
Nutrients 2013, 5, 788-810; doi:10.3390/nu5030788 

 

nutrients 
ISSN 2072-6643 

www.mdpi.com/journal/nutrients 

Article 

Pharmacokinetics of High-Dose Weekly Oral Vitamin D3 

Supplementation during the Third Trimester of Pregnancy in 

Dhaka, Bangladesh 

Daniel E. Roth 
1,†,

*, Abdullah Al Mahmud 
2
, Rubhana Raqib 

2
, Evana Akhtar 

2
, Robert E. Black 

1
 

and Abdullah H. Baqui 
1,2

 

1
 Department of International Health, The Johns Hopkins Bloomberg School of Public Health,  

615 North Wolfe Street, Baltimore, MD 21205, USA; E-Mails: rblack@jhsph.edu (R.E.B.); 

abaqui@jhsph.edu (A.H.B.) 
2
 International Center for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), GPO Box 128,  

Dhaka 1000, Bangladesh; E-Mails: mahmud@icddrb.org (A.A.M.); rubhana@icddrb.org (R.R.); 

evana@icddrb.org (E.A.) 

†
 Present Address: Division of Paediatric Medicine, The Hospital for Sick Children and University of 

Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada. 

* Author to whom correspondence should be addressed; E-Mail: daniel.roth@sickkids.ca;  

Tel.: +1-416-813-5795; Fax: +1-416-813-5663. 

Received: 31 December 2012; in revised form: 5 February 2013 / Accepted: 19 February 2013 / 

Published: 12 March 2013 

 

Abstract: A pharmacokinetic study was conducted to assess the biochemical  

dose-response and tolerability of high-dose prenatal vitamin D3 supplementation in Dhaka, 

Bangladesh (23°N). Pregnant women at 27–30 weeks gestation (n = 28) were randomized 

to 70,000 IU once + 35,000 IU/week vitamin D3 (group PH: pregnant, higher dose) or 

14,000 IU/week vitamin D3 (PL: pregnant, lower dose) until delivery. A group of  

non-pregnant women (n = 16) was similarly administered 70,000 IU once + 35,000 IU/week 

for 10 weeks (NH: non-pregnant, higher-dose). Rise (∆) in serum 25-hydroxyvitamin D 

concentration ([25(OH)D]) above baseline was the primary pharmacokinetic outcome. 

Baseline mean [25(OH)D] were similar in PH and PL (35 nmol/L vs. 31 nmol/L, p = 0.34). 

A dose-response effect was observed: ∆[25(OH)D] at modeled steady-state was 19 nmol/L 

(95% CI, 1 to 37) higher in PH vs. PL (p = 0.044). ∆[25(OH)D] at modeled steady-state 

was lower in PH versus NH but the difference was not significant (−15 nmol/L, 95% CI 

−34 to 5; p = 0.13). In PH, 100% attained [25(OH)D] ≥ 50 nmol/L and 90% attained 
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[25(OH)D] ≥ 80 nmol/L; in PL, 89% attained [25(OH)D] ≥ 50 nmol/L but 56% attained 

[25(OH)D] ≥ 80 nmol/L. Cord [25(OH)D] (n = 23) was slightly higher in PH versus PL 

(117 nmol/L vs. 98 nmol/L; p = 0.07). Vitamin D3 was well tolerated; there were no 

supplement-related serious adverse clinical events or hypercalcemia. In summary, a 

regimen of an initial dose of 70,000 IU and 35,000 IU/week vitamin D3 in the third 

trimester of pregnancy was non-hypercalcemic and attained [25(OH)D] ≥ 80 nmol/L in 

virtually all mothers and newborns. Further research is required to establish the safety of 

high-dose vitamin D3 in pregnancy and to determine if supplement-induced [25(OH)D] 

elevations lead to maternal-infant health benefits. 

Keywords: vitamin D; Bangladesh; pregnancy; pharmacokinetics; hypercalcemia 

 

1. Introduction 

The maternal-infant health benefits of vitamin D supplementation during pregnancy remain 

uncertain [1,2]. However, observational studies have suggested associations between vitamin D status 

during pregnancy and postnatal infant health outcomes [3–5]. Serum 25-hydroxyvitamin D 

concentration ([25(OH)D]) ≥ 50 nmol/L is associated with skeletal health benefits [1], but some data 

suggest that improving vitamin D status to attain serum [25(OH)D] ≥ 80 nmol/L may enhance a range 

of vitamin D-related functions [6–8]. However, there have been relatively few published studies of 

vitamin D3 pharmacokinetics, safety and clinical effects during pregnancy [9].  

The possible association between maternal-fetal vitamin D status and infant health outcomes may 

be particularly relevant to South Asian countries such as Bangladesh, where adverse perinatal 

outcomes and infant mortality are public health priorities [10], and where vitamin D deficiency has 

been observed among women of reproductive age [11] and young infants [12]. Therefore, to guide the 

design of clinical trials of antenatal vitamin D supplementation in Bangladesh, we conducted a 

randomized open-label pilot trial of two antenatal vitamin D3 supplementation doses that were several 

fold higher than those in typical prenatal supplements. The primary aims were to establish the 

biochemical dose-response in terms of the change in serum [25(OH)D], and to specifically assess 

whether the regimens achieved [25(OH)D] ≥ 80 nmol/L in most participants. The response to the 

higher-dose supplement regimen was also assessed in a cohort of non-pregnant participants that served 

as a separate comparison group. The present study builds on previously reported observations of 

single-dose vitamin D3 pharmacokinetics in the same setting [13].  

2. Experimental Section  

2.1. Participants 

Pregnant women were enrolled at a maternal health clinic in inner-city Dhaka, Bangladesh (23°N) 

in February 2010 if they were: Aged 18 to <35 years; at 27 to <31 completed weeks of gestation based 

on the reported first day of the last menstrual period; held permanent residence in Dhaka at a fixed 

address; and, planned to stay in Dhaka for at least four months. Reasons for exclusion were: 
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preexisting medical condition; current vitamin D supplement use; anti-convulsant or anti-mycobacterial 

medications; severe anemia (hemoglobin concentration <70 g/L); hypertension at enrollment (systolic 

blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg on at least two measurements); 

major risk factors for preterm delivery or pregnancy complications; or previous delivery of an infant 

with a congenital anomaly or perinatal death. Healthy non-pregnant women attending the same clinic 

for health maintenance (e.g., contraception), or because they were accompanying pregnant women, 

were enrolled in August–September 2009 if they were non-lactating, had not missed a recent menses at 

the expected date, and had a negative urine pregnancy test (First Response Early Results, Church & 

Dwight Company, Inc., Princeton, NJ, USA). Otherwise, inclusion and exclusion criteria were similar 

to the pregnant participants. 

The study was approved by the Institutional Review Board at The Johns Hopkins Bloomberg 

School of Public Health and the International Center for Diarrheal Disease Research, Bangladesh 

(ICDDR, B). All participants gave signed informed consent prior to participation. The trial was 

registered at ClinicalTrials.gov (NCT00938600). 

2.2. Study Design and Interventions 

Pregnant participants were randomized at enrollment to receive a single dose of vitamin D3 70,000 IU 

(1.75 mg, where 1 mg = 40,000 IU) on day 0 followed by vitamin D3 35,000 IU (0.875 mg) per week 

starting on day 7 and continuing until delivery (referred to as group “PH”; pregnant, higher dose), or to 

vitamin D3 14,000 IU (0.350 mg) per week starting on day 0 and continuing until delivery (“PL”; 

pregnant, lower dose). Participants in the non-pregnant cohort (“NH”; non-pregnant, higher dose) 

received the same higher-dose intervention as PH, i.e., a single dose of vitamin D3 70,000 IU on day 0 

followed by vitamin D3 35,000 IU per week starting on day 7 and continuing until the last dose on  

day 63 (total of 10 doses). Vitamin D3 was administered as Vigantol Oil (Merck KGaA, Germany), a 

liquid supplement (20,000 IU D3/mL) commercially available in Bangladesh (see Ref 13 for details 

regarding quality assurance). Participants were advised not to take other vitamin D-containing 

supplements during the study period. Pregnant participants were provided with standard prenatal 

supplemental iron (60 mg/day) and folic acid (400 mcg/day). NH was studied before enrolment of PH, 

to establish safety of the high-dose regimen in non-pregnant women prior to its use in pregnant 

women. As an additional safety measure, the response to a single initial dose vitamin D3 (70,000 IU) 

was observed in a separate cohort, prior to the initiation of enrollment of cohorts of participants who 

received weekly doses [13]. A preceding report of single-dose vitamin D3 pharmacokinetics included 

data from participants in weekly-dose groups PH and NH, but only from days 0 to 7 (i.e., preceding the 

administration of a second vitamin D dose) [13]. Women who received only the single 70,000 IU dose 

are not included in any of the present analyses. 

2.3. Data Collection Procedures  

Pregnant women were assessed weekly until delivery. Non-pregnant participants had weekly 

follow-ups for 10 weeks (the last visit was on day 70, one week after the final D3 dose). Weekly 

assessments included a checklist of symptoms and blood pressure measurement. In NH and PH, 

participants provided up to six scheduled blood specimens and at least seven urine samples during a 
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10-week follow-up period beginning on the day of supplement administration (day 0), according to one 

of two randomly assigned sampling schedules, A or B (Figure 1). Specimens on days 65 and 67 were 

intended to measure inter-dose fluctuations in [25(OH)D] and serum calcium. Urine was collected at 

visits without scheduled blood collection up to day 70 (Figure 1). Participants in PL were asked to 

provide three blood specimens and four urine specimens (schedule C in Figure 1). From day 70, 

pregnant participants provided urine specimens on a weekly basis until delivery.  

Figure 1. Blood and urine specimen collection schedules. Participants in groups PH and 

NH were randomly assigned to either scheduled “A” or “B”. Participants in group PL all 

followed schedule “C”.  

 

2.4. Specimen Collection and Biochemical Analyses 

Maternal and cord serum samples were collected by standard techniques and maintained at 4 °C 

prior to same-day transfer to the laboratory. Spot urine specimens were collected in sterile plastic 

containers and maintained at 4 °C until same or next-day analysis of the calcium:creatinine ratio 

(ca:cr). Serum aliquots for the 25(OH)D assay were frozen at −20 °C for up to five months prior to 

shipment from Bangladesh to Toronto. Total serum [25(OH)D] was measured with the Diasorin 

Liaison Total assay in the laboratory of Reinhold Vieth in Toronto [14], which meets the International 

Vitamin D External Quality Assessment Scheme (DEQAS) performance targets [15]. Mean within-run 

coefficient of variation (CV%) was 7.8% (5.8% for specimens with values <150 nmol/L) and mean 

between-run CV% was 10.5% (9.0% for specimens <150 nmol/L). Serum calcium, serum albumin, 

and urine calcium:creatinine ratio (ca:cr) were routinely measured using the AU640 Olympus 

Autoanalyzer (Olympus Corporation, Japan) in the Clinical Biochemistry Laboratory at the 

International Center for Diarrheal Disease Research, Bangladesh (ICDDR, B) in Dhaka within 24–48 h 

of collection of serum or urine aliquots. Total serum calcium concentration ([Ca]) was adjusted for the 

serum albumin concentration by the following conventional formula: [Ca] + (0.02 × (40-albumin)). 

Intact parathyroid hormone (PTH) was measured using a chemiluminescent assay on the i1000SR 

Architect Autoanalyzer (Abbott Diagnostics, Lake Forest, IL, USA), with a reference range of  

1.59–7.23 pmol/L (Clinical Biochemistry Lab, icddr,b). 

  

 Day 

0 2 4 7 14 21 28 35 42 49 56 63 65 67 70 

A                 

B                 

C                 

 Blood collection 

 Urine collection  

Figure 1



Nutrients 2013, 5 792 

 

 

2.5. Safety Monitoring 

The adjusted [Ca] reference range was 2.10–2.60 mmol/L. Umbilical cord venous serum [Ca] was 

considered elevated if greater than 3.0 mmol/L [16]. Urine ca:cr were expressed as mmol Ca/mmol Cr, 

considering 1.0 as the upper limit of the reference range [17]. An albumin-adjusted serum calcium 

concentration >2.60 mmol/L prompted a repeat measurement on a new specimen as soon as possible. 

Confirmed hypercalcemia was a priori defined as albumin-adjusted serum calcium concentration  

>2.60 mmol/L on both specimens (since hypercalcemia caused by vitamin D intoxication would not be 

expected to resolve within a few days without intervention). Episodes of urinary calcium:creatinine 

ratio (ca:cr) >1.0 mmol/mmol prompted a repeat urine ca:cr measurement within one week.  

A ca:cr > 0.85 mmol/mmol that was also 2-fold or greater relative to the lowest previously observed 

value in the same participant prompted repeat urine assessment. Persistent hypercalciuria was defined 

as ca:cr > 1.0 mmol/mmol on two consecutive results, or on two non-consecutive measurements but in 

the presence of persistent symptoms suggestive of possible hypercalcemia. Persistent hypercalciuria or 

persistent ca:cr > 0.85 mmol/mmol that was also 2-fold or greater relative to the lowest previously 

observed value were indications for unscheduled measurement of serum calcium. Abnormal 

urinalyses, hypertension, reported severe symptoms, or persistence of any mild symptomatic 

complaints prompted referral to the study physician for further evaluation. Participants were referred to 

an antenatal care physician at the maternity clinic for treatment of urinary tract infections, 

hypertension, or other medical problems. Participants with obstetric complications were transported to 

a local tertiary-care hospital with advanced neonatal care facilities. All costs of medical and obstetric 

care were borne by the study.  

2.6. Statistical Analysis 

Pharmacokinetic outcomes were expressed as the attained maternal/cord [25(OH)D] and the rise in 

maternal [25(OH)D] above baseline (Δ[25(OH)D]). Distributions in each group and at specific time 

points were summarized as geometric mean [25(OH)D] and 95% confidence intervals (CI).  

Between-group differences were analyzed by linear regression of log-transformed [25(OH)D]. To 

facilitate comparisons to other studies, the Δ[25(OH)D] at days 63 and beyond was also expressed as a 

function of the equivalent daily dose administered to each group, in micrograms (i.e., 125 mcg/day in 

groups NH and PH, and 50 mcg/day in group PL). To investigate inter-dose fluctuations, the mean 

[25(OH)D] at days 65, 67, and 70 were compared to day 63 in groups NH and PH. The proportion of 

participants and cord blood specimens with [25(OH)D] ≥ 50 nmol/L or ≥80 nmol/L were compared 

across groups using log-binomial regression. Mean changes in [25(OH)D] over time in each group 

were also modeled as continuous non-linear parametric functions (see Appendix). These analyses used 

all available individual participant-level data; standard errors were corrected to account for the  

within-subject correlation of repeated outcomes. Serum [Ca] and urine log-transformed ca:cr were each 

modeled as functions of time using fixed indicator variables for baseline, weeks 2 to 5 (days 4 to 34), 

and week 6 and later (day 35 and thereafter). Comparisons of PH to NH or PL were analyzed using 

group-by-time interaction terms. Serum [Ca] and urine ca:cr were also expressed in terms of the 

proportions of episodes above the references ranges. In all analyses, p < 0.05 was considered statistically 
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significant; however, the Holm procedure was used for multiple pair-wise comparisons [18]. Where 

appropriate, generalized estimating equations (GEE) with robust error estimation were used to account 

for non-independence of repeated measures. Analyses were conducted using Stata versions 10.1 and 

11.1 (Stata Corporation, College Station, TX, USA). 

3. Results  

3.1. Participant Characteristics and Retention. 

Twenty-eight pregnant women were recruited and randomly assigned to one of two groups,  

PH (n = 14) and PL (n = 14). Sixteen non-pregnant women were enrolled (Figure 2).  

Figure 2. Study flow diagram. Participant screening, enrollment, exclusions, and 

withdrawal over the course of the study. 

 

Of 28 randomized pregnant participants, 4 (14%) left the Dhaka area prior to completion of the 

study protocol (2 in PH and 2 in PL). Specimens in the 10th week were available in 10/14 women in 

PH and 9/14 in PL. Cord specimens were available in 23 (82%) of enrolled participants. PH and PL 

were generally similar with respect to baseline characteristics (Table 1) and [25(OH)D] (Table 2). 

However, NH enrollment occurred in the summer rather than mid-winter and NH participants had 

higher average baseline [25(OH)D] compared to the pregnant participants (Table 1). 
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Table 1. Participant characteristics at enrollment. 

 NH PH PL p 

# Enrolled 16 14 14  

Age (years), Mean (±SD) 24.6 (±4.5) 22.2 (±3.1) 22.1 (±4.8) 0.190 

Gestational age at enrollment (weeks) 

Mean (±SD) - 28.4 (±1.2) 28.5 (±1.3) 0.760 

Range - 26.1–30.6 27–30.7  

Married 12 (75%) 14 (100%) 13 (93%) 0.110 

Education level attained 

None 2 (13%) 4 (29%) 3 (21%) 0.285 

Primary 10 (63%) 9 (64%) 11 (79%)  

Secondary or higher 4 (25%) 1 (7%) 0  

Height (cm), mean (±SD) 152.1 (±4.7) 150.7 (±4.7) 148.9 (±4.5) 0.179 

Table 2. Serum 25-hydroxyvitamin D concentrations at baseline and through 10 weeks of 

supplementation in non-pregnant and pregnant participants 
1
. 

 Non-pregnant Pregnant Pregnant  

 NH PH PL   

# Enrolled 16 14 14   

Vitamin D3 regimen 

Loading dose 70,000 IU 70,000 IU 0  

Weekly doses 35,000 IU 35,000 IU 14,000 IU  

Duration of supplementation 10 weeks 

27–30 weeks 

gestation until 

delivery 

27–30 weeks 

gestation until 

delivery  

Dates of enrollment 
17 Aug–6 Sep 

2009 
3–16 Feb 2010 3–16 Feb 2010 

 

Participants with [25(OH)D] measured 

during 10th week (days 63 to 70), n (%) 14 (88%) 10 (71%) 9 (64%) p value 
2
 

Number of specimens per participant, 

Median  6 6 3 

PH vs. 

NH 

PH vs. 

PL 

Baseline [25(OH)D] 

Mean [95% CI] 57 [47,69] 35 [30,42] 31 [26,38] <0.001 0.341 

Range (min, max) 27, 93 21, 55 20, 57   

Attained [25(OH)D] in 10th week 

Mean [95% CI] 139 [121,160] 98 [89,109] 76 [61,95] <0.001 0.038 

Range (min, max) 85, 238 71, 153 36, 119   

∆[25(OH)D] in 10th week 

Mean [95% CI] 76 [61,96] 57 [44,73] 36 [22,61] 0.082 0.128 

Range on days 63 to 70 28, 160 19, 130 7, 75   

∆[25(OH)D] at days 63 to 70 per daily 

vitamin D3 dose (nmol/L/mcg) 

Mean [95% CI] 0.61 [0.48, 0.79] 0.46 [0.34,0.61] 0.73 [0.38,1.38] 0.220 0.081 

Area under the ∆[25(OH)D]-time curve 

(nmol·d/L) to day 63/65 (AUC63) 
3
 3500 [2886,4245] 2925 [2331,3670] 1678 [923,3053] 0.383 0.020 
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Table 2. Cont. 

Participants with mean [25(OH)D]  

≥ 50 nmol/L in 10th week, #/n (%) 
4
 14/14 (100%) 10/10 (100%) 8/9 (89%) 1.000 0.166 

Participants with mean [25(OH)D]  

≥ 80 nmol/L in 10th week, #/n (%) 
4
 14/14 (100%) 9/10 (90%) 5/9 (56%) 0.152 0.127 

PTH  

Baseline (n = 28), mean [95% CI] - 2.10 [1.26,3.52] 1.53 [0.94,2.49] 

- 0.011 5 Final (n = 22), mean [95% CI] - 1.63 [1.01,2.66] 2.49 [1.61,3.85] 

Cord serum [25(OH)D] (n = 23) 

Mean [95% CI] - 117 [99,137] 98 [84,115] - 0.074 

Range (min, max) - 74, 168 53, 124   

Cord [25(OH)D] ≥ 50 nmol/L, #/n (%) - 12/12 (100%) 11/11 (100%) - 1.000 

Cord [25(OH)D] ≥ 80 nmol/L, #/n (%) - 11/12 (92%) 10/11 (91%) - 0.949 

1 Summary measures are geometric means with 95% confidence intervals, unless otherwise indicated. 2 Linear regression 

models (GEE was implemented where there were repeated measures for the same individuals) unless otherwise indicated; 

all p values < 0.05 remained significant after correction for multiple pairwise comparisons using the Holm method.  

3 AUC for each group was the geometric mean (and 95% confidence intervals) of individual participants’ AUCs; the 

analyses included 33 participants who were followed-up to at least week 10 (day 63 or 65, depending on serum sampling 

schedule): NH, n = 14 participants; PH, n =10; PL, n = 9. Comparison of the AUC based on only 3 datapoints (baseline, 

day 21/28/35, and day 63/65) was undertaken as a sensitivity analysis because group PL participants only had [25(OH)D] 

measured at a maximum of three visits at which blood collection was scheduled; the latter analysis involved the same 33 

participants as in the preceding analysis. 4 Proportion of participants in each group with average [25(OH)D] ≥ 50 nmol/L 

or ≥80 nmol/L in specimens collected on days 63 to 70; comparisons between groups were assessed by binomial 

regression. None of the pairwise comparisons were statistically significant after correction for multiplicity using the Holm 

method. 5 p value for the group-by-time interaction term in a GEE model (exchangeable correlation and robust standard 

errors), using log-transformed PTH as the outcome, indicating that the change from baseline over time significantly 

differed between the two groups. 

3.2. Effect of Prenatal Vitamin D3 Supplementation on Vitamin D Status 

Mean [25(OH)D] rose gradually above baseline in all groups during follow-up (Table 2; Figure 3). 

Final mean [25(OH)D] during the 10th week of supplementation was significantly higher in PH versus 

PL (98 vs. 76 nmol/L, respectively; p = 0.038) and significantly lower versus NH (98 vs. 139 nmol/L;  

p < 0.001) (Table 2). However, ∆[25(OH)D] in PH was not significantly lower in the 10th week 

compared to NH (Table 2). The [25(OH)D] threshold of 50 nmol/L was attained by nearly all 

participants, but only the higher-dose regimen reliably led to [25(OH)D] ≥ 80 nmol/L by the 10th week 

in pregnant women. During the 10th week, there were no notable inter-dose fluctuations in NH and PH 

(Figure 4); mean [25(OH)D] at days 65, 67, and 70 differed from day 63 by <6 nmol/L (all  

p values > 0.5). There was substantial inter-subject variability in the response to vitamin D 

supplementation, with one PL participant demonstrating only a 7 nmol/L final increase in [25(OH)D] 

above her baseline. Among participants who received the higher-dose regimen, there was as much as a 

7-fold difference between the lowest and highest responders based on ∆[25(OH)D] at week 10 

(Table 2). Three participants in NH had [25(OH)D] > 200 nmol/L, but the highest [25(OH)D] in any 

pregnant participant was 153 nmol/L. There was no significant association between baseline vitamin D 

status and ∆[25(OH)D] (data not shown). 
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Figure 3. Changes in serum 25-hydroxyvitamin D concentration from baseline resulting 

from weekly vitamin D3 administration to non-pregnant women who received an initial 

dose of 70,000 IU and then 35,000 IU/week thereafter (NH), pregnant women who 

received an initial dose of 70,000 IU and then 35,000 IU/week thereafter (PH), and 

pregnant women who received 14,000 IU/week (PL). Lines connect the group means at 

each follow-up visit. 

 

Figure 4. Lack of inter-dose fluctuations in mean serum 25-hydroxyvitamin D 

concentrations among non-pregnant (NH) and pregnant women (PH) during the 10th week 

of supplementation with 35,000 IU vitamin D3 per week, with the most recent dose 

administered on day 63. Lines connect the group means at each day; 95% confidence 

intervals are represented by vertical capped bars. 
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Non-linear parametric models representing the change in [25(OH)D] as a continuous function of 

time yielded inferences regarding baseline and modeled steady-state mean [25(OH)D] that were 

consistent with the empiric cross-sectional estimates (Table 3) and provided appropriate fits to the data 

(Figure 5). Extended models indicated that the ∆[25(OH)D] at modeled steady-state was 19 nmol/L 

greater in PH compared to PL (p = 0.044) (Table 3). Mean modeled steady-state ∆[25(OH)D] was 

lower in PH compared to NH but the difference was not statistically significant (Table 3). 

Table 3. Estimates of the change in serum 25-hydroxyvitamin D concentration over time in 

response to weekly vitamin D3 supplementation in non-pregnant women who received an 

initial dose of 70,000 IU and then 35,000 IU/week (NH), pregnant women who received an 

initial dose of 70,000 IU and then 35,000 IU/week (PH), and pregnant women who 

received a weekly dose of 14,000 IU/week (PL). Results are based on negative exponential 

models, and shown as mean (lower 95% confidence bound, upper 95% confidence bound). 

  Model 1 Model 2 Model 3 Model 4 Model 5 

  
Non-pregnant 

(NH) 

Pregnant,  

higher-dose 

(PH) 

Pregnant, lower-

dose  

(PL) 

Pregnant 

(PL & PH) 

Higher dose 

(NH & PH) 

Number of 

participants 
 16 14 14 28 29 

Number of 

specimens 
 89 75 36 111 162 

Baseline 

[25(OH)D]  
nmol/L 58 [48,69] 36 [29,42] 31 [25,38] 31 [25,37] 57 [47,67] 

∆[25(OH)D] at 

steady-state (a) 
nmol/L 79 [60,97] 62 [48,75] 45 [23,67] 43 [29,57] 77 [62,93] 

∆[25(OH)D] at 

steady-state per 

daily dose 

equivalent 

nmol/L/mcg 

D3 per day 

0.63 [0.48, 

0.78] 
0.49 [0.38, 0.60] 0.90 [0.47,1.34] - - 

Steady-state 

[25(OH)D] 

([25(OH)D]t0 + a) 

nmol/L 137 [116,157] 97 [87,108] 76 [54,98] 74 [61,87] 134 [117,151] 

Decay rate (k) days−1 0.08 [0.03,0.12] 0.11 [0.07,0.15] 0.07 [−0.01,0.16] 0.11 [0.07, 0.15] 0.09 [0.06, 0.12] 

Group (g) 0 (Ref) - - - PW-C NP-H 

 1 - - - PW-H PW-H 

Difference in 

[25(OH)D] 

between groups 

at baseline (β) 

nmol/L - - - 4 [−4,13] −21 [−33,−9] 

Difference in 

∆[25(OH)D] 

between groups 

at steady-state (d) 

nmol/L - - - 
19 [1,37] 

p = 0.044 

−15 [−34,5] 

p = 0.131 

Adjusted R
2
  0.55 0.71 0.63 0.72 0.69 
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Figure 5. Negative exponential models predicting serum 25-hydroxyvitamin D 

concentrations in response to weekly vitamin D3 supplementation in non-pregnant women 

who received an initial dose of 70,000 IU and then 35,000 IU/week (NH), pregnant women 

who received an initial dose of 70,000 IU and then 35,000 IU/week (PH), and pregnant 

women who received a weekly dose of 14,000 IU/week (PL). Vertical bars represent the 

95% confidence intervals of the empiric geometric means at each scheduled follow-up time. 

 

Mean cord serum [25(OH)D] was higher in PH (117 nmol/L) versus PL (98 nmol/L) but the 

difference was not significant (Table 2). The proportions of newborns with [25(OH)D] ≥ 80 nmol/L 

(PH: 92%; PL: 91%) and ≥50 nmol/L (PH: 100%; PL: 100%) were similar in the two groups. There 

was a moderate association between cord and maternal [25(OH)D] (ρ = 0.67, p < 0.001). 

3.3. Ancillary Biochemical Parameters 

Mean albumin-adjusted serum [Ca] increased significantly within the reference range during 

follow-up in PH but it did not change significantly in the comparison groups (Table 4; Figure 6). The 

increase in PH was significantly greater than in PL or NH (Table 4). There was a single episode of 

albumin-adjusted [Ca] > 2.60 mmol/L in a PH participant during an episode of acute gastroenteritis 

that occurred after two weeks of supplementation. Her albumin-adjusted [Ca] of 2.61 mmol/L declined 

to 2.39 mmol/L in a repeat specimen on the same day, the illness was self-limited, and there was no 

other biochemical or clinical evidence of vitamin D toxicity; furthermore, the participant continued to 

receive the supplement and had increasing [25(OH)D] (range, 52 to 98 nmol/L during follow-up) but 

did not develop any further episodes of hypercalcemia or elevations in urine ca:cr. There were no 

episodes of confirmed hypercalcemia according to a priori study definitions.  
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Table 4. Albumin-adjusted serum calcium concentration at baseline, the 1st to 5th week of follow-up, and the 6th to 10th week of follow-up 

in non-pregnant women who received an initial dose of 70,000 IU vitamin D3 and 35,000 IU/week (NH), pregnant women who received an 

initial dose of 70,000 IU vitamin D3 and 35,000 IU/week (PH), and pregnant women who received 14,000 IU/week (PL).  

 

n 
1
 

Albumin-adjusted serum calcium concentration (mmol/L) 
# Episodes 

>2.60 mmol/L  
Mean ± SD 

Minimum, Maximum 
p value, 

PH vs. NH 
2
 

p value, 

PH vs. PL 
2
 

Follow-up period NH PH PL NH PH PL NH PH PL 

Baseline 16 14 14 
2.39 ± 0.08 2.39 ±0.04 2.42 ±0.05 

- - 0 0 0 
2.22, 2.5 2.3, 2.45 2.35, 2.52 

1st to 5th week 31 27 14 
2.40 ± 0.07 2.45 ±0.07 3 2.42 ±0.07 

0.020 0.012 0 1 4 0 
2.25, 2.6 2.32, 2.61 2.33, 2.55 

6th to 10th week 43 33 12 
2.38 ± 0.07 2.44 ±0.07 5 2.42 ±0.05 

0.009 0.055 0 0 0 
2.2, 2.52 2.27, 2.57 2.33, 2.52 

Total  88 74 40 
2.39 ± 0.07 2.43 ±0.07 2.42 ±0.06 

0.991 0.104 0 1 0 
2.2, 2.6 2.27, 2.61 2.33, 2.55 

Cord Serum - 12 11 - 
2.69 ± 0.12 2.73 ± 0.13 

- 0.414 0 0 0 
2.37, 2.82 2.56, 2.94 

1 Number of specimens (there may have been multiple specimens from a single participant during a given follow-up period). 2 Group-by-time interactions using GEE with robust standard 

errors. 3 Significant increase from baseline p < 0.001; remained significant after adjustment for multiple testing. 4 Isolated value of 2.61 mmol/L derived from uncorrected total serum 

calcium concentration of 2.67 mmol/L and serum albumin of 42.9 g/L. Repeat albumin-adjusted serum calcium later on the same day was 2.39 mmol/L (unadjusted [Ca] = 2.37 mmol/L). 

5 Significant increase from baseline, p = 0.008; remained significant after adjustment for multiple testing. Not significantly different from 1st to 5th weeks, p = 0.654. 
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Figure 6. Mean albumin-adjusted serum calcium concentrations in the three participant 

groups. (A) Mean albumin-adjusted serum calcium concentration in pregnant participants 

who received an initial dose of 70,000 IU and then 35,000 IU/week (PH) and pregnant 

participants who received a weekly dose of 14,000 IU/week (PL); (B) Mean  

albumin-adjusted serum calcium concentration in non-pregnant participants who received 

an initial dose of 70,000 IU and then 35,000 IU/week (NH). Vertical bars represent the 

95% confidence intervals of the means at each scheduled follow-up time. Horizontal line 

indicates the upper limit of the reference range (2.60 mmol/L). 
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Urine ca:cr rose initially during follow-up in all groups but appeared to plateau in PL and decline in 

PH and NH during the latter half of the follow-up period (Table 5; Figure 7). There were five episodes 

of ca:cr > 1.0 mmol/mmol (Table 5). One participant in group PL had two consecutive episodes on 

days 42 and 44 and thus met the definition for persistent hypercalciuria by study criteria; however, 

[Ca] was normal and despite continued supplementation, the ca:cr was within the normal limits 

thereafter. The higher-dose intervention (PH) suppressed the average PTH concentration, which was 

significantly different from the increase observed in PL (p = 0.011) (Table 2). 

Table 5. Urine calcium:creatinine ratio in random spot urine specimens collected at 

baseline, 1st to 5th weeks of follow-up, and 6th week to the end of the supplementation 

period in non-pregnant women who received an initial dose of 70,000 IU vitamin D3 and 

35,000 IU/week (NH), pregnant women who received an initial dose of 70,000 IU vitamin 

D3 and 35,000 IU/week (PH), and pregnant women who received 14,000 IU/week (PL). 

 

n 
1
 

Urinary calcium-creatinine ratio (mmol/mmol) # Episodes 

>1.0 mmol/mmol 

(# Participants ever having 

>1.0 mmol/mmol) 

Follow-up period 

Mean 
2
 

Minimum, Maximum 

p value 

PH vs. 

NH 
3
 

p value 

PH vs. 

PL 
3
 

NH PH PL NH PH PL NH PH PL 

Baseline 16 14 14 
0.23 0.10 0.21 

- - 
0 0 0 

0.04, 0.58 0.01, 0.44 0.06, 0.91 (0) (0) (0) 

1st to 5th weeks 49 36 12 
0.36 4 0.24 5 0.24 

0.164 0.105 
3 0 0 

0.04, 1.47 0.02, 0.95 0.07, 0.64 (2) (0) (0) 

6th week to end  62 53 33 
0.26 0.18 6 0.30 

0.164 0.500 
0 0 2 

0.03, 0.91 0.01, 0.96 0.05, 1.05 (0) (0) (1) 

Total  127 
10

3 
59 

0.29 0.19 0.26 
0.014 0.047 

3 0 2 

0.03, 1.47 0.01, 0.96 0.05, 1.05 (2) (0) (1) 

1 Number of specimens (there may have been multiple specimens from a single participant during a given follow-up 

period). 2 Geometric means. 3 Group by time interactions using GEE with robust standard errors. 4 The p value for the test 

of the difference from baseline was 0.018; however, this was not statistically significant after adjustment for multiple 

testing (adjusted critical p value of 0.017). 5 The increase from baseline was statistically significant (p < 0.001) and 

remained so after adjustment for multiple testing (adjusted critical p value of 0.025). 6 Not significantly different from 

baseline after adjustment for multiple testing (p = 0.042, adjusted critical p of 0.025); and, not significantly different from 

the period of 1st to 5th weeks (p = 0.136). 
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Figure 7. Mean urine calcium:creatinine ratio in the three participant groups.(A) Mean 

urine calcium:creatinine ratio in pregnant participants who received an initial dose of 

70,000 IU and then 35,000 IU/week (PH) and pregnant participants who received a weekly 

dose of 14,000 IU/week (PL), and (B) Mean urine calcium:creatinine ratio in non-pregnant 

participants who received an initial dose of 70,000 IU and then 35,000 IU/week (NH). 

Vertical bars represent the 95% confidence intervals of the means at each scheduled 

follow-up time. 
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3.4. Clinical Outcomes 

There were no known supplement-related clinical adverse events. One pregnant participant in the 

lower-dose group (PL) developed new-onset mild hypertension unassociated with any significant 

morbidity or biochemical abnormalities (highest serum [25(OH)D] was 86 nmol/L); her pregnancy 

ended in an uncomplicated term delivery. The frequency of possible hypercalcemia symptoms was 

similar during follow-up in PH when compared to PL (odds ratio, 0.82; 95% CI, 0.35 to 1.92; p = 0.65). 

Groups PH and PL were similar with respect to pregnancy and newborn outcomes (Table 6). 

Anthropometric measures at birth did not significantly differ between the two groups (data not shown).  

Table 6. Pregnancy and newborn outcomes among women who received an initial dose  

of 70,000 IU vitamin D3 and 35,000 IU/week (PH) or 14,000 IU/week (PL) during the 

third trimester. 

 
PH PL 

p value 

(for between-group difference) 

n 12 12  

Gestational age at birth, weeks (by LMP) 
1
 

Mean (±SD) 39.2 (±2.3) 38.5 (±2.7) 0.512 

Range 33.6–42.3 32.7–43.2  

Preterm, # (%) 1 (8%) 3 (25%) 0.590 

Birth weight (g) 

Mean (±SD) 
2
 2774 (±456) 2604 (±379) 0.332 

Range 2210–4000 2020–3120  

# (%) SGA 
3
 9 (75%) 8 (67%) 1.000 

# (%) LBW 2 (17%) 4 (33%) 0.640 

Delivery mode, # (%) Cesarean section 4 6 (50%) 6 (50%) 1.000 

Sex, # (%) female 6 (50%) 6 (50%) 1.000 

Live births 
5
, # (%) 12 (100%) 12 (100%) - 

Alive at 1 month of age, # (%) 12 (100%) 12 (100%) - 

1 In a sample of 113 deliveries at the study site (October 2009 to January 2010) for which there was a recalled first day of 

last menstrual period, the mean gestational age at birth was 39.7 weeks (±2.2). 2 In a consecutive sample of 362 liveborn 

infants delivered at the study site (October 2009 to January 2010), the mean birth weight was 2780 g (±440). 3 Based on 

US newborn birthweight reference [19]. 4 In a consecutive sample of 369 deliveries at the study site (October 2009 to 

January 2010), there were 199 cesarean deliveries (54%). 5 In a sample of 369 deliveries at the study site (Oct 2009 to Jan 

2010), there were 7 stillbirths (2%). 

4. Discussion 

This study demonstrated the biochemical dose response to third-trimester high-dose weekly 

antenatal vitamin D3 supplementation. Among Bangladeshi women with a mean [25(OH)D] of  

33 nmol/L, 70,000 IU followed by 35,000 IU/week of vitamin D3 until delivery yielded an average 

[25(OH)D] that was about 20 nmol/L higher than an antenatal dose of 14,000 IU/week (the IOM 

vitamin D upper limit at the time the study was conducted). Similar to our conclusions from analyses 

of single-dose vitamin D3 pharmacokinetics in the same study setting (and involving an overlapping 

group of participants) [13], we found that the minor differences between pregnant vs. non-pregnant 
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participants receiving the same dose were within the margins of error given the small sample size. 

However, based on the present analysis, we could not exclude the possibility of a slightly diminished 

25(OH)D response to a weekly dose of vitamin D during the third trimester of pregnancy.  

To our knowledge, the 35,000 IU/week regimen used in this study is the highest vitamin D3 

maintenance dose studied in pregnancy under controlled conditions. Devlin et al. (1986) reported that 

a daily dose of 1000 IU vitamin D3 administered to 15 French women during the third trimester 

modestly raised mean maternal serum [25(OH)D] from 55 nmol/L to 65 nmol/L [20]. The largest 

published study of vitamin D3 supplementation in pregnancy was conducted by Bruce Hollis and 

colleagues in South Carolina, in which 502 pregnant women at 12 to 16 weeks gestation were 

randomized to 400 IU/day, 2000 IU/day, or 4000 IU/day vitamin D3 [21]. This population was more 

vitamin D-replete at baseline (mean [25(OH)D] = 60 nmol/L) compared to the present study. Based on 

data from the 350 participants (70%) followed until delivery, the 2000 IU/day and 4000 IU/day 

regimens raised [25(OH)D] to means of 105 nmol/L (rise of 47 nmol/L) and 119 nmol/L (rise of 

60 nmol/L), respectively, at one month before delivery [21]. The Δ[25(OH)D] in the 2000 IU/day 

group in the Hollis study was similar to the response we observed in the 14,000 IU/day group 

(equivalent regimen) in the present study, substantiating the consistency of vitamin D3 dose-response 

modeling across diverse populations of pregnant women. In a separate trial in South Carolina, 

Wagner et al. reported comparatively less robust responses to 2000 IU/day and 4000 IU/day during 

pregnancy, which may have been attributable to non-adherence to the supplementation regimen [22]. 

The lower dose produced a more efficient 25(OH)D response per mcg of vitamin D3 when 

compared to the high-dose regimen: 0.73 vs. 0.46 nmol/L/mcg/day in the empiric estimates, and  

0.90 versus 0.49 nmol/L/mcg/day based on the pharmacokinetic model. These estimates, as well as 

those from the non-pregnant cohort that received the higher-dose regimen (0.61 nmol/L/mcg/day based 

on 10th-week data, and 0.63 nmol/L/mcg/day based on the parametric model), were similar to the 

values conventionally cited for non-pregnant adults: ~0.70 nmol/L/mcg/day [23,24]. However, 

analyses by Barger-Lux et al. (1998) [25] and Aloia et al. (2008) [24], as well the recent IOM report 

(2010) [1], have demonstrated that the ∆[25(OH)D] per mcg is a curvilinear inverse function of 

vitamin D intake at doses <50 mcg/day, but nearly proportional to intake at >50 mcg/day [24], which 

may explain the greater observed efficiency of the lower dose. 

A unique aspect of this study was the measurement of biochemical parameters between weekly 

doses at the end of the supplementation period. These data showed an absence of inter-dose 

perturbations in calcium homeostasis that might have otherwise been missed by sampling serum only 

at the time of the “trough” [25(OH)D] (i.e., immediately preceding administration of a weekly dose). 

Although the study may have been too small to detect minor inter-dose fluctuations in [25(OH)D], the 

data supported the appropriateness of administering weekly doses of 35,000 IU instead of daily 

administration of 5000 IU. 

In pregnant participants, the higher-dose vitamin D regimen had a significant suppressive effect on 

maternal PTH secretion, relative to the lower dose, as indicated by the change in average PTH 

concentrations from baseline to delivery, similar to previous observations by Wagner et al. in South 

Carolina [22]. However, since the role of PTH as a vitamin D status biomarker during pregnancy is 

unclear [26], the clinical significance of the apparent dose-response effect of vitamin D on PTH 

requires further study.  
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Both the higher and lower vitamin D3 regimens administered to pregnant women attained fetal 

[25(OH)D] ≥ 50 nmol/L. Therefore, in this small sample, we did not observe a clear benefit of the 

higher-dose over the lower-dose regimen with respect to neonatal vitamin D status. In a related study 

at the same study site, we observed a mean cord [25(OH)D] of 50 nmol/L (range of 29 to 80 nmol/L) 

in a group of neonates born to women who had received a single vitamin D3 dose of 70,000 IU at  

30 weeks gestation [13], and previous studies in South Asia have found cord serum [25(OH)D] 

ranging from 17 to 59 nmol/L [27–30].  

Appreciable increases in serum calcium in the higher-dose relative to the lower-dose group 

highlighted a dose-dependent effect of vitamin D3 supplementation on calcium homeostasis. We 

previously reported that mean serum calcium concentrations rose slightly but significantly during the 

first week after administration of a single 70,000 IU dose of vitamin D3 in both pregnant and  

non-pregnant participant groups [13]. However, in the present analyses of weekly-dose vitamin D3, a 

significant increase in serum [Ca] from baseline was only observed in pregnant women who received 

the higher dose. Pregnancy is associated with an elevation in the maternal serum concentration of the 

active vitamin D metabolite, 1,25-dihydroxyvitamin D (1,25(OH)2D) [31,32], which appears to be 

primarily attributable to classic renal 1α-hydroxylation of 25(OH)D [33]. However, placental 

trophoblasts and decidual cells [34] are capable of extra-renal 1α-hydroxylation which could 

theoretically predispose the pregnant woman to exaggerated physiological responses to increases in 

[25(OH)D] [9]. Similar to the participants who received only a single dose of 70,000 IU [13], maternal 

serum calcium values in the weekly-dose participants were all below the threshold for defining 

hypercalcemia used by the IOM in setting the 1997 dietary reference intakes (DRIs) for vitamin D 

(2.75 mmol/L) [35] and in the revised DRIs in 2010 (2.63 mmol/L) [1]. Cord blood calcium 

concentrations were also within reference limits, and [25(OH)D] were well below the range that has 

been associated with toxicity in adults [36] and older children [37]. Pregnancy and newborn clinical 

outcomes were within the expected range for the study population, but we were unable to draw 

conclusions from this study regarding clinical effects of vitamin D. Nonetheless, this study together 

with the recent findings of Hollis and Wagner and colleagues in South Carolina [21,22] demonstrate 

that vitamin D3 doses during pregnancy up to 25% above the current IOM UL of 4000 IU/day do not 

induce hypercalcemia, and have not led to any observed short-term clinical adverse effects. 

There were several important limitations of this study. First, precision of estimates of 

pharmacokinetic parameters and between-group comparisons, as well as the generalizability of 

inferences regarding maternal-fetal safety of high-dose vitamin D supplementation, were limited by the 

small number of participants, stringent inclusion/exclusion criteria, and enrolment of pregnant and 

non-pregnant participants at one clinic site. Moreover, the lower-dose pregnancy group had less 

frequent blood sampling (a cost-savings measure given the relative lack of safety concerns for this 

group) and only 9 of 14 enrolled women contributed endpoint samples during the 10th week of 

supplementation. The supplementation period may not have been long enough to ensure that all 

participants reached a steady-state [25(OH)D]. Conclusions based on comparisons between pregnant 

and non-pregnant women were tempered by the differences in baseline characteristics, including 

season of enrolment and the relatively higher socioeconomic status of the non-pregnant participants. In 

addition, there were too few participants to consider modifiers of Δ[25(OH)D]. Most importantly, the 

present results do not yet provide sufficient evidence that the regimens studied are beneficial or safe 



Nutrients 2013, 5 806 

 

 

for use in clinical or public health practice; rather, they serve to inform application of these dose 

regimens in future research studies. 

5. Conclusions 

This detailed analysis of the response to high-dose weekly vitamin D3 administered during the 

third-trimester of pregnancy demonstrated a dose-responsiveness to oral vitamin D3 in Bangladeshi 

women that echoed observations in other settings, and was generally in accordance with established 

pharmacokinetic characteristics of vitamin D3. Nonetheless, increases in the mean calcium 

concentration (within the normal range) and suppression of PTH secretion among pregnant women 

receiving the higher-dose regimen (70,000 IU initial dose followed by weekly doses of 35,000 IU) 

highlighted the physiological impact of the intervention and the need to cautiously address potential 

pregnancy-specific sensitivities to vitamin D supplementation.  

Prior to undertaking large trials to test the effects of prenatal micronutrient interventions on 

pregnancy and birth outcomes, preliminary dose-finding and safety studies are essential, particularly 

when the intervention is a fat-soluble vitamin at a dose above the conventional upper limit of 

tolerability (i.e., 4000 IU/day for vitamin D, as established by the Institute of Medicine [1]). The most 

direct application of the present observations is to guide the design of future trials of vitamin D3  

(at doses up to 35,000 IU per week) aimed at confirming safety and establishing the health benefits of 

antenatal vitamin D supplementation in South Asia, where many potentially vitamin D-responsive 

outcomes (e.g., infant growth and infectious disease morbidity) are major public health priorities. 

Following from our preliminary pharmacokinetic studies, we have conducted a placebo-controlled trial 

of 35,000 IU/ week during the third trimester (n = 160), with follow-up of infants to monitor growth to 

one year of age (NCT01126528). Future trials in Dhaka will address the dose-dependency of the 

effects of prenatal vitamin D supplementation on infant growth and morbidity. 
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Appendix 

Non-Linear Modeling of Change in 25[(OH)D] over Time  

Mean changes in [25(OH)D] over time in each group were modeled as continuous non-linear 

parametric functions. Consistent with the first-order process that characterizes 25(OH)D metabolism in 

the physiological range of vitamin D inputs, Heaney’s group has shown empirically that a negative 

exponential growth function is well suited to model the gradual rise in [25(OH)D] over time (t) to a 

steady-state plateau in response to daily (Heaney et al., 2003 [23]) or weekly (Heaney et al., 2011 [38]) 

oral vitamin D3 supplementation: 

                                  (1) 

A particular advantage of this model is that despite its non-linearity, the coefficients are easily 

interpreted: a is the Δ[25(OH)D] above baseline at steady-state and k is the slope that defines the rate 

of the rise (the higher is k, the more rapidly the steady-state is reached). The steady-steady is the 

[25(OH)D] at which the rate of 25(OH)D formation theoretically equals the rate of 25(OH)D 

utilization/catabolism. Furthermore, the model could be readily extended to permit comparisons 

between groups of participants (g), with the aim of estimating the average difference (d) between the 

groups’ [25(OH)D] at steady-state (see below for derivation of the extended model): 

                                           (2) 

Regression coefficients were estimated by a non-linear least-squares approach, assuming a  

log-normal error distribution of [25(OH)D] and standard error estimation that accounted for the  

intra-subject correlation of repeated measures. 

To derive an extended negative exponential growth function that enabled comparison of the  

steady-state concentrations between the two groups, we first considered a generic model for the 

negative exponential growth function, where [25(OH)D] at time t is a function of the baseline 

concentration [25(OH)D] at t=0, the slope of the exponential rise, k, and the asymptotic maximal rise 

above baseline, a, at steady-state (t = infinity): 

                                   

We can consider Equation (1) with respect to two different groups, g, such that if: 

                                           

Then,  

                                        (3) 

Similarly for group g = 1, if:  

                                           

Then, 

                                    (4) 
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Combining Equation (3) and Equation (4) into one model, and allowing the intercept to vary  

by group: 

                                                       (5) 

Solving further: 

                                                  

                                                  

                                                 (6) 

Since we are specifically interested in measuring the difference between a1 and a0, we can invoke a 

new coefficient d, whereby: 

        (7) 

Then, substituting Equation (7) into Equation (6) yields:  
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