutrients or metabolites [105], determination of subsets of metabolites, including 

lipids [106], inflammatory markers [107,108] or oxidative damage [109,110]. The profiling of lipids 

has developed into its own field of lipidomics, and as adversely altered lipid metabolism is an 

underlying factor in a number of human chronic diseases, lipidomics has become an important tool to 

identify potential novel therapeutic targets [111,112].  

Although metabolomics gain increased interest in nutrition research, there are still some major 

limiting factors. In untargeted metabolomics, there are many unidentified metabolites. The high 

number of ―unknown‖ signals makes it often difficult to extract meaningful information. Thus, there is 

a great need for publically available databases for the identification of metabolites [101]. Furthermore, 

the use of pattern-recognition techniques is crucial for exploring novel molecules that may serve as 

biomarkers. Moreover, the data sets based on metabolomics are usually huge and multi-dimensional. 

The metabolomics data should be compiled along with data on transcriptomics and proteomics, 

supporting more extensive use of bioinformatics including multivariate analyses [113]. 
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Due to the recognized and huge intra-individual variation, there is a need for standardization of 

study design, use of large study cohorts and homogenous study populations based on preliminary 

phenotyping of study subjects. 

3.7. Microbiota 

The human gastrointestinal tract is estimated to host up to 10
14

 microorganisms, tenfold the number 

of human cells, predominately composed of bacteria but also archaea, protozoa and fungi. Together 

they make up the gut microbiota, which during normal circumstances live in a commensal or 

mutualistic relationship with their host. Their central functions in immune defense and nutrition have 

led investigators to designate the gut microbiota as an organ by itself [114–117]. Although humans can 

live with a bacteria-free intestine the microbes are crucial for human health. For example, the gut 

microbiota metabolizes indigestible carbohydrates to valuable short-chain FAs; synthesize certain 

vitamins; degrade oxalates and is essential in recirculation of bile acids.  

Traditional in vitro cultivation has limited the research on gastrointestinal bacteria because their 

normal growth environment is complex and difficult to imitate. Thus, the introduction of  

gene-sequencing of the hypervariable region in the bacterial gene for 16S rRNA on amplicons from 

faecal samples has markedly extended the knowledge about their species diversity [118–120]. Between 

500 and 1000 different species seem to occupy a single human gut, whereas the total microbiome in 

humans include between 10,000 and 40,000 species. However, the majority of microbes within the 

digestive tract appear to include less than 100 different species [121,122].  

Development of next-generation sequencing have permitted mapping of the microbial metagenome 

in humans [123]. As part of the Metagenomics of the Human Intestinal Tract project, faecal specimens 

from 124 European individuals were analyzed and an average of 4.5 Gb (ranging between 2 and 7.3 Gb) 

of sequence was generated from each sample [124]. Genome annotation provided a set of 3.3 million 

non-redundant microbial genes and detected some 536,000 prevalent unique genes in each individual. 

Furthermore, almost 40% of the genes from each individual are shared with at least half of the 

individuals in the cohort. Among these are genes involved in the biosynthesis of short-chain FAs, amino 

acids and certain vitamins, which all are molecules suggested to be provided by bacteria to humans.  

How nutritional habits interfere with the intestinal microbiota is far from understood. It was 

traditionally believed that the microbe composition was relatively unchangeable, but DNA sequence 

analyses have challenged this view. Studies have clearly shown that the composition of gut microbiota 

adapt during changes from breast milk to solid food and when altering the composition of ingested 

macromolecules [125]. A recent evaluation of long-term dietary habits and short-term interventions 

concluded that small shift in microbe composition is prevalent after only one day, but that a period of a 

year have significantly more influence on the gut microbiota [126]. Changes in intake of non-digestible 

carbohydrates can affect faecal microbiota composition. A three-week controlled dietary intervention 

in obese males showed especially that resistant starch influenced the abundance of several dominant 

phylotypes [127]. Moreover, supplementation with galacto-oligosaccharides or inulin cause increased 

content of bifidobacteria in the gut [128,129]. Notably, non-responders are often observed and the 

outcomes appear to be more dependent on the initial composition of the individual gut microbiota than 

the dietary interventions [130].  
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Whereas, metagenomics provides insight into the genetic potential of microbiota, additional 

transcriptomics, proteomics and metabolomics analyses in combination with interventions and 

monitoring of the host, are necessary to develop biological model systems of functional significance 

for the gastrointestinal microbiota. 

3.8. Imaging 

Imaging in biomedicine represents a broad scientific and clinical approach usually distinguished 

based on spatial resolution (microscopic to macroscopic) or types of energy detected, like ionizing 

radiation, photons or sound waves [131]. Traditionally, imaging has been used to characterize 

morphological and anatomical properties, but during the last decade a new and important discipline 

called ―molecular imaging‖ has emerged. European Society for Molecular Imaging defines molecular 

imaging as the characterization of the dynamics of molecular processes in living organisms. In 

comparison to ―omics‖ approaches that provides comprehensive snapshots of biological indicators or 

biomarkers, molecular imaging advances this information, showing non-invasively the activity of 

markers and changes in location with time. The modalities in molecular imaging are positron emission 

tomography (PET) and single photon emission computed tomography (SPECT) that detect β- and  

γ-radiation; nuclear magnetic resonance imaging (MRI) that detect differences in relaxation time; 

photo-acoustic imaging that detect ultrasonic waves; and optical imaging that mainly record 

luminescent and fluorescent light. 

Body composition is highly relevant in nutritional science and both computed tomography (CT) and 

MRI can distinguish between different tissue types and thus be used to reconstruct major anatomical 

compartments and tissues in vivo, thus providing direct quantification of either cross-sectional area or 

volume [132]. For example, MRI has been carefully validated with dissection of adipose depots in rats 

fed different types of fatty acids [133,134], and the data are in accordance with each other. The quality 

of the CT analysis is well established, but due to the damaging radiation risk of CT the use of MRI is 

expanding. The two methods have in comparative studies shown somewhat different results, but  

the use of higher magnetic field and improved MRI imaging procedures have reduced this  

discrepancy [135,136]. A potential confounding factor when attempting to quantify e.g., muscle size is 

infiltration of fat. However, post hoc analytical techniques that separately quantify contractile and  

non-contractile compartments within muscle tissue have been developed [137].  

Essentially there are two approaches used in molecular imaging: (1) administration of molecular 

probes, which recognize and bind to a particular biological molecule or are activated by a specific 

process (e.g., enzymatic reaction); (2) reporter genes that are expressed in response to a gene 

regulatory event. 

The imaging technologies PET and SPECT are based on detection of radioisotopes, which can be 

used to label a broad range of biological molecules. The most obvious differences between these  

two methods is that PET imaging exhibit the highest sensitivity, while the longer half-life of SPECT 

emitters offers a wider observational time-window. In nutritional science the most used radio-label 

probe is (18-F)fluro-D-glucose (FDG), which among others is used to explore glucose intolerance. In 

optical imaging, fluorescent molecules or chemiluminescent reactions are detected. This involves 

substantial structural change of labeled molecules, consequently changing the biological properties. 
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However, genes encoding such molecules can stably be integrated in the genome offering the 

possibility of engineering reporter constructs as in transgenic reporter mice [138]. This enables timely 

unlimited studies of dietary effects on gene regulation. For example, transgenic mice reporting  

NF-κB activity have been used to show anti-inflammatory effects of dietary plant extracts [139]. 

3.9. Assessments of Energy Expenditure Using Calorimetry 

Modern society has developed sophisticated methods to improve production, storage and 

distribution of nutrients. Thus, malnutrition occurs rarely in developed countries, but we suffer from an 

excess of energy supply. Tight control of energy intake and expenditure is essential for survival and a 

healthy life. Organisms have evolved to promote anabolism to store energy when energy supply 

exceeds demands and switch to catabolism when supply is lower than demand. Whereas some people 

have a remarkably stable weight over time, others steadily gain weight through a constant net surplus 

intake of energy. An important aspect of modern nutritional science is to identify genetic, nutrient and 

environmental factors promoting a stable body weight. 

Identification of leptin as a genetic determinant of the obese phenotype model (ob/ob) [140] 

awakened interest in the analysis of energy expenditure in mice. Our ability to alter the genome in 

mice, either by deleting genes using knock out approaches, or by over-expressing genes, often results 

in mice with changes in body weight or body composition. Mouse genetics has therefore a great 

potential to increase our understanding of energy metabolism. Sophisticated methods to evaluate if 

food intake or energy expenditure (or both) contribute to the altered phenotype, may be used to analyze 

genetically modified animals. 

Energy expenditure can non-invasively be determined by direct or indirect calorimetry. Direct 

calorimetry assesses energy expenditure by direct measurement of heat produced by the animal [141] 

(Figure 7). The animal is placed inside an insulated chamber and the produced heat is measured using 

a calorimeter. Calorimeters are expensive with slow response time and they do not provide information 

about the nature of the oxidized substrates. Although direct calorimetry is the only method that can 

accurately quantify heat production and metabolic rate (MR) in metabolically normal as well as 

abnormal states, the technique is rarely used. With indirect calorimetry, energy expenditure is 

calculated based on accurate measurement of O2 consumption and CO2 production. This type of 

calorimetry has been applied in clinical settings and can be done in several ways [142]. A typical 

indirect calorimetric system includes a set of gas-tight chambers, which are ventilated with a steady 

flow of fresh air. Once an animal is placed inside a chamber, it will consume O2 and produce CO2. The 

decrease in O2 and increase in CO2 in each chamber is calculated against a reference chamber. The fast 

response time for the O2 and CO2 sensors enable sequential measurement of the chambers at 1–3 min 

intervals. In a typical experiment, 10 cages can be measured 4 times per hour. In addition to the speed, 

measurement of changes in the two gasses enables assessments of respiratory exchange ratio (RER), 

which is defined by the ratio of CO2 exhaled and O2 inhaled. Metabolism of carbohydrates gives a 

theoretical RER of 1.00, for protein the value is 0.83, and 0.70 for fat. Identification of the primary 

substrate oxidized gives additional information about the phenotype. Due to its simple measurements, 

indirect calorimetry has become the gold standard for assessment of energy expenditure. However, it is 

important to be aware that indirect calorimetry relies on assumptions that have never been tested to be 
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accurate for genetic or pharmacologically induced changes in metabolic fuel partitioning affecting 

storage or promoting obesity and T2D [141]. 

Figure 7. Indirect calorimetry. The typical indirect calorimetric system includes several 

gas-tight chambers (here illustrated by two housing cages and a reference cage), control 

units, control system and gas bottles. During the experiment, air of similar origin is 

delivered simultaneously to all chambers via the sample switch unit. Gas from each 

container is sequentially sent to the air-drying unit prior to CO2 and O2 measurements. The 

reduction in O2 and production of CO2 in chambers housing mice is calculated against the 

measured values of these gasses coming from the reference cage. Modern O2 and CO2 

sensors have fast response times of minutes, which enable measurements of 10–20 cages 

several times per hour. The calorimetric chambers can be combined with devices for 

measurements like food and liquid intake, body weight, movement, voluntary exercise  

(e.g., running wheels), temperature in the cage, body temperature, and collection of feces 

and urine. 

 

Although equipment to measure energy expenditure is available, it is far from trivial to perform 

experiments giving reliable data. Indeed, there is controversy on how to analyze and interpret energy 

expenditure data obtained by indirect calorimetry as recently discussed in a guide to perform energy 

expenditure experiments [143]. A major challenge with energy expenditure studies is to evaluate if 

food intake or energy expenditure (or both) contribute to the altered phenotype. A consistent small 

alteration in energy intake or energy balance over a longer period of time may have significant effects 

on body weight and body composition. Because measurements typically are performed during a short 

time, identification of such small changes requires impractically large sample sizes to get enough 
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statistical power. In addition, the phenotypic changes themselves pose problems. Once obesity or 

leanness has developed, behavioral and metabolic alterations that originally triggered changes in body 

weight may obscure or confound the processes that caused the phenotypic changes. Analysis of two 

different groups of mice, with different weight or body composition poses problems with 

normalization because various organs differ in metabolic rate. White adipose tissue (WAT), which is 

the tissue that expands with obesity, is metabolically less active than brain or liver. However, 

transformation of WAT to brown adipose tissue (BAT) enhances metabolic activity to become one of 

the most active tissues in the body.  

Despite the listed problems, energy expenditure measurements are widely used to evaluate changes 

in energy metabolism. Energy expenditure measurements are often combined with non-invasive body 

composition analysis (MRI or CT) to determine lean tissue mass (total body weight subtracted by fat 

mass). Three methods have been routinely used to normalize energy expenditure data. None of these 

are reliable if there are substantial differences in body weight or body composition among the 

individuals tested [144]. When evaluating earlier studies, it is important to understand the biases 

caused by the different normalization methods: (1) Normalization against total body weight. Increasing 

body weight is mainly caused by accumulation of adipose tissue with a low metabolic rate. Hence, this 

type of normalization has a tendency to give a false reduction in energy expenditure with increasing 

body weight; (2) Normalization against lean body weight. This way of normalization gives a false 

increase in energy expenditure. Although adipose tissue has a low metabolic rate, accumulation of 

WAT increases total body energy demand; (3) Normalization against ―metabolic body‖ weight. The 

relationship between mammalian basic metabolic rate and body weight is proportional to body weight 

to the power of 0.75 [143]. Although this scaling seems correct when comparing different species, it is 

not accurate for animals within the same species with an imbalance in organ weights and altered body 

composition. To overcome problems with normalization, it has been suggested to analyze and plot 

energy expenditure for individuals and evaluate differences in energy expenditure among groups with 

ANCOVA [143]. 

Due to the difficulties with assessment of energy expenditure, it is vital to link a possible difference 

in energy expenditure to other types of observations. Usually, changes in energy expenditure can be 

explained by alterations in food intake, absorption of nutrients, physical activity, shivering, or RER. 

Altered thermogenesis can be involved in circumstances with altered UCP1/BAT uncoupling. 

3.10. Systems Biology  

Systems biology is a fashion-word in modern biology used to describe all aspects of a biological 

system in an integrated view. The fundamental principle is that the perspective on the whole organism 

will provide a more accurate view than the sum of the parts, based on the idea that a complex system 

has intrinsic properties that cannot be derived directly from the additive effects of its individual  

parts [51]. As of today, the most advanced approach of system biology is to integrate the information 

obtained from advanced technologies to describe and predict how the whole organism will react to 

certain environmental or genetic alterations. Typically, systems biology includes the information 

obtained from individual studies on genetics, epigenomics, transcriptomics, proteomics, metabolomics 

and functional assays including imaging, assessment of energy expenditure or the use of challenging 



Nutrients 2012, 4 1921 

 

test (OGTT, physical activity, intervention with different diets or meals, fasting). By extracting 

biological knowledge from a variety of technologies, integrative systems biology may provide 

predictive models of cells, organs, complex biochemical processes as well as entire organisms. Such 

integrative information may be used for the purpose of identifying new molecular targets of dietary 

exposure as well as biomarkers of disease [145]. 

System-based nutrition studies typically include five steps (reviewed in [51]). The first step would 

be to define the ―system‖ to investigate. A system could be a cell population, an organ, or an entire 

organism, like experimental animals or humans. The second step would be to decide which 

information (components) that should be obtained from the system. In a transcriptomics study the 

authors would typically include gene expression data. The third step would be to determine how the 

components interact with each other. For example, co-variation between genes can be investigated. 

Fourthly, the investigators should model the dynamics of the system to understand the interactions 

between its components. For example, time-dependent gene-interactions changes can be studied in 

response to a high fat diet. Lastly, the model should be validated using experimental perturbations. In a 

molecular nutrition study you can for example use in vitro cell systems or genetically modified mice to 

validate the findings.  

An important asset in advanced systems biology is the possibility to compare experimental data 

extracted from diverse available databases. Ng et al. published in 2006 a collection of 150 publicly 

available databases [146]. Since then, the amount of new available data has expanded rapidly. One 

example on such a database is the nutritional phenotype database (dbNP), initiated by NuGO [147]. 

Following from this, the heterogeneity of experimental data, within and between populations, represent 

one of several challenges for systems biology, and future efforts should aim at the inclusion of full 

descriptions of experimental conditions upon the entering of data in public databases.  

Advanced simulation tools are of great importance to process and interpret the massive amount of 

data obtained in systems biology. There are numerous efforts directed at developing a human 

physiome, an extensive integrative model of human physiology that can be used for hypothesis testing 

as well as education [148]. The review by Ng et al. also includes an extensive list of available tools 

and resources, which may be of relevance to systems biology [143]. 

Systems biology can be a powerful tool in nutritional research to develop targeted nutritional 

strategies. However, when extrapolating results from specific studies for the purpose of understanding 

the whole organism, it is of great importance to consider the organism as a highly complex system 

comprising multiple feedback mechanisms to a number of inputs including dietary intake. For 

example, although linear responses may be observed in experimental models, the response of the 

human organism to extrinsic challenges is rarely linear and the output of individual phenotypes cannot 

be derived directly from the additive effects of its individual parts. Blood pressure is an example 

commonly used as a disease-related endpoint in intervention studies, which is regulated by a number 

of fast-acting neural mechanisms, slow-acting hormonal mechanisms, and long-term effects of body 

fluid volume and compositions. Furthermore, the physiological response is a qualitative and 

quantitative function of sex, age, body composition and a number of other individual features. Finally, 

the output of individual phenotypes may not easily be interpreted from one extrinsic influence.  
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Thus, many high-throughput technologies applied over time, on natural genetic variation, and in 

response to different extrinsic challenges needs to be integrated into a quantitative mathematical model 

to fully appreciate a complex biological system. 

4. Lessons Learnt from Molecular Methods Applied in Different Tissues 

4.1. Adipose Tissue 

Obesity has reached epidemic proportions in many developed as well as developing countries 

around the world. The global increase in obesity is tightly associated with the increase in 

complications such as T2D and cancers.  

Energy intake and energy use is finely balanced, and an imbalance of only 2.5% over a period of  

10 years will lead to the accumulation of 30 kg of fat [149]. The main challenge to combat the obesity 

epidemic is to modulate dietary and exercise patterns, which is very hard as food in modern societies  

is becoming cheaper, work and leisure less energy demanding, and food and food commercials, are 

often seductive. On the positive side, a few % reduction in energy balance would reduce obesity 

markedly [150]. 

In obesity most of the expansion of fat reserves occurs in the abdominal, gluteal and femoral 

subcutaneous depots, in addition to large intra-abdominal depots (also called visceral fat), such as 

omental, mesenteric and retroperitoneal depots. Using CT scanning for adipose depot measurement, it 

has been demonstrated that visceral fat accumulation is associated with glucose intolerance, 

hyperlipidemia, blood pressure and coronary artery disease [151]. Employing CT to quantify 

abdominal adipose depots, a recent GWAS uncovered a new locus for visceral adipose tissue at 

THNSL2 in women, but not in men [152]. 

In a recent population-based cross-sectional study of 5193 middle-aged and elderly men and women 

from the Hordaland Health Study, the anthropometric variables that was strongly correlated with 

percent body fat, in addition to BMI, were waist (r = 0.79) in men, and waist (r = 0.74) and hip  

(r = 0.73) in women [153]. Importantly, visceral fat, as measured by waist circumference or waist-hip 

ratio, is positively associated with risk of coronary heart disease [154], whereas hip circumference is 

inversely associated with coronary disease risk [155].  

Adipose depots also serve other purposes than energy storage. Some adipose depots have 

mechanical functions, such as the buccal fat pad in suckling infants, the retro-orbital fat stabilizing the 

eye, subcutaneous padding around the cranium, and fat pads in buttocks, hands and feet [156,157]. 

Adipose tissues store fat-soluble vitamins such as A and D, and alpha-tocopherol [158]. In addition, 

there are insulative properties of adipose tissues, directly, but also indirectly due to a lower  

surface-to-volume ratio in obesity. Furthermore, certain adipose depots provide essential FAs to 

lymphoid cells [159] or sperms [83]. A combined transcriptomics, lipidomics and cell-biology analysis 

of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences [63].  

In humans, adipose tissue depots start to develop in the second trimester of pregnancy and expand 

rather quickly until birth. After birth, fat depots continue to expand, by increasing adipocyte size and 

number of adipocytes. Obese subjects, from 2 to 4 years of age onwards, have increased number of 

adipocytes compared to non-obese children. Obese children have larger adipocytes (>0.5 μg lipid/cell), 
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a potentially more important parameter than adipocyte numbers; this cell size corresponds to adult size 

adipocytes, which lean children do not reach until 17–19 years of age [160]. Recent developments 

using cell-lineage tracking, knock-in and knock-out technology in mice, have established PPARγ  

and C/EBPβ, in addition to PRDM16, as master regulators of murine adipose development  

in vivo [161].  

WAT serve to buffer the energy supply on a day-to-day basis. WAT respond to hormonal signals 

and blood levels of nutrients, take up dietary fat after meals and release FAs for use by muscles and 

heart, as carbohydrate stores are depleted during fasting. 

BAT serves an important thermogenic function in human infants and animals with high  

surface-to-volume ratio. The presence of BAT in adult humans has been controversial until recently, 

but use of new technology, in particular PET widely used in cancer imaging, has recently demonstrated 

BAT in a surprisingly high fraction of adult humans. Interestingly, BAT is stimulated by cold exposure 

and varies with seasonal changes [162–165]. PET studies suggest that total BAT in adults varies 

between 0.5 and 170 g [162,163]. The modulation of human BAT depots can have a large potential for 

treatment of obesity, because even a modest amount of activated BAT might be able to combust a 

considerable proportion of daily energy intake [163]. Pharmacological modulation of BAT, via β3 

adrenergic receptors, received a lot of attention in the 70s and 80s, and will probably experience new 

attention from pharmaceutical companies. A novel proposition has been to reprogram human 

pluripotent stem cells to BAT, which after transplantation into the body may establish functional fat 

pads in vivo [166,167]. 

The number of adipocytes in the adult human body is remarkably stable [168]. Using DNA 14C 

standard curves, based on the exponential decay of 14C originating from atmospheric nuclear bomb 

tests in the early 60s, the adipocyte median turnover in humans have been estimated to be 8.4% per 

year, with half-life of 8.3 years [168]. The lipids in adipocytes also are rather stable with constant  

body weight, with a mean lipid half-life of 1.6 years [169]. Because ~10% of adipocytes are replaced 

yearly [168], and mature adipocytes are post-mitotic [170], pre-adipocytes must differentiate into 

mature adipocytes continually in adult humans. However, the identity and regulation of the  

pre-adipocytes are still in question [156]. The various pre-adipocytes isolated in rodents seem to  

be localized in the adipose stromal compartment, and cellular candidates are endothelial as well  

as perivascular cells, whereas foetal adipocytes may share a common precursor with muscle  

tissue [161,171–174].  

WAT is also a secretory organ that releases factors, known as adipokines, capable of regulating 

several physiological processes. Two of the most known adipokines are leptin and adiponectin [175], 

and the plasma levels of these adipokines are often measured with enzyme-linked immunosorbent 

assay (ELISA). Plasma concentrations of adiponectin are negatively correlated with BMI, whereas 

leptin increases with BMI. It is a correlation between total body fat and blood levels of leptin, with 

larger adipocytes secreting more leptin [176]. Leptin, along with insulin and several other gastrointestinal 

peptides, regulate satiety in the arcuate nucleus and other parts of the hypothalamus [150].  

An example of how the association between different FAs and diabetes can be examined, is the use 

of cultured murine 3T3-L1 adipocytes to study expression of resistin, which is an adipokine proposed 

to be related to insulin resistance [177]. AA and to a smaller extent EPA reduced resistin mRNA levels 

to 20% of control at 60–250 µM. Actinomycin D as well as cycloheximide abolished the AA-induced 
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reduction of resistin mRNA levels, indicating dependence on de novo transcription and translation. The 

data suggest that reductions in resistin mRNA levels involve a destabilization of the resistin mRNA 

molecule, which may explain the beneficial effect of ingesting PUFAs on insulin sensitivity.  

4.2. Skeletal Muscle 

Skeletal muscles represent the largest tissue in healthy lean people and accounts for 40% of the 

body weight in young males. Muscles have the ability to convert chemical energy to mechanical work 

and are designed for contraction. However, skeletal muscles are also involved in whole body metabolic 

regulation, and 70%–90% of insulin-stimulated glucose uptake occurs in muscles [178]. Skeletal 

muscles are likewise the main storage of glycogen and store 100–600 g of glycogen, whereas the liver 

only stores 50–100 g in the fed state depending on the amount of dietary carbohydrates [179].  

Exercise modulates metabolism of nutrients in skeletal muscles as well as the whole body [180]. 

The metabolic rate in skeletal muscles depends on activity level, and at rest whole body oxygen uptake 

is 0.2–0.3 L/min, which can increase to 5 L/min in some elite athletes. For example, glucose oxidation 

is about ~0.2 g/min at rest, which can increase to 3 g/min during exercise in well-trained young men. 

After glycogen depleting exercise, the body will be more insulin sensitive [179].  

Modern molecular nutritional science studying skeletal muscles highlights mechanisms determining 

insulin sensitivity and mitochondrial biogenesis. The key signaling proteins regulating insulin 

sensitivity and mitochondria biogenesis are AMPK, PGC-1α, PPARδ, and SIRT1 [181]. All these 

signaling molecules are regulated in a complex interplay between exercise and dietary intake. 

Transcriptomic analysis has shown that artificial activation of AMPK or PPARδ may increase 

expression of genes involved in oxidative metabolism, and pharmacological activation of AMPK can 

even increase running capacity in mice [182]. Epigenetic analyses in skeletal muscles have shown that 

methylation of the promoter region for PGC-1α is regulated by physical activity and decreases during 

prolonged bed rest in conjunction with reduced insulin sensitivity and expression of oxidative  

genes [183]. Proteomic analyses confirm that expression of a large number of oxidative enzymes is 

lower in muscles of obese insulin resistant people as compared to lean subjects [184].  

Gene expression and protein synthesis is increased after exercise. Importantly, amino acid 

supplementation increases protein synthesis after training, and healthy muscles result from both 

exercise and food intake. Global analysis of mRNA expression in skeletal muscles have shown that 

amino acid supplementation after exercise regulates several genes [185]. Three hours after exercise 

dietary intake of amino acids caused down regulation of genes involved in muscle contraction, 

extracellular matrix, structure, proteolytic processes and signaling transduction the genes regulated by, 

whereas amino acids up-regulated genes for mitochondrial FA transporters and electron transport chain 

48 h after exercise [185]. 

Fat is an important energy substrate for muscles at rest and during exercise. FAs are supplied by 

degradation of triacylglycerol stored in skeletal muscles and by uptake of FFA from blood [186]. In 

obesity, triglycerides accumulate in skeletal muscles and accumulation of intermediates of fat 

metabolism is believed to cause insulin resistance [187]. Furthermore, infusion of FFA increases insulin 

resistance within hours [188]. A high fat diet for weeks may increase activity β-hydroxyacyl-CoA 

dehydrogenase (HAD) [189], but the mechanism for increasing expression of enzymes involved in  
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β-oxidation remains unknown in humans. However, muscles function seems to be quite resistant to a 

high fat diet as long as body weight and activity level is maintained [189]. 

Skeletal muscles act as a major endocrine organ [91,190]. The earliest reports about secretory 

proteins from skeletal muscle relate to myostatin [191] and interleukin IL-6 [192]. Myostatin was the 

first recognized myokine, but major interest has been focused on IL-6, which was discovered as a 

secretory product of skeletal muscle, increasing in plasma in proportion to the length and intensity of 

physical activity [190]. Chronically elevated level of IL-6 is pro-inflammatory, but IL-6 produced in 

muscle during exercise may act without activating classical inflammatory pathways. More recently, 

Haugen et al. (2010) [193] described IL-7 as a novel myokine, which may play a role in the regulation 

of muscle cell development, and IL-15 may be involved in the crosstalk between muscle and fat [194]. 

A 6 months exercise intervention caused hypomethylation and increased transcription of the IL-7 gene 

in skeletal muscle and increased level of IL-7 in plasma [195]. Irisin is a novel myokine, which has 

attracted much attention because expression is regulated via PGC-1α and irisin increases expression of 

UCP1 in white adipocytes and increases thermogenesis [196]. Furthermore, exercise increases irisin in 

plasma and present a potential myokine mediating beneficial effect of exercise in adipose tissue [196]. 

Knowledge about new myokines and their physiological functions may unravel a network of 

communication between muscle and other organs. 

In combination with abundant food intake, reduced physical activity is the origin for increased risk 

for overweight and T2D. Unraveling the molecular mechanisms for nutritional regulation of gene 

expression in skeletal muscles is a major challenge for modern molecular research and may hopefully 

improve treatment of insulin resistance, although physical activity will probably remain important for 

health in most organs, the brain included. 

4.3. Liver  

The liver is a major metabolic organ. In the fed state, insulin inhibits gluconeogenesis and promotes 

glycogen synthesis and de novo lipogenesis in a healthy liver. In the fasted state, the drop in insulin 

causes reduced lipid production and increased hepatic gluconeogenesis and glycogenolysis. 

FAs can accumulate in hepatocytes as TAGs or they may be exported as part of very low-density 

lipoproteins (VLDL). FAs exported as TAG may be reesterified and stored in adipose tissue or used as 

fuel in skeletal muscles and other cells. The hepatic TAG content is regulated by the activity of cellular 

proteins facilitating uptake, synthesis, esterification, and oxidation of FAs, and TAG export. Moreover, 

FAs and FA derivatives regulate hepatic lipid metabolism by binding nuclear receptors that modulate 

gene transcription (e.g., PPARs, LXRs, HNF-4 and SREBP) [197]. 

The liver also synthesizes significant amounts of cholesterol and phospholipids. Some of these are 

packaged with lipoproteins and made available to the rest of the body. The remainder is excreted in 

bile as phospholipids or free cholesterol, or after conversion of cholesterol to bile acids. Cholesterol 

can also accumulate in lipid droplets as cholesteryl ester (CE). 

To understand the mechanisms regulating hepatic lipid and lipoprotein metabolism are important in 

molecular nutritional science. Non-alcoholic fatty liver disease (NAFLD) is characterized by 

accumulation of TAG in hepatocytes. NAFLD may represent the hepatic manifestation of the 

metabolic syndrome with visceral obesity, dyslipidaemia, and insulin resistance [198]. Eventually, 
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accumulation of lipid droplets in the hepatocytes results in hepatic steatosis, which may be due to 

multiple factors including increased adipose tissue lipolysis and/or high dietary energy intake 

promoting an increased circulating pool of FFA and TAG. In addition, a decrease in hepatic FA 

oxidation, an increased hepatic de novo lipid synthesis due to excessive conversion of proteins and 

carbohydrates to TAG, and a reduced hepatic VLDL secretion may also be major determinants for 

NAFLD [198,199]. Based on MRI we can obtain data on hepatic lipid accumulation, which was 

unavailable previously due to ethical aspects of taking biopsies [200]. Many studies indicate  

that lifestyle modifications such as weight loss and increased physical activity may reduce  

hepatic steatosis [201]. Moreover, the dietary FA pattern may also be important. Supplementation with 

n-3 LCPUFA appears to reduce nutritional hepatic steatosis associated with obesity in adults [202], 

and compared to saturated FAs intake from butter, vegetable n-6 PUFAs has been shown to reduce 

liver fat content [203]. 

Besides TAG and CE, other lipids like diacylglycerols (DAGs), ceramides, FAs and acyl-CoA often 

accumulate in NAFLD. These lipids may interfere with hepatic function and particularly with the 

ability of hepatocytes to respond to changes in insulin levels. The failure of hepatocytes to respond to 

insulin by inhibition of glycogenolysis and gluconeogenesis contributes to the development of glucose 

intolerance and T2D. However, most data indicate that hepatic accumulation of TAG (and CE) does 

not cause hepatic insulin resistance by formation of lipotoxic FA intermediates [204]. More 

comprehensive lipid analyses, including measurements of individual lipid species, and defining types 

of cells and subcellular compartments in which changes in levels of specific lipids occur, may identify 

new candidate lipids that are causally linked to insulin resistance. Additionally, the application of 

unbiased, systems-type screens (e.g., genetics, proteomics, lipidomics, metabolomics) to the problem 

may yield new theories of causation.  

Like adipose tissue and skeletal muscle, the liver may also regulate peripheral insulin sensitivity 

and glucose homeostasis by production of secretory proteins termed hepatokines [199]. Thus, the liver 

may contribute to energy homeostasis by way of production of hepatokines and that the dysregulation 

of hepatokines contributes to the pathophysiology of diabetes and subsequent complications  

(e.g., NAFLD). One such liver-derived protein is selenoprotein P that induces insulin resistance and 

hyperglycemia and may be involved in development of T2D [199,205].  

5. Molecular Nutrition Research Applied on the Whole Organism 

5.1. Different Diets 

It is relatively easy to perform studies where nutrients are given as supplements, and such studies 

can provide knowledge about the effect of certain nutrients. However, some studies have shown that 

the biological effect of a supplement is different from the effect of foods rich in the supplied nutrient. 

For example, pharmacological doses of antioxidant supplements may have harmful effects in smokers, 

whereas the same amount of dietary antioxidants can be well tolerated [105]. This difference may be 

because the foods rich in antioxidants also contain many other compounds affecting health. Another 

explanation can be that subjects who increase their intake of a certain food product simultaneously 

reduce their intake of other foods, and elimination of the other foods may cause the actual effect. 



Nutrients 2012, 4 1927 

 

Because nutrients and other food components act together, it is also important to do studies involving 

the whole diet, like a ―Western diet‖, a ―Mediterranean diet‖, the ―DASH diet‖, a fat modified diet, etc. 

We obviously do not know what nutrients or foods that promotes the biological effects, but it is very 

important to define the diet to allow other scientists to reevaluate the intervention.  

A challenge concerning dietary intervention is that subjects alter weight, which by itself may 

influence several biological processes. Losing body weight may be a ―natural‖ effect of a low fat diet. 

Thus, if one is interested in the effect of modifying the fat quantity per se, and not also the effect of 

changes in body weight, the diet has to be energy-adjusted with other energy containing nutrients. This 

was done in the LIPGENE study where some participants got a high fat diet and others got a low 

fat/high complex carbohydrate diet [206].  

Although we often evaluate the effect of several dietary components, it is crucial to know what the 

diet is. The best way of controlling what the participants eat is to provide all the food they shall eat 

throughout the intervention [207]. However, such studies are expensive and laborious. In most studies 

the participants get only part of the food they shall eat, e.g., food rich in antioxidants [105] or they get 

dietary advice, possibly in combination with supply of some foods [206]. In such studies we have less 

control on what has been eaten, partly because we only provide the participants with a limited amount 

of food and partly because the participants may not follow the dietary advice. There are several ways 

to monitor what the participants have been eating: participants can be asked about food intake during 

the intervention period through questionnaires or interviews; the participants can register what they 

eat, and we can collect biological samples to analyze nutritional biomarkers, i.e., objective measures of 

what has actually been eaten. A good example of a valuable biomarker for marine fat intake has been 

demonstrated by the strong correlation between dietary intake of marine n-3 FA and plasma n-3 marine 

FA [208]. Ideally, one should have such objective biological measures for all dietary components. 

However, the metabolites we can detect in biological samples often do not reflect the dietary intake of 

that food component, because the component can be modified through food processing, storage, 

digestion, metabolism, and the concentration of the metabolite in the biological material may not be 

optimal for the food component of interest.  

5.2. Challenges (Glucose Tolerance Test, Physical Exercise, Meals, Fasting)  

Standardization is important to be able to compare data from different studies. The most convenient 

and common way of obtaining standardized conditions is to collect samples when the research subjects 

are at rest after an overnight fast. Thus, the majority of studies investigate the relatively unstressed 

organism, a state perhaps not optimal for detecting markers of disease, risk or even signs of health. 

Exposing the organism to a defined challenge, mimics daily life to a greater extent and may provoke 

responses not seen in a resting and fasted situation. The most common challenges are physical exercise 

or food intake. The hyperinsulinemic euglycemic glucose clamp is the gold standard for determination 

of insulin sensitivity, but is rather labor- and time-intensive [209]. Thus, several surrogate indices have 

been employed to simplify and improve the determination of insulin resistance. A prime example is the 

oral glucose tolerance test (OGTT).  

The OGTT is a simple method for diagnosing T2D and degrees of insulin resistance. It measures 

the blood glucose concentration in response to a given oral carbohydrate load. According to the World 
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Health Organization (WHO) a fasting glucose value above 7 mmol/L or a 120 min value above  

11.1 mmol/L defines T2D. A 120 min value between 7.8 and 11.1 mmol/L defines impaired glucose 

tolerance (IGT) [210]. For research purposes, insulin resistance indices have been used taking different 

parameters into account during a glucose challenge [211,212]. Most indices based on values from 

glucose challenges are more reliable than those based on fasting, as their correlation with reference 

techniques is stronger [213]. There are few articles that combine molecular nutrition with glucose 

challenges, such as OGTT. Shaham et al. reported changes in previously undescribed metabolites in 

connection with an OGTT in healthy and prediabetic volunteers [214]. A similar approach revealed a 

stronger effect of a 9 weeks anti-inflammatory drug intervention when analyses were performed on 

samples taken during an OGTT-challenge as compared with the fasting state [215].  

Rubio et al. describe several new catabolic metabolites as a result of extended fasting in human 

volunteers [216].  

A multi-challenge 4 days study including 36-h fasting, oral glucose tests, lipid tests, liquid test 

meals, exercise, and cold stress, was recently reported by Krug et al. [217]. The inter-individual 

variation among phenotypically similar volunteers was increased by different challenges, revealing 

metabolic variation not observable in baseline metabolic profiles. 

5.3. Time Courses—What Is the Effect of Time as Registered by Molecular Nutrition? 

Intervention studies, either on nutrition or physical activity is often of limited duration, especially 

when compared with the whole life-span humans sometimes use to develop a disease. Thus, a possible 

effect of an intervention cannot be based only on short-term studies. For example, most people can 

lose weight in the short term by reducing their intake of energy or increasing their energy expenditure. 

However, few people successfully maintain their reduced body weight. One explanation for the poor 

efficacy in maintaining weight loss is an active feedback mechanism linking adipose tissue to dietary 

intake and energy expenditure via a set point, presumably encoded in the brain [218]. Another 

explanation relates to psychological factors such as motivation to adhere to restricted regimens 

diminishes with time. 

Dietary intervention studies lasting up to 1 year may have a beneficial effect of a low-carbohydrate 

diet on weight reduction [219]. However, a two-by-two factorial design study lasting 2 years showed 

no effect of macronutrient composition on weight loss among participants advised to consume 

carbohydrates with low glycemic index [220]. Two recent Swedish studies showed that a low 

carbohydrate-high protein diet and a high protein diet are associated with increased incidence of 

cardiovascular disease and diabetes, respectively [221,222]. 

Lifestyle interventions, including adoptions of a diet inducing weight reduction and increasing level 

of physical activity, can prevent and reverse the development of T2D. It has recently been shown that 

the benefit of lifestyle intervention extends beyond the active intervention period [223]. It was shown 

in a Chinese study that a group-based lifestyle intervention lasting 6 years prevented or delayed T2D 

for up to 14 years [224]. Furthermore, a Finnish study showed that most of the lifestyle changes which 

reduced diabetes incidence in a population with high risk for T2D were maintained 3 years after 

discontinuation of the individual lifestyle counseling [225].  
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Maternal dietary intake during pregnancy and lactation is favorable for later mental development of 

children. For example, some quite important studies in severely premature infants provided extra 

supply of essential fatty acids in mother‘s milk demonstrate that cognitive function can be positively 

influenced for long periods after the intervention has been performed [226]. 

In our present context it is essential that dietary interventions, time courses and challenges should 

be combined with all the relevant molecular nutrition technologies to obtain mechanistic information 

about the actual questions.  

6. Conclusion 

Nutritional science in the future will be heavily influenced by the new advanced methods developed 

for mass measurements of genes, transcripts, proteins and metabolites, combined with advanced 

imaging, epidemiology, clinical interventions with different challenges and finally bioinformatics to 

integrate all information in whole body functions named systems biology. We will by this type of 

scientific advancement be able to describe and sustain health, and to treat several life-style diseases 

much more efficiently than we are able to do today.  
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