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Abstract: Myocardial ischemia often results in damaged heart structure and function, 

which can be restored through ischemia/reperfusion (I/R) in most cases. However, I/R can 

exacerbate myocardial ischemia reperfusion injury (IRI). Luteolin, a widely distributed 

flavonoid, a member of a group of naturally occurring polyphenolic compounds  

found in many fruits, vegetables and medicinal herbs, has been reported to exhibit  

anti-inflammatory, antioxidant and anti-carcinogenic activities. In recent years, luteolin has 

been shown to play an important role in the cardioprotection of IRI. However, its role and 

mechanism in cardioprotection against IRI has not been clearly elucidated with respect to 

the apoptosis pathway. The purpose of this paper is to review luteolin’s anti-apoptotic role 

and mechanism following I/R in rats, and indicate luteolin as a potential candidate for 

preventing and treating cardiovascular diseases. 
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1. Introduction 

Myocardial ischemia refers to a clinical state characterized by low coronary blood flow arising from 

various causes but resulting in a lack of myocardial oxygen supply which can damage myocardial 

structure and heart function. In most cases, the damaged structure can be repaired and heart function 

can be restored to its basal condition through ischemia/reperfusion (I/R) [1,2]. However, in some 

instances, I/R can have the opposite effect, which not only fails to improve heart function but instead 

exacerbates cardiac function and worsens structural damage. On the basis of the resultant aggravation 

in myocardial ischemic tissue damage or even irreversible damage after blood flow is increased, this 

phenomenon is known as myocardial ischemia reperfusion injury (IRI) [3–5]. Therefore, it is necessary 

for the development of cardioprotective agents to improve myocardial function, decrease the incidence 

of cardiovascular events and limit the total extent of infarction during I/R. However, earlier 

pharmacological approaches to attenuate the deleterious effects of IRI have shown limited 

experimental efficacy or have failed to translate into useful clinical treatments. It is pivotal to keep in 

mind that a clinical trial is always based on a specific treatment strategy, which may lead to the failure 

of a drug to achieve its desired effects despite its inherent efficacy. Meanwhile, it is an urgent need to 

acquire additional insight into the molecular mechanism during I/R, and that could be exploited 

therapeutically [6]. In addition, such preconditioning effects can occur at relatively low concentrations, 

while higher levels, which may be difficult to achieve through diet, are needed for direct antioxidant 

effects [7]. As one of the leading causes of death and disability in industrialized society, cardiovascular 

diseases need more research, and myocardial IRI which contributes to the morbidity and mortality 

associated with cardiovascular diseases has become the hot research area. In recent years, emerging 

research has been shown to possess a remarkable ability to deal with IRI [3–5]. Pharmacological 

preconditioning means the use of drugs to stimulate or simulated endogenous protective substances to 

decrease IRI. Some drugs have already tested positive for cardioprotective effects through inducing the 

release of endogenous substances or by directly stimulating endogenous mechanisms to inhibit IRI. 

The discovery of these major forms of cardioprotective mechanisms has promoted the exploration of 

new drugs to protect against IRI. Currently, drug pretreatment has been the main area of focus in 

improving IRI outcomes. 

Luteolin is a widely distributed flavonoid, a member of a group of naturally occurring polyphenolic 

compounds found in many fruits, vegetables and medicinal herbs and its structure as following  

(Figure 1) [8]. In recent years, epidemiological evidence suggests that luteolin may play an important 

role in the decreased risk of acute myocardial infarction (AMI) associated with a diet rich in  

plant-derived food [9]. Preclinical studies have shown that luteolin possesses a variety of biological 

and pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, 

anti-allergic, anti-platelet, and a number of other activities [10–12]. In spite of luteolin has been 

definitely shown to inhibit growth, induce apoptosis, lead to generation of reactive oxygen species and 

DNA damage in a variety of cancer cells [13]. However, to date, considerable research has indicated 

that apoptosis is involved in myocardial IRI and that luteolin can play an important anti-apoptotic role 

during IRI, its role and mechanism in cardioprotection against IRI has not been clearly elucidated with 

respect to the apoptosis pathway [14,15]. Because previous reviews have already elaborated on the fact 

that the anti-inflammatory and antioxidant activities of luteolin affect its role in cardioprotection 
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against IRI in vivo [10], the aim of this review is to illustrate the underlying mechanism for 

cardioprotection in anti-apoptosis during I/R by luteolin pretreatment, and clarify the mechanisms by 

which luteolin regulating apoptosis has revealed new therapeutic targets that could potentially improve 

heart function in pathologies of myocardial IRI. Moreover, luteolin may be a potential candidate for 

preventing and treating cardiovascular diseases. In the review paper, the description of inhibition of 

apoptosis in I/R cardiomyocytes by luteolin is focused on rat cells, rather than other systems. To date, 

a large number of studies have shown that cardiomyocytes of rat is assessed in I/R by luteolin 

pretreatment and only cardiomyocytes in other systems such as murine, H9c2, etc. [16,17]. Thus, only 

cardiomyocytes of rat is emphasized in this paper. 

Figure 1. Chemical structure of luteolin. 

 

2. Mechanisms of Cell Apoptosis in Myocardial IRI  

To date, some experiments and clinical studies have suggested that cell apoptosis may be an 

important link during the pathogenesis of myocardial IRI. Fliss and Gattinger observed a typical 

apoptotic morphological phenotype changed in DNA ladder electrophoresis and reperfusion injury 

after I/R, indicating that I/R could lead to cardiomyocyte apoptosis in rats [18]. In clinical studies, 

myocardial apoptosis was also observed in patients with acute coronary syndrome (ACS), even after 

percutaneous coronary intervention (PCI) treatment. These results further confirmed that ischemia 

could cause myocardial apoptosis, indicating that cell apoptosis is closely correlated to myocardial IRI. 

Although concrete mechanisms by which myocardial IRI leads to cellular apoptosis have not been 

clearly elucidated, a number of potential mechanisms of cell apoptosis in myocardial IRI have been 

explored, including oxygen free radical, calcium overload and mitochondrial damage. A large quantity 

of oxygen free radicals are generated during myocardial I/R and promote the development of IRI by 

lipid and nucleic acid destructive molecular chain reactions. The functional changes in mitochondrial 

membrane potentially cause the release of apoptosis inducing factor (AIF) from mitochondria or 

apoptotic protease-activating factor 1 (Apaf-1) in cytoplasm, which in turn activates cysteinyl 

aspartate-specific proteases (caspase) to induce apoptosis [19]. Moreover, the mitochondria function is 

significantly changed during I/R, including decreasing mitochondrial membrane potential and energy 

synthesis. Besides, the cellular Ca
2+

 content increases significantly after the blood flow in ischemic 

tissues is restored, which causes cellular damage; this process is known as calcium overload. Calcium 

overload and a series of following harmful metabolic events are the ―last common access‖. During 

myocardial I/R, Ca
2+

 is mostly accumulated in the mitochondria, which causes the mitochondrial 

membrane permeability transition pore (mPTP) to open and facilitates the release of cytochrome c into 
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the cytoplasm, therefore activating caspase to induce apoptosis. All could potentially be used as sites 

for pharmacotherapy against IRI. 

3. Luteolin and Signaling Pathways Involved Cell Apoptosis during I/R  

Until now it has been thought that myocardial apoptosis during I/R is mainly involved in the 

following signaling pathways: phosphatidylinositol-3-kinase/Akt (PI3K/Akt), mitogen-activated 

protein kinases (MAPKs), caspase, janus kinase/signal transducer and activator of transcription 

(JAK/STAT), cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) and lectin-like 

oxidized low-density lipoprotein receptor-1(LOX-1). By the way, the PI3K/Akt pathway, the MAPKs 

pathway, and the JAK/STAT pathway are usually known as protective pathways; these pathways are 

also involved in regulating cell apoptosis. Although the underlying mechanisms of luteolin-induced 

cardioprotection are complex, they can be summarized as enhancing cell survival by either inhibiting 

apoptosis or inducing survival signaling in myocardial I/R (Figure 2).  

Figure 2. Possible mechanisms for luteolin exerting its protective effects on cardiomyocytes 

following I/R.  

 

Pretreatment with luteolin can also upregulate the expression of phosphorylated Akt, which further 

promotes the expression of Bcl-2 and Bad while downregulating the expression of Bax thereby 

decreasing apoptosis. Pretreatment with luteolin suppresses NF-κB activation, resulting in decreased 

expression of NF-κB P65/50 and TNF-α. Meanwhile, the upregulation of Bcl-2 expression can 

suppress the expression of caspase-8 and caspase-3, resulting in anti-apoptosis [20]. MAPKs are also 

involved in regulating myocardial IRI. Moreover, JAK/STAT and PKG signaling pathways may 

mediate cardiomyocytes apoptosis during I/R.  
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3.1. Luteolin and the PI3K/Akt Signaling Pathway Mediating Cell Apoptosis during I/R 

The PI3K/Akt signaling transduction pathway is considered to be the most important signaling 

pathway involved in controlling cell survival. As a critical regulator of PI3K, Akt can transduce the 

anti-apoptotic signals in cardiomyocytes, and activated Akt can inhibit cardiomyocyte apoptosis during 

I/R. It is assumed that the phosphorylation of Akt is down-regulated in myocardial IRI. Recent studies 

have confirmed the cardioprotective role of this pathway in IRI [21]. In vivo, it may be possible to 

reduce myocardial apoptosis after short periods of ischemia and lessen the infarction area by means of 

transferring an activated Akt gene to the heart using adenoviral vectors [22]. In vitro, the expression of 

activated PI3K/Akt can reduce hypoxia-induced myocardial apoptosis [23]. We also found that 

activation of Akt not only reduced mortality in I/R model of cardiomyocytes, but can also improve 

regional and global cardiac function [24]. Some researchers have studied the interaction between 

cardiomyocytes positive inotropy and cardioprotection in IRI. In myocardial IRI, damaged 

cardiomyocytes attenuate contractility and diminish the pump function of the heart. Myocardial 

positive inotropy means improved cardiomyocytes contractility and results in restored blood supply. 

Later, apoptosis of cardiomyocytes in IRI is diminished. These findings indicate that Akt signals 

control the survival and function of cardiomyocytes, but the exact pathway by which this occurs has 

not yet been fully elucidated.  

In recent years, a large number of experiments have confirmed that the anti-apoptotic effect of 

luteolin shown in myocardial IRI is related to the activation of PI3K/Akt signaling pathway [24–26]. 

These results indicate that the protective effect of luteolin may occur through the PI3K/Akt  

signaling pathway. However, the direct cardioprotective effects of luteolin pretreatment on a single 

cardiomyocyte are still unknown. No previous experiments have investigated the direct effects of 

luteolin on cardiomyocyte shortening amplitude under I/R conditions.  

Recent results from our research firstly confirmed that luteolin improved I/R-induced cardiomyocyte 

contractive function, as indicated by the significant dose-dependent increase in single cardiomyocyte 

shortening amplitude [24,26]. Cardiomyocyte shortening amplitude was indexed as the percentage 

reduction of cell length after stimulation. Meanwhile, the results demonstrated that luteolin prevented 

IRI by reducing necrosis and apoptosis in rat cardiomyocytes. We utilized the PI3K inhibitor 

LY294002 to determine whether the cardioprotective effect of luteolin treatment was indeed mediated 

by the PI3K/Akt pathway. Inhibition of Akt activity markedly diminished the luteolin-induced positive 

contraction and inhibition of apoptosis in cardiomyocate following I/R. These results showed that 

luteolin inhibited apoptosis and improved cardiomyocytes contractile function at least partly through 

the PI3K/Akt pathway during I/R.  

3.2. Luteolin and the MAPKs Signaling Pathway Mediating Cell Apoptosis during I/R 

The MAPK signaling pathway is believed to regulate the apoptosis of myocardial cells. MAPKs are 

serine/threonine protein kinases that are activated by phosphorylation on both a threonine and tyrosine 

residues. The kinase family has three members, including extracellular signal-regulated kinases (ERK), 

C-jun N terminal kinase/stress-activated protein kinases (JNK/SAPK) and the protein kinase p38. 

Some researchers have indicated that ERK and p38MAPKs could be activated after myocardial I/R in 
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rats, and other literature has shown that the JNK/SAPK pathway is also involved in the process of 

myocardial apoptosis during I/R [3,27,28]. 

Cheng et al. reported that luteolin prevented apoptotic neuronal death through reduction in the 

protein levels of JNK, ERK and p38MAPK and caspase-3 in rat primary cortical cultures [29]. 

However, whether luteolin can inhibit myocardial apoptosis through the MAPKs pathway during I/R 

needs to be determined. Recently we tested p38MAPK and phosphorylation of p38MAPK after 3 h 

simulated ischemia and 2 h simulated reperfusion in cardiomyocytes. Pretreatment with luteolin 

substantially increased cell viability and shortened amplitude and the expression of phosphorylated 

p38MAPK was down-regulated [30]. 

3.3. Luteolin and the Caspase Signaling Pathway Mediating Cell Apoptosis during I/R  

The caspase signaling pathway includes the mitochondria, death receptor and endoplasmic 

reticulum (ER) approaches [31]. When apoptotic signals are present, a series of events occur in 

mitochondria, including mPTP opening, after which the outer membrane ruptures. Therefore, the 

mitochondrial contents, such as cytochrome C and Apaf-1 are released into the cytoplasm, and the 

caspase-activating complex, namely the apoptosome forms. Activated caspase-9 in the apoptosome can 

activate caspase-3 and caspase-7, initiating the caspase cascade to activate a series of proteolytic 

enzymes in the cell, which eventually results in cellular apoptosis [32]. The death receptor belongs to 

the tumor necrosis factor (TNF) gene family. TNF and Fas are pro-apoptotic factors that have received 

much attention in current studies. Binding of Fas ligand to Fas induces the recruitment of procaspase 8 

to the receptor complex where the protease becomes activated. Then they form the death induction 

signal compounds and trigger the caspase cascades, leading to caspase-3 activation and eventually the 

induction of apoptosis [33]. The ER plays pivotal roles in maintaining Ca
2+

 homeostasis in cells and 

membrane protein synthesis, modification and folding. Under the stressful condition of myocardial 

IRI, the ER will induce an unfolded protein response, which eases ER stress by instituting changes in 

the transcription and translation process, thereby, maintaining cell function.  

Song et al. found that luteolin inhibits lysophosphatidylcholine (LPC) induced apoptosis  

in endothelial cells through the blockage of the calcium-dependent mitochondrial pathway [33]  

(Figure 3). However, whether luteolin inhibits apoptosis in cardiomyocytes during I/R through 

mediation of the mitochondrial pathway has not been experimentally confirmed. Kim et al. 

investigated whether ER stress and Bcl-2 proteins were linked to the protective effect exerted by 

luteolin on I/R-induced cardiac damage [16]. The results showed that luteolin pretreatment 

significantly increased the expression level of the anti-apoptotic protein, Bcl-2, while decreasing that 

of the pro-apoptotic protein, Bax. Additionally, luteolin down-regulated the expression levels of ER 

stress proteins. In summary, these results show that the protective effects can be exerted with luteolin 

pretreatment on I/R-induced cardiac damage by ER approach from caspase signaling pathway.  

LPC-induced apoptosis is characterized by a calcium-dependent mitochondrial pathway involving: 

calcium influx, activation of calpains, cytochrome C release and caspase activation. Luteolin reduced 

calcium influx and also inhibited calpain activation and prevented the release of cytochrome C from 

the mitochondria. The inhibition of cytochrome C release by luteolin blocked activation of caspase-3 

and, thus, prevented subsequent cellular apoptosis. 
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Figure 3. Possible mechanisms of luteolin inhibiting LPC-induced apoptosis in endothelial 

cells through the blockage of the calcium-dependent mitochondrial pathway.  

 

3.4. Luteolin and the JAK/STAT Signaling Pathway Mediating Cell Apoptosis during I/R  

In recent years, many studies have found that the JAK/STAT pathway is involved in cellar 

apoptotic processes following I/R in cardiomyocytes [34,35]. Using the JAK-2 specific inhibitor 

AG490 in a myocardial IRI rat model, it was observed that caspase-3 activity was greatly enhanced, 

Bax expression was increased and the number of apoptotic cells increased. However, the number of 

apoptotic cardiomyocytes in vitro rat hearts was decreased by AG490. The JAK/STAT pathway 

potentially has a dual nature in regulating myocardial cellular apoptosis, potentially through crosstalk 

with another pathway, which means the balance between protective and apoptotic mechanisms is 

determined by a network of signaling pathways that can interact with the JAK/STAT pathway to 

regulate the expression of either anti-apoptotic or pro-apoptotic genes [36]. However, whether luteolin 

inhibits apoptosis in cardiomyocytes, during I/R, via the JAK/STAT pathway has not been 

experimentally confirmed. 

3.5. Luteolin and the cGMP/PKG Signaling Pathway Mediating Cell Apoptosis during I/R  

cGMP production and PKG activation are common steps in all types of cardioprotection [37]. As an 

important intracellular messenger substance, cGMP has three main targets, of which PKG is 

considered the most important target. It has been reported that PKG is involved in the mechanism of 

preconditioning to protect myocardial cells by activating ATP-sensitive potassium (KATP) channels in 

myocardial cells [38]. These findings indicate that the cGMP/PKG signaling pathway plays an 

important role in the regulation of cell apoptosis during I/R. However, whether luteolin inhibits 

apoptosis in cardiomyocytes during I/R via the cGMP/PKG pathway remains to be elucidated. 
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3.6. Luteolin and the LOX-1 Signaling Pathway Mediating Cell Apoptosis during I/R  

Recently, much of the field’s focus has been concentrated on the role of LOX-1 in IRI myocardial 

cell apoptosis. ROS is able to be released by low density lipoprotein oxidation in I/R. The oxidation of 

low density lipoprotein and ROS can also cause LOX-1 receptor expression to rise. There were reports 

that LOX-1 gene expression was up-regulated while cardiac injury was significantly reduced during 

myocardial I/R [39]. In addition, the research of Kataoka et al. has also shown that myocardial I/R can 

induce LOX-1 expression, however, with the application of LOX-1 monoclonal antibody prior to I/R, 

the area of myocardial injury has been significantly reduced [40]. These results suggest that LOX-1 

can play an important role in I/R-mediated cardiomyocyte apoptosis. 

3.7. Luteolin and Other Signaling Pathway Mediating Cell Apoptosis during I/R  

Besides the above mentioned common signaling pathways, more and more evidence has shown that 

there are other signaling pathways involved in the myocardial apoptosis during I/R, including  

NF-κB, small G proteins and protein kinase C (PKC). Despite these signaling pathways seldom being 

mentioned in the literature, their affect on I/R myocardial apoptosis has been confirmed [20,41,42]. 

Signaling transduction may involve several signaling pathways, interactions among which form the 

signaling network. Therefore, one inducer can activate several signaling pathways. Signaling crosstalk 

means the interaction of two or more different pathways. It is already known that apoptosis is a good 

target for therapeutic intervention [31]. 

4. Conclusions and Perspectives 

At present, a large number of studies have shown that apoptosis plays an important role in 

myocardial IRI and much work has been undertaken to identify the detailed mechanisms and 

transduction pathways involved, so that the relationship between cardiomyocyte apoptosis and 

myocardial IRI can be fully understood. More research has been performed to explore the 

cardioprotection mechanisms of luteolin treatment during myocardial I/R and some consensus  

has been obtained that luteolin can exert its anti-apoptotic effect through the PI3K/Akt signaling 

pathway [24–26]. In this way IRI myocardium can be protected, but the effect of luteolin treatment on 

myocardial IRI protection and the anti-apoptotic influence through the MAPKs signaling pathway and 

caspase signaling pathway have not yet been completely clarified. Mechanisms for cardiomyocyte 

protection during myocardial I/R by the JAK/STAT, cGMP/PKG and LOX-1 signaling pathways 

following luteolin treatment also remain unknown. Moreover, the exact cardioprotective mechanisms 

of luteolin require detailed illustration, such as the cooperation or crosstalk among PI3K/Akt, MAPKs, 

cGMP/PKG and JAK/STAT signaling pathways. In summary, luteolin can protect the myocardium 

against IRI. However, the exact mechanism warrants further investigation. 

Some important issues still need to be addressed in future studies: First, most studies so far were 

performed in cells, not in vivo. Moreover, drug treatment in rats needs to be advanced to a more 

clinically relevant stage. However, there has been little attention to this issue in animal models that are 

more relevant to physiological and pathological processes in vivo. Second, there is a lack of direct 

evidence supporting the connection between luteolin and some signaling pathways, such as 
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cGMP/PKG, JAK/STAT, and its role in anti-apoptosis during I/R. Therefore, the significance of this 

potential connection is unclear. In addition, there is the question of possible side effects in cardiac 

treatment by luteolin pretreatment, as some results have shown that a 20 μg/mL concentration of 

luteolin has a toxic effect on rat cardiomyocytes in I/R and other adverse effects have not been clearly 

reported [24,26]. Since the role that these signaling pathways play in luteolin-induced apoptosis has 

not been fully elucidated, it is still premature to implicate these pathways in this process. In summary, 

more research is required to clarify the exact effects and mechanisms of luteolin in cardioprotection 

and apoptosis in cardiomyocytes during I/R.  
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