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Abstract: Interference with zinc absorption is a proposed explanation for adverse effects of 

supplemental iron in iron-replete children in malaria endemic settings. We examined the 

effects of iron in micronutrient powder (MNP) on zinc absorption after three months of home 

fortification with MNP in maize-based diets in rural Kenyan infants. In a double blind 

design, six-month-old, non-anemic infants were randomized to MNP containing 5 mg zinc, 

with or without 12.5 mg of iron (MNP + Fe and MNP − Fe, respectively); a control (C) group 

received placebo powder. After three months, duplicate diet collections and zinc stable 

isotopes were used to measure intake from MNP + non-breast milk foods and fractional 

absorption of zinc (FAZ) by dual isotope ratio method; total absorbed zinc (TAZ, mg/day) 

was calculated from intake × FAZ. Mean (SEM) TAZ was not different between MNP + Fe 

(n = 10) and MNP − Fe (n = 9) groups: 0.85 (0.22) and 0.72 (0.19), respectively, but both 

were higher than C (n = 9): 0.24 (0.03) (p = 0.04). Iron in MNP did not significantly alter 

zinc absorption, but despite intakes over double estimated dietary requirement, both MNP 

groups’ mean TAZ barely approximated the physiologic requirement for age. Impaired zinc 

absorption may dictate need for higher zinc doses in vulnerable populations. 
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1. Introduction 

Iron deficiency and iron deficiency anemia are among the most prevalent and intractable public health 

problems in infants and young children, particularly in malaria-endemic, resource-limited settings. 

However, oral iron supplementation has been associated with increased mortality and rates of adverse 

events from infectious diseases in older iron-replete infants and toddlers in a malaria endemic area [1]. 

These adverse outcomes have prompted critical re-evaluation of approaches to prevent iron deficiency 

and iron deficiency anemia [2,3]. There is an urgent need to identify the mechanisms of such untoward 

effects of iron administration, since halting population-based initiatives in the face of widespread 

deficiency is not an option. 

Interference with zinc absorption and/or metabolism is one proposed explanation for the adverse 

effects of iron supplements in iron replete subjects in malaria endemic areas [2]. Evidence for an 

interaction between iron and zinc is conflicting [4,5], and actual mechanisms are not clear. Iron 

supplements have been associated with a reduction in plasma zinc concentrations [6–8]. In two studies of 

lactating women, iron supplementation was associated with lower fractional absorption of zinc [9,10]. 

Studies in pregnant women have reported conflicting results for an effect of iron supplements on zinc 

absorption [11,12]. Neither iron added to food through fortification, nor supplemental iron when ingested 

with meals has been found to have an adverse effect on zinc absorption in healthy subjects [13,14]. A 

recently published mathematical model of zinc absorption in adults found no effect of iron on zinc 

absorption when calcium and protein intakes were controlled for [15]. Studies examining this issue in 

young children in low resource settings, however, are limited. 

For this study, we examined in a vulnerable population the effects on zinc absorption of increased 

iron intake by comparing micronutrient powder (MNP) with and without iron, compared to a study group 

receiving placebo MNP as a control. The setting for the study was rural Kenya, where iron deficiency is 

high in older infants and toddlers; local diets for complementary feeding are typically monotonous, plant 

based foods low in iron and zinc and high in phytate; and malaria is endemic. 

The objective was to determine the effects of iron in MNP on zinc absorption and the size of the 

exchangeable zinc pool (EZP), as an indicator of zinc status, after three months of home fortification 

with MNP in maize-based diets. We hypothesized that there would be a significantly lower absorption 

of zinc in the MNP with iron compared to that of the infants receiving MNP without iron. 

2. Experimental Section 

2.1. Study Design 

The study was a randomized, double blinded comparison of total daily zinc absorption in 15 infants 

(9 months of age) from each of three MNP groups: one with multiple micronutrients, including 5 mg 

zinc and 12.5 mg iron (MNP + Fe); another with same composition except no iron (MNP − Fe); and 

control with placebo sachets including no micronutrients (C). The daily MNP intervention was started 
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at 6 months of age, when all subjects were predominantly breastfed (no formula). All meals for a day 

were extrinsically labeled with one of two stable isotopes of zinc; 67Zn was administered with the meal 

containing the MNP sachet, and 70Zn was used to label other meals of the day. An intravenous dose of a 

third stable isotope of zinc (68Zn) was administered to enable measurement of zinc absorption by dual 

isotope tracer ratio (DITR) in urine method [16]. In conjunction with the intravenous isotope 

administration, blood was drawn for biomarkers of iron and zinc status. The size of the EZP was also 

determined from the enrichment of 68Zn in urine [17]. 

2.2. Study Setting 

The study was undertaken in rural western Kenya, approximately 150 km from Moi University 

Medical School in Eldoret. The villages are characterized by extreme poverty, with 40%–80% of the 

population living below the World Bank defined poverty level. The predominant occupation is 

subsistence farming. Most families live in traditional homes with mud walls, dirt floors, thatched roofs; 

virtually none had in-home electricity or public water source. The area is holoendemic for P. falciparum 

malaria. The traditional diets are monotonous, predominantly maize-based. For the infants participating 

in the study, the diets were primarily maize-based porridge mixed with breast milk; diets also included 

some ugali (maize), vegetables, and occasional meat soups. 

A convenience sample of 45 infants was drawn from participants in the Maternal and Neonatal 

Registry study of the Global Network for Women’s and Children’s Health [18]. Families who had 

successfully participated in the registry were approached for participation in the MNP supplementation 

and zinc absorption study when the infants were approximately 5 months old. The registry administrators 

of this cluster were requested to provide a list of 45 consecutive infants at this age from their registers 

for inclusion into the study based on the study inclusion criteria. Infants drawn from only two of the  

39 villages in the cluster were selected for ease of follow up. The infants’ homes were visited by the 

study field staff accompanied by the registry administrator for purposes of identification. 

2.3. Subjects 

Subjects were enrolled just prior to 6 months of age and received the randomly assigned daily  

MNP until 9 months of age. Inclusion criteria included the infant having been born at term with birth 

weight > 2500 g; healthy appearance with no apparent congenital anomalies; current immunization status; 

family social situation such that they were able to comply with study requirements; willingness to 

provide informed consent and agree to weekly visits for MNP distribution and data collection, as well 

as stool, urine and blood collections; hemoglobin concentration ≥ 10 g/dL; infant still breastfeeding at 

enrollment and intended to continue during the three months of the study period; and negative blood 

slide for malaria parasites. Exclusion criteria included existing acute malnutrition, especially wasting, 

with weight for length ≤ 2 SD by World Health Organization (WHO) infant growth standards; current 

or planned use of infant formula or other nutrient fortified products; current or planned use of iron or 

zinc supplements; anemia (defined as Hb < 10 g/dL); previous hospitalization for malaria within the last 

four weeks; and persistent diarrhea (per WHO, >3 loose stools/day lasting ≥14 days). Infants’ stools 

were screened for helminthes; none were positive for infestation. Approval from the institutional and 
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ethics review committees at Moi University School of Medicine and the University of Colorado was 

obtained prior to study implementation. The study is registered in ClinicalTrials.gov NCT02101723. 

Sample size calculations were based on results of infant zinc absorption studies previously conducted 

in the University of Colorado Denver (UCD) laboratory [19,20]. With the use of independent sample  

t-tests, we used PASS software (NCSS—Number Cruncher Statistical Systems 2007 and PASS 2008; 

Number Cruncher Statistical Systems, Kaysville, UT, USA) to estimate that we would have 82%–93% 

power (depending on absolute amounts of absorbed zinc) to detect a difference of 0.2 mg of daily 

absorbed zinc between the 3 complementary food groups with 15 subjects per group. This amount of 

absorbed zinc represents approximately 25% of the estimated physiologic requirement for zinc at  

this age. 

2.4. Randomization and Enrollment 

Potential families were visited and educated on the proposed study before the enrollment visit and the 

study nurse or lab technologist obtained written informed consent from the parents/guardians plus 

witness upon confirmation that the child met the inclusion and exclusion criteria. Forty-five pieces of 

paper with letters marked A, B or C to represent the three study arms were rolled into balls and placed 

in a plastic container. The pieces were mixed thoroughly through shaking of the container. An 

independent person then picked the pieces one by one from the container. The unique number-letter 

became the subject and group assignment for each individual. 

2.5. Intervention 

The micronutrient content of the two MNP preparations included zinc (5 mg), Vitamin A (300 μg), 

Vitamin C (30 mg), folic acid (160 μg), and iron (12.5 mg or 0 mg). The powder for Group C was a 

product very similar to the other group powders without the additional micronutrients. All of the MNP 

sachets were marked with either A, B, or C by the manufacturer (Hexagon Nutrition Pvt. Ltd., Mumbai, 

India), and were otherwise indistinguishable. The code was known only to a senior investigator not 

involved in the field work (FE), thus assuring blinding of group assignment to the participating subjects 

and to the field research teams. Laboratory analysis at the University of Colorado verified the accuracy 

of the zinc and iron contents of the products. 

The MNP were provided at weekly intervals during the 3-month intervention period from  

6–9 months of age. At the end of each visit 7 sachets were left with the mother plus 3 extra in case a 

delay occurred in follow up visits. Mothers were instructed to give one sachet daily and to add the entire 

contents of the sachet to one meal. All children were followed up once a week by the nurse or clinical 

officer to ascertain if the MNP were taken during the 3 months of follow up and to replenish the next 

week’s supply of the MNP sachets. 

2.6. Anthropometry 

For descriptive purposes, length and weight were obtained on the infants at enrollment and at the end 

of the study period. Lengths were measured with a portable infantometer supplied by the Ministry of 

Health, Department of Nutrition; instrument was accurate to 0.5 cm. Weights were obtained with a 
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weighing scale model RGZ-20 (Wuxi Weight Factory, Wuxi City, China), accurate to 50 g. The field 

team received extensive training prior to the initiation of the field studies. Measurements were taken in 

triplicate at the village elders’ homes where the infantometer and scale were maintained [21]. 

2.7. Zinc Absorption Study 

The isotope studies were undertaken when the participating infants were approximately 9 months of 

age. Baseline stool and urine specimens were taken prior to isotope dosing. Weighed doses of oral stable 

isotope 67Zn were administered on day 1 with the MNP meal (primarily ugali maize porridge). Weighed 

doses of 70Zn were administered with all other meals (excluding breast milk). For both isotopes, the 

doses were based on the estimated amount of zinc in the meals (non-MNP and MNP), with the total dose 

representing approximately 10% of daily zinc intake (estimated to be ~6–7 mg/day for the MNP groups 

and 1–2 mg/day for the control group). Thus, the isotope doses were the same for the two MNP groups 

containing zinc and lower for the placebo MNP preparation. The isotope preparations were 

indistinguishable except for labeling, to maintain the blinding of the MNP group assignment. After the 

last meal of the day, the dose of 68Zn was administered intravenously into an antecubital vein. Infusion 

of the isotope dose was followed by infusion of 2 rinses of normal saline to assure administration of the 

complete dose. Extensive training and supervision of the isotope administration and specimen collections 

were provided by the UCD team (Diana Culbertson, Nancy F. Krebs and K. Michael Hambidge). A manual 

of operations was developed for all procedures and availed to field personnel. All supplies for the isotope 

studies were metal-free and provided by the UCD team.  

2.7.1. Isotope Dose Preparation and Administration 

Enriched stable isotopes of zinc were obtained from Trace Science International (Richmond Hill, 

Canada). Accurately weighed quantities of each isotopically enriched preparation were dissolved in 0.5 

mol/L H2SO4 and then diluted with deionized water to prepare stock solutions. To prepare the oral doses, 

the stock solutions of 70Zn (95.5% enrichment) and 67Zn (94.2% enrichment) were diluted with purified 

water and titrated to a pH 3.0 with metal-free ammonium hydroxide. Zinc concentrations of the solutions 

were determined by triplicate measure of the preparation using atomic absorption spectrophotometry, 

adjusting the concentration measurements for the different atomic weights of the preparations. To 

prepare the intravenous dose, a stock solution of 68Zn (99.4% enrichment) was diluted with 0.45% saline, 

adjusted to pH 6.0 and then filtered through a 0.22-μm filter to ensure sterility. The pharmaceutical 

quality of the sterile solution (i.e., sterility and pyrogenicity) was certified by the University of Colorado 

Hospital pharmacy and the core laboratory of the General Clinical Research Center, respectively. 

Solutions of the 70Zn and 67Zn were given as small sips, starting at the mid-point of each meal, 

alternating between bites of the foods and the labeled solution. All losses of doses from drooling or spits 

were collected on ashless filter paper during the dose administration. These were analyzed using  

ICP-MS (inductively coupled plasma mass spectrometry) and the amount of isotope lost during 

administration was subtracted from the calculated dose to give a final administered isotope dose. 

Intravenous infusion of 68Zn was undertaken through a “butterfly” needle and tubing; a 3-way  

stop-cock was used to allow infusion through one port and rinsing of isotope syringe through the other 

port. Prior to infusion of the isotope dose, blood for the ancillary biomarkers was obtained. 
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2.7.2. Sample Collections 

Weighed duplicate diets were collected for the entire day of the isotope studies and transferred to 

polypropylene containers. Approximately 20 mL urine samples were collected twice a day (a.m. and 

p.m.) for days 4 to 7 after the oral isotope administration. Urine was collected using standard zinc-free 

pediatric urine collection bags, and subsequently transferred to clean polypropylene containers. Diet and 

urine specimens were frozen at −20 °C until shipment to UCD. 

2.7.3. Sample Processing and Analysis 

Duplicate diets were dried in an electric drying oven before ashing at 450 °C; samples were 

reconstituted in 6 M HCl and total zinc concentration was measured using atomic absorption 

spectrophotometry fitted with a deuterium arc background lamp (model AAnalyst 400, Perkin-Elmer 

Corporation, Norwalk, CT, USA) [22]. Urine samples were digested using a MARS microwave sample 

preparation system (CEM Corp, Matthews, NC, USA), as previously described [22]. Isotope enrichment 

was determined by measurement of the isotope ratios 67Zn/66Zn, 68Zn/66Zn and 70Zn/66Zn by inductively 

coupled plasma mass spectrometry (Agilent 7700x ICP-MS, Agilent Technologies, Santa Clara, CA, 

USA) and conversion of ratios to enrichment using a mathematical matrix. Tracer enrichment was 

defined as all of the zinc in the sample that was derived from the isotopically enriched tracer preparation 

divided by the total zinc in the sample [23]. 

2.8. Biomarkers  

Blood was obtained at 6 and 9 months for serum zinc, biomarkers of iron status (ferritin and soluble 

transferrin receptor (sTfR)), and systemic inflammatory markers α 1-acid glycoprotein (AGP) and  

C-reactive protein (CRP). A portable field based hemoglobin analyzer (HemoCue 201+, HemoCue 

America, Brea, CA, USA) was used for screening hemoglobin measurements, and a Partec Malaria 

Cyscope machine (Partec East Africa Ltd., Nairobi, Kenya) was used for malaria screening. Blood was 

centrifuged at the homestead using a handheld centrifuge (Hettich Hand-zentrifuge 1011, Tuttlingen, 

Germany). Syringes and storage tubes were all zinc free, and precautions were taken in the field to avoid 

zinc contamination. The specimens were placed on ice at the home visits, and were held in a −20 °C 

freezer for overnight stay at the local hospital until transport to the −70 °C freezer at Moi University the 

next day using an ice packed vaccine carrier. Serum zinc was analyzed by atomic absorption 

spectrophotometry with background correction, and AGP by R & D Systems Quantikine Enzyme-linked 

Immunosorbant Assay (ELISA); both were run in the Pediatric Nutrition Laboratory at UCD. Serum 

ferritin, sTfR, and CRP were analyzed by nephelometry in the Pediatric Clinical Translational Research 

Center core laboratory at UCD. 

2.9. Data Processing and Statistical Analyses 

2.9.1. Data Processing 

Paper data forms were developed for all activities and biospecimen collections. Data entry was 

conducted in Eldoret into a secure, web-based data management system (REDCap, Research Electronic 
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Data Capture, supported by the Colorado Clinical Translational Science Institute at UCD), and was 

accessible to only registered research team members at UCD, Indiana University and Moi University.  

The total daily dietary intake of zinc from all non-breast milk foods at the time of the metabolic 

studies was determined from the zinc content in the duplicate diet. Fractional absorption of zinc (FAZ) 

was measured by the DITR in urine method [16]. Specifically, FAZ = enrichment (oral/intravenous) × 

dose (intravenous/oral). Daily “total” absorbed zinc (TAZ, mg/day) from all non-breast milk foods was 

calculated by multiplying daily dietary zinc intake (mg) by FAZ. The EZP, defined as the estimate  

of the total size of the combined pools of zinc that exchange with zinc in plasma within approximately 

2–3 days, was calculated by dividing the dose of intravenous isotope (68Zn) infused by the enrichment 

value at the y-intercept of the linear regression of a semi-log plot of urine enrichment data from study 

days 5–8 after isotope administration [17]. 

2.9.2. Statistical Analyses 

Results were analyzed and plots created using GraphPad Prism version 6 (GraphPad Software,  

San Diego, CA, USA). The R statistical programming environment was also used for statistical  

analysis [24]. Group data sets were examined for normality and homoscedasticity. To minimize the 

impact of outliers and skewed distributions, 12.5% trimmed means were used in the equality of means 

testing of the zinc isotope data. One-way ANOVA and Tukey’s honest significant difference (HSD) 

multiple comparisons test were used when data were normally distributed and exhibited equal variances. 

When variances were not equal, Welch’s F test and the Dunnett-Tukey-Krammer multiple comparisons 

test were used to compare means. Repeated measure ANOVA was used to assess the effect of time and 

group for growth and biochemical assays. Data are presented as mean (SEM) unless otherwise noted. 

Significance was defined at α = 0.05 level. 

3. Results 

No differences in demographic or anthropometric measurements were observed among the study 

groups at either baseline or end of the intervention. Weight and length both significantly increased over 

the study period (Table 1). No cases of malaria were identified in the subjects during the study period. 

Compliance monitoring for the assigned MNP indicated >90% consumption among all of the participants. 

Isotope studies were successfully completed on 10, 8, and 9 subjects in the MNP + Fe, MNP − Fe, 

and Control groups, respectively. Reasons for failure to complete the isotope studies included participant 

withdrawal from the study during the intervention stage (n = 7) or technical difficulties with isotope 

administration and/or incomplete sample collections (n = 11) (Figure 1). 
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Table1. Demographic and anthropometric data at 6 and 9 months 1. 

 6 months of Age 9 months of Age 

 
MNP + Fe  

(n = 15) 

MNP − Fe  

(n = 15) 

Control  

(n = 15) 

MNP + Fe  

(n = 10) 

MNP − Fe  

(n = 8) 

Control  

(n = 9) 

Gender       

Male 5 (33%) 7 (47%) 10 (67%) 3 (30%) 3 (37%) 7 (78%) 

Female 10 (67%) 8 (53%) 5 (33%) 7 (70%) 5 (63%) 2 (22%) 

Weight, kg 2 7.25 (0.25) 7.55 (0.27) 7.49 (0.22) 8.17 (0.32) 8.2 (0.44) 8.37 (0.36) 

WAZ 3 −0.39 (0.25) −0.16 (0.31) −0.21 (0.25) −0.36 (0.32) −0.33 (0.45) −0.38 (0.41) 

Length, cm 2 65.0 (0.7) 66.5 (0.9) 64.6 (0.8) 67.9 (1.2) 70.2 (1.7) 69.5 (2.0) 

LAZ 3 −0.68 (0.27) −0.19 (0.40) −1.01 (0.39) −1.16 (0.39) −0.21 (0.83) −0.71 (0.86) 

1 Mean (SEM); 2 repeated measure ANOVA showed no difference between groups at 6 months or 9 months, 

significant increase over time for both weight (p < 0.01) and length (p < 0.05) without group effect; 3 repeated 

measure ANOVA showed no difference between groups at 6 months or 9 months, no significant effect of time 

or group. MNP, micronutrient powder; WAZ, weight-for-age Z-score; LAZ, length-for-age Z-score. 

Figure 1. Consort diagram. MNP, micronutrient powder. 

 

Equality tests of the trimmed means of daily zinc intake, FAZ, TAZ, and EZP all indicated significant 

differences. As expected, the MNP provided a large increase in daily zinc intake over that consumed 

from the usual diets, represented by the C group. Due to the large difference in variance between the 

control and intervention groups, the Welch test was used to compare the zinc intake means, resulting in 

p < 0.0001. One-way ANOVA detected significant differences in the mean FAZ and TAZ (Welch test) 

from the MNP meals and in EZP. For intake, FAZ, TAZ, and EZP, the post-tests on the trimmed data 
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showed that the MNP + Fe and MNP − Fe groups were not different and that the control group was 

different from either intervention group (Figure 2). 

Data from the zinc absorption studies in all subjects are summarized in Table 2. 

Figure 2. Box and whisker plots of trimmed mean data for (A) fractional absorption of Zinc 

(FAZ) from micronutrient powder (MNP) meals; (B) total absorbed zinc (TAZ) from MNP 

meals and (C) exchangeable zinc pool (EZP) after 3 months on intervention. “+” indicates 

mean value. Different superscripts denote significant differences between groups (ANOVA). 

 

Table 2. Untrimmed data for zinc intake from complementary foods with and without 

micronutrient powder (MNP) added to the meal, fractional absorption, and total absorbed 

zinc by group 1. 

 
MNP + Fe  

(n = 10) 

MNP − Fe  

(n = 8) 

Control  

(n = 9) 

p-value  

(ANOVA) 

Total Daily Zn Intake, mg/day 6.53 (0.22) a 6.69 (0.28) a 0.90 (0.11) b 0.0001 

FAZ, non-MNP meals 0.22 (0.04) 0.20 (0.04) 0.27 (0.01) 0.41 

FAZ, MNP meals 0.12 (0.04) a 0.09 (0.03) a 0.25 (0.04) b 0.01 

TAZ 2, mg/day 0.85 (0.22) a 0.72 (0.19) ab 0.24 (0.03) b 0.04 

1 Mean (SEM) different superscripts within a row denote significant differences (p < 0.05); 2 sum of absorbed 

zinc from non-MNP meals +MNP meals. FAZ, fractional absorption of Zinc; TAZ, total absorbed zinc. 

Results of hemoglobin, serum zinc and EZP, and inflammatory markers for each group at the 

beginning and end of the study are presented in Table 3. No difference was observed by group or time 

for any of the iron biomarkers except sTfR, which showed a significant increase over time (p = 0.02) 

and a trend of group-by-time interaction (p = 0.09) for the increase that occurred in the placebo and the 

MNP − Fe group. Means for CRP were above the upper limit of the normal range for all groups at both 

time points. In addition, plasma Zn concentration significantly decreased over time (p = 0.008) without 

any group effect. Mean EZP of all data, measured after three months on intervention, did not differ  

by group. 
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Table 3. Biomarkers at 6 and 9 months 1.  

Biomarker MNP + Fe MNP − Fe Control 

Hemoglobin, g/dL 

6 months 11.3 ± 0.8 (10) 12.4 ± 1.0 (8) 12.0 ± 0.5 (9) 

9 months 12.0 ± 0.4 (10) 14.3 ± 0.9 (4) 12.8 ± 0.5 (8) 

Plasma Zn, μg/dL 2 (60–110) 

6 months 80.8 ± 1.0 (8) 78.3 ± 7.1 (6) 81.1 ± 6.4 (9) 

9 months 70.2 ± 5.6 (8) 69.8 ± 5.4 (6) 62.2 ± 4.2 (9) 

Ferritin, μg/L (17–145) 

6 months 46.9 ± 9.8 (8) 25.4 ± 6.7 (6) 38.7 ± 6.7 (9) 

9 months 49.9 ± 12.7 (8) 26.5 ± 10.9 (6) 23.7 ± 11.1 (9) 

Serum transferrin receptor (sTfR), mg/L 3 (0.76–1.76) 

6 months 3.0 ± 0.4 (10) 2.4 ± 0.2 (8) 2.8 ± 0.1 (9) 

9 months 2.8 ± 0.3 (10) 3.1 ± 0.4 (8) 4.0 ± 0.4 (8) 

Α 1-acid glycoprotein (AGP), mg/dL (50–120) 

6 months 87.4 ± 14.1 (10) 81.0 ± 17.3 (7) 81.6 ± 14.5 (9) 

9 months 90.9 ± 19.3 (10) 80.8 ± 11.5 (7) 79.7 ± 12.9 (9) 

C-reactive protein (CRP), mg/L (<3) 

6 months 7.7 ± 4.5 (10) 11.5 ± 5.9 (8) 5.3 ± 1.8 (8) 

9 months 6.2 ± 3.4 (10) 8.3 ± 4.2 (8) 6.2 ± 1.7 (9) 

Exchangeable zinc pool (EZP), mg/kg 

9 months 3.7 (0.4) 4.0 (0.4) 3.0 (0.6) 

1 Mean ± SEM (n), repeated measure ANOVA was used to assess the effect of group and time  

(6 months vs. 9 months), normal range in parentheses follows biomarker heading; 2 effect of time (p = 0.008): 

plasma Zn concentration decreased over time without differences between groups; 3 effect of time (p = 0.02): 

sTfR increased over time; A trend of time-by-group interaction was observed (p = 0.09): sTfR increased in  

MNP − Fe and Control groups but not in MNP + Fe group. MNP, micronutrient powder.  

4. Discussion 

The results of this study do not support an adverse effect of the fortificant iron from MNP on zinc 

absorption in this group of infants in a malaria endemic area. This is consistent with others’ conclusions 

that iron fortification of a meal does not adversely affect zinc absorption [13,14,25]. An additional 

important finding, however, is the lower than expected zinc absorption, regardless of iron content of the 

MNP fortified meals. 

Despite a substantially increased zinc intake compared to usual intakes for this community 

(represented by the placebo group) and relative to the EAR of 2.5 mg/day for this age, the amount of 

daily absorbed zinc (TAZ) was at or below the estimated physiologic requirement of 0.84 mg/day [26]. 

Similar fractional absorption from maize-based test meals (without an extended MNP intervention) was 

reported by Zlotkin et al. for infants in Ghana who received MNP containing 30 mg of iron and either  

5 or 10 mg of zinc. In that study infants, only the high zinc preparation resulted in absorbed zinc at the 

estimated physiologic requirement, whereas the mean absorption from the 5 mg preparation was only 

0.3 mg, even less than observed in the current study [27]. By comparison, nine-month-old breastfed 
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infants in Denver achieved daily absorbed zinc near the physiologic requirement from complementary 

foods with average zinc intakes that averaged only about 60% of the intakes for the Kenyan infants 

receiving the zinc containing MNP [22]. The conclusion that the absorption of zinc was impaired in the 

present study is also supported by examination of the data from other groups of young children in low 

resource settings, for whom the amount of absorbed zinc was similar to that achieved in the current study 

despite lower dietary zinc intakes [28,29]. 

Although the dietary staple maize, consumed primarily as a liquid porridge, is high in phytate, the 

zinc from the MNP would have substantially lowered the phytate-zinc molar ratio. We did not measure 

intake and absorption from breast milk, but the intake from this source at nine months is likely to be less 

than 0.5 mg per day [30]. Fractional zinc absorption of 0.50 from human milk would be expected [22,31]. 

If this was achievable in this setting, the contribution to physiologic requirements, though modest, could 

be important. 

Markers of intestinal permeability and enteropathy were not obtained in this population, but this is a 

setting and age group in which environmental enteropathy may be common and provide a plausible 

explanation for the poor zinc absorption. Environmental enteropathy is considered to have a negative 

impact on small intestinal function and absorptive capacity [32]. Furthermore, if enteropathy was present 

in these infants, intestinal endogenous zinc losses may also have been relatively high [33] and would 

thus lead to even higher requirements for absorbed zinc. 

The primary determinants of zinc absorption for healthy adults are amount of zinc ingested and dietary 

phytate [34]. For infants and children, the determinants are less clear but may also include gut length or 

age [35]. The effects of inflammation on absorption have not been systematically examined in either 

adults or children. Whether due to enteropathy or other factors, these infants seemed to exhibit an 

impaired homeostatic response. The significant decline in plasma zinc concentrations for all groups 

suggests a failure to improve zinc status despite the intake from MNP. After three months of a generous 

intake, zinc transporters might be expected to be saturated and “down regulated” [34]. In the face of 

potentially relatively high requirements, however, down-regulation would be un-physiologic  

or maladaptive. The placebo group predictably had a higher fractional absorption of zinc, but with  

such low dietary zinc intakes, this response was notably inadequate to compensate to meet zinc 

physiologic requirements. These results in totality emphasize the limits of absorptive mechanisms to 

compensate for adverse conditions, whether due to impaired gut health, immunostimulation, or limited 

dietary intake. 

The EZP sizes were also low relative to the dietary intakes and compared to Denver breastfed infants 

of the same age and with lower dietary zinc intakes [22]. Specifically, despite dietary zinc intakes of the 

MNP groups that were considerably higher than those of Denver infants receiving regular meat or a zinc 

fortified cereal, the EZP sizes of the two MNP groups in the present study were only ~85% of the mean 

EZP sizes for the Denver infants [22]. This, along with the decline in plasma zinc concentrations, further 

supports chronically impaired Zn absorption. Additionally, the mean EZP for the placebo group was 

below our tentative lower cut-off of 3 mg/kg for this age [36].  

The effect of the MNP + Fe on iron status was at best modest, but the small sample size and high 

inflammatory burden greatly complicate the interpretation of the biomarker results. Despite eligibility 

criteria including only mild anemia, and the finding of normal mean ferritin levels at the beginning of 

the intervention at six months, normal iron status cannot be assumed due to the high levels of 
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inflammatory markers, including elevated CRP levels for most subjects. The sTfR values of virtually all 

subjects exceeded the upper limits of normal range at baseline, and were above normal range for most 

subjects at nine months, including for the infants who received the MNP + Fe. In addition to presumed 

negative effect of high phytate diet on iron absorption, the elevated inflammatory state could reasonably 

be expected to also stimulate hepcidin, which would further impair absorption, even in the face of iron 

deficiency [37]. The significant decline in plasma zinc concentrations between six and nine months for 

all groups may also reflect the overall large inflammatory burden, but the small sample size warrants 

cautious interpretation. A recent review of iron supplementation found that administration of iron and 

zinc supplements together resulted in significantly reduced zinc concentrations compared to zinc 

supplements given alone [38]. The iron dose used in the MNP + Fe group is similar to that used in other 

studies of MNP’s, including the study in Tanzania in which iron supplementation in iron-replete subjects 

was associated with more infectious morbidity [1] and in a recent study in which assignment to MNP 

with iron was associated with more frequent bloody diarrhea [39]. Emerging data suggest potential for 

fortificant iron to induce pro-inflammatory changes in the intestine and the microbiota [40–43] but 

evidence for iron-associated systemic inflammation with fortificants is less clear. The lack of effect of 

iron on zinc absorption and the pattern of changes in biomarkers suggests an interaction between these 

two essential trace elements systemically, rather than competition for transport by the enterocyte. 

The notable limitations of this study relate to the smaller than expected sample size for successful 

completion of the demanding zinc metabolic studies. With this limitation, the possibility of failing to 

detect an effect of the iron on zinc absorption due to low statistical power must be considered. However, 

the similarity of the EZP sizes between the two MNP groups, and the significantly higher EZP means 

compared to that of the control group, does not suggest an iron effect on zinc absorption. The strikingly 

high inflammatory burden also greatly increased variability and impacted the ability to detect differences 

in micronutrient status among groups. Although the degree of systemic inflammation suggests 

underlying enteropathy, the lack of markers of intestinal inflammation does not allow confirmation  

of the underlying condition. The strengths of the study were the randomized design; the longitudinal  

follow-up; and the measurements of zinc absorption directly in a population at high risk for both zinc 

and iron deficiencies, for malaria, and for environmental enteropathy. 

5. Conclusions 

No effect of iron on zinc absorption was apparent in this malaria endemic setting when iron was given 

as a component of a MNP. Despite a substantial increase in zinc from the MNP, which brought their 

habitual dietary zinc intakes to double the estimated average requirement for a duration of three months, 

the mean daily absorbed zinc for both MNP groups barely achieved the estimated physiologic 

requirement for this age [26,44,45]. Furthermore, the size of the EZP for both MNP groups was lower 

than observed for breastfed infants in more hygienic settings who had lower habitual zinc intakes [22]. 

All of these observations are consistent with impaired zinc absorption in these breastfed infants at risk 

for zinc deficiency as well as for environmental enteropathy. 
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