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Abstract: Niemann-Pick C (NPC) disease is a fatal neurodegenerative disorder 

characterized by the accumulation of free cholesterol in lysosomes. We have previously 

reported that oxidative stress is the main upstream stimulus activating the proapoptotic  

c-Abl/p73 pathway in NPC neurons. We have also observed accumulation of vitamin E in 

NPC lysosomes, which could lead to a potential decrease of its bioavailability. Our aim 

was to determine if dietary vitamin E supplementation could improve NPC disease in mice. 

NPC mice received an alpha-tocopherol (α-TOH) supplemented diet and neurological 

symptoms, survival, Purkinje cell loss, α-TOH and nitrotyrosine levels, astrogliosis, and 

the c-Abl/p73 pathway functions were evaluated. In addition, the effect of α-TOH on the  

c-Abl/p73 pathway was evaluated in an in vitro NPC neuron model. The α-TOH rich diet 

delayed loss of weight, improved coordination and locomotor function and increased the 

OPEN ACCESS



Nutrients 2014, 6 3001 

 

 

survival of NPC mice. We found increased Purkinje neurons and α-TOH levels and 

reduced astrogliosis, nitrotyrosine and phosphorylated p73 in cerebellum. A decrease of  

c-Abl/p73 activation was also observed in the in vitro NPC neurons treated with α-TOH.  

In conclusion, our results show that vitamin E can delay neurodegeneration in NPC mice  

and suggest that its supplementation in the diet could be useful for the treatment of  

NPC patients. 
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1. Introduction 

Niemann-Pick type C (NPC) is an inherited progressive neurovisceral disease [1,2]. This genetic 

disease is caused by the mutation of one of the genes encoding for the NPC1 or NPC2 proteins [2–5], 

which are involved in the transport of free cholesterol from the endosomal/lysosomal compartment to 

the rest of the cell. Although the detailed mechanism for cholesterol egress mediated by the NPC1 and 

NPC2 proteins is unknown, the currently accepted model is that NPC2 binds free cholesterol, during or 

after lysosomal hydrolysis of LDL cholesteryl esters, and subsequently, NPC1 mediates the exit of 

cholesterol from lysosomes [6,7]. Mutations in the Npc1 gene (95% of NPC cases) and in the Npc2 

gene (5% of NPC cases) produce the same phenotype leading to accumulation of unesterified 

cholesterol and other lipids within lysosomes [2,8]. NPC patients present a broad range of clinical 

symptoms with variable age of onset and rate of progression including hepatosplenomegaly, vertical 

supranuclear gaze palsy, dysarthria, dystonia, cerebellar ataxia, and seizures [2]. One of the hallmarks 

of NPC disease is a progressive and extensive neurodegeneration which is caused by an increase in 

apoptosis [9]. Although there is a general loss of neurons in the Central Nervous System (CNS), 

cerebellar Purkinje cells are early and especially affected [1,10–14].  

Recent evidences suggest that oxidative stress contributes to NPC cell death. Indeed, we and others 

have observed oxidative tissue damage in the liver and cerebellum of the Npc1−/− mice together with a 

gene expression profile indicative of increased oxidative stress [15–17]. Moreover, NPC patients 

presented decreased antioxidant capacity and reduced Coenzyme Q10 in serum, which indicates a 

decrease in antioxidant defenses, along with elevated thiobarbituric acid-reactive species and carbonyl 

formation [18–20]. In addition, an increase in cholesterol oxidation products, such as 7-ketocholesterol 

(7-KC) and 3β,5α,6β-cholestanetriol (3β,5α,6β-triol) has been detected in NPC1 patients as well as in 

Npc1−/− mice, whose levels seem to correlate with the severity and progression of the disease [21–23]. 

Interestingly, previous work from our group demonstrates that oxidative stress is the main upstream 

stimulus activating apoptosis in NPC neurons through the c-Abl/p73 proapoptotic pathway [24]. For 

instance, we have shown that treatment with the antioxidant N-Acetyl Cysteine (NAC) prevented  

c-Abl/p73 activation and apoptosis in in vitro NPC-like neurons [24]. However, oral supplementation 

of NAC only partially improved liver function and moderately reduced neurologic symptoms of 

Npc1−/− mice [15,23]. Moreover, no significant effects on oxidative stress were detected, other than 

moderate improvement of the fraction of reduced CoQ10, in a short-term NAC therapeutic trial in 

NPC1 patients. Together, these results suggest a limited efficacy of NAC on NPC disease. 
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However, the beneficial effect of other antioxidants as therapeutic agents for NPC disease cannot be 

ruled out. Therefore, we wanted to analyze the effects of a diet supplemented with vitamin E on 

neurological symptoms of NPC mice. Interestingly, data from the literature and results from our lab 

showed increased levels of vitamin E, and in particular α-TOH, its most important biological 

derivative, in cerebellum and liver lysosomes of NPC mice [25,26]. Interestingly, one of the most 

damaged regions in NPC disease, the cerebellum, contains high levels of vitamin E [27]. Furthermore, 

mutations in the gene coding for the α-TOH transporter protein (α-Ttp) result in a neurologic syndrome 

of spinocerebellar ataxia called Ataxia with Vitamin E Deficiency or AVED. This condition, also 

observed in the α-Ttp knock-out mouse model, Ttpa−/−, is characterized by progressive ataxia, sensory 

loss and severe damage of Purkinje cells [28–30], sharing some symptoms with NPC patients. 

Moreover, recently Ulatowski et al. [26] reported the effect of vitamin E deficiency on the cerebellum 

of the Ttpa−/− mice. They observed increased cerebellar oxidative stress and Purkinje cellular atrophy 

and decreased dendritic branching of Purkinje neurons that correlated with behavioral deficits in motor 

coordination and cognitive functions. Together, this data suggest that vitamin E transport could be 

altered in NPC cells affecting Purkinje neurons more strongly. In this sense, it is important to mention 

that a previous in vivo study showed that treatment with vitamin E, administered orally via gavage 

once a week, exerts a small but significant beneficial effect on the locomotor performance in NPC 

mice [31]. 

In this work, we analyzed the effect of vitamin E dietary supplementation on the Npc1−/− mice 

evaluating neurological symptoms, survival, Purkinje cell loss, α-TOH and nitrotyrosine levels, 

astrogliosis, and the c-Abl/p73 pathway. The α-TOH rich diet delayed loss of weight, improved 

coordination and locomotor function and increased the survival of NPC mice. Moreover, we found 

preserved Purkinje neurons related to increased α-TOH levels and reduced levels of astrogliosis, 

nitrotyrosine and activated and phosporylated p73 in cerebellum. A decrease of c-Abl/p73 activation 

was also observed in in vitro NPC neurons treated with α-TOH. 

Together these results show that vitamin E can delay neurodegeneration in NPC mice and suggest 

that its supplementation in the diet could be useful for the treatment of NPC patients. 

2. Experimental Section 

2.1. Animals 

BALB/c mice carrying a heterozygous mutation in the NPC1 gene (NPC mice) were kindly donated 

by Dr. Peter Pentchev. Genotypes were identified using a PCR-based screening as described 

previously by Amigo et al. [32], Wild-type (WT) and NPC male mice received control  

(Prolab RMH3000 (5P00), Labdiet, St. Louis, MO, USA) and α-TOH supplemented (vit E) diets 

(Prolab 5P00 w/2000 IU/kg vitamin E (5AU8), Labdiet) from postnatal day (p) 28. Homozygous 

mutants and the wild type mice eat roughly the same amount of food until 7 weeks of age. At this age 

NPC mice are in a steady state with respect to food intake and weight gain but not later, as described 

by Xie et al. [33]. One group of animals; WT control n = 6, WT vit E n = 9, NPC control n = 8, and 

NPC vit E n = 8, was used for body weight daily measuring, during the full period of treatment, as well 

as locomotor tests made once a week. Another group of 4 and 5 control-and vit E-treated NPC mice 
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respectively was used for survival analysis. For immunofluorescence and immunohistochemistry 

cerebella analysis one group of mice (n = 3) was treated with the diets for 3 weeks and then sacrificed.  

All protocols were approved and followed local guidance documents generated by the ad hoc 

committee of Chile (CONICYT) and were approved by the Bioethics Committee of the School of 

Medicine from Pontificia Universidad Católica de Chile (CEBA Protocol # 10-017). They were in 

agreement with the US Public Health Service Policy on Humane Care and Use of Laboratory Animals 

recommended by the Institute for Laboratory Animal Research in its Guide for Care and Use of 

Laboratory Animals. 

2.2. Locomotor Function Tests 

Locomotor coordination was evaluated weekly during treatment using two tests specially validated 

for NPC mice [34]. In the Hanging test, the mouse was placed to hang at the center of a horizontal bar 

(3 mm diameter; 35 mm long) with forepaws. The body position of the animal was observed for 30 s 

and scored as described in Voikar et al. [34]. In the beam test mice were placed at the end of a beam 

(100 cm long; 2.5 cm wide). Animals were trained to finish the task as quickly as possible. The 

number of falls during the test was counted. 

2.3. Tissue Immunohistochemical and Immunofluorescense Procedures 

Mice (7 weeks-old) were anesthetized with xylazine/ketamine (0.12 and 0.8 mg/10 g body weight, 

respectively) and perfused with 4% paraformaldehyde in PBS. Cerebellum was removed and postfixed 

overnight at 4 °C, followed by 30% sucrose in PBS at 4 °C overnight, then were cut in 40 μm sagittal 

sections with a cryostat (Leica CM1850) at −20 °C. Four to five slices by animal were stained by 

experiment. We examined at least 3 animals per condition. 

For calbindin immunohistochemical analysis, anti-calbindin D-28K antibody (AB1778, 1:1000; 

Chemicon International, Temecula, CA, USA) was used with the avidin-biotin-horseradish peroxidase 

complex method (Vector Laboratories, Burlingame, CA, USA). 

To assess the extent of the microglial activation the tissues were incubated with PBS twice for  

10 min. After pre-incubation in glycine 0.15 M for 10 min sections were incubated with blocking 

solution (BSA 5% in PBS) for 1 h, and incubated overnight at 4 °C with an anti-rabbit primary 

antibody against the glial fibrillary acidic protein (GFAP) (1:500, Sigma Chemical Co., St. Louis, MO, 

USA). After washing with PBS, sections were incubated for 1 h, at room temperature, with a goat  

anti-rabbit secondary antibody coupled to Alexa 555 (1:400, Invitrogen Detection Technologies, 

Carlsbad, CA, USA). Then tissues were washed with PBS and covered with Dako Fluorescent 

Mounting Medium (Dako, Carpintería, CA, USA). Images were captured with an Olympus BX51 

microscope (Olympus, Tokyo, Japan) and analyzed with the Image-Pro Express program (Media 

Cybernetics, Bethesda, MD, USA). 

For nitrotyrosine immunohistochemical analysis, free-floating cerebellum sections were blocked for 

2 h at room temperature in a solution of 0.1 M phosphate buffer (PB) with 0.3% Triton X-100 and  

3% normal goat serum. Then, sections were incubated overnight at 4 °C with mouse anti-nitrotyrosine 

antibody (1:100, MAB5404, Millipore Corporation, Billerica, MA, USA). After three 10-min washes 

in PB, sections were incubated for 2 h, at room temperature, with a goat anti-mouse secondary 
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antibody coupled to Alexa 488 (1:500, Sigma Chemical Co.). Afterwards, sections were incubated for 

10 min with a solution of TOPRO-3 iodide (1:1000, Molecular Probes, Eugene, OR, USA) for nuclear 

staining. Finally, after two 10min washes in PB, sections were mounted onto slides with Mowiol 

mounting media. Confocal images were obtained using a Leica SP2 confocal microscope. 

2.4. Cell Culture, α-TOH, Imatinib and U18666A (U18) Treatments 

The HT22 neuronal hippocampal cell line was maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) supplied with 10% Fetal bovine serum (FBS) [35]. The cells were pre-treated with Imatinib 

at 5 µM or with α-TOH at 50 µM by 1 h. α-TOH was dissolved in analytical ethanol (vehicle), the 

stock concentration was 12 mM. For each experiment we used a fresh α-TOH solution. Later, cells 

were treated with U18 (Enzo Life Sciences Inc. Farmingdale, NY, USA) at 0.5 µg/mL for 24 h. 

2.5. Filipin Staining 

HT22 cells were fixed in 4% paraformaldehyde/4% sucrose in PBS for 30 min. After, cells were 

washed with PBS and treated with 1.5 mg/mL glycine for 20 min. Finally cells were treated with  

25 µg/mL Filipin (Sigma Chemicals Co.) for 30 min, washed with PBS and covered with  

Fluoromount-G (Southern Biotech, Birmingham, AL, USA). Images were captured with an Olympus 

BX51 microscope (Olympus) and analyzed with the Image-Pro Express program (Media Cybernetics, 

Bethesda, MD, USA). 

2.6. Immunofluorescence on Coverslips 

HT22 cells were placed on poly-lysine-coated coverslips (30,000 cells/cover). After 2 days in 

DMEM/FBS, cells were fixed in 4% paraformaldehyde/4% sucrose in PBS and permeabilized with 

0.02% Triton X-100. Then, cells were blocked with 10% bovine serum albumin in PBS. 

Immunostaining was carried out using anti-p-c-Abl Tyr412 (1:500; C5240, Sigma Chemical Co., St. Louis, 

MO, USA), anti-p73 (1:300; 5B1288, Abcam Inc., Cambridge, MA, USA), anti-β-tubulin (1:250,  

sc-9104, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and Phalloidin: TRITC (1:5000; PF7551, 

ECM Biosciences, Versailles, KY, USA). Anti-rabbit-AlexaFluor-488 (1:1000) and anti-mouse-Alexa 

Fluor-555 (1:1000) (both from Invitrogen Detection Technologies) were used as secondary antibodies. 

Fluorescent images were captured with a confocal Olympus microscope or with an Olympus BX51 

microscope (Olympus) and analyzed with the Image-Pro Express program (Media Cybernetics). Three 

coverslips were stained for each experimental group. We examined at least 5 images per coverslip in at 

least 3 independent experiments. For pixel quantification the Multi Measure application (ImageJ) was 

used. For the quantification of the images of the cultured HT22 cells each cell was taken as an 

independent region of interest (ROI). Then each ROI was averaged and divided by the total number of 

quantified neurons. 

2.7. Western Blot Analysis 

Proteins were prepared as described previously [36]. Cerebellar protein samples (60 μg) or HT22 

protein samples (60 µg) were resolved by SDS-PAGE. The immunoblot was carried out using  
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anti-p73 (H-79; 1:1000) (Santa Cruz Biotech), anti-c-Abl (K-12; 1:1000) (Santa Cruz Biotech),  

anti-ε-COP (obtained from Dr. Monty Krieger, Massachusetts Institute of Technology, Cambridge, 

MA, USA) (1:5000)) and anti-tubulin (T5168; 1:5000) (Sigma) antibodies, and secondary antibodies 

conjugated with horseradish peroxidase (1:3000) (Upstate Biotechnology, Lake Placid, NY, USA). 

2.8. HPLC-EC α-TOH Content Measurements 

Samples of frozen tissue (brain and cerebellum) from control- and vit E-treated NPC mice (n = 2) 

were weighed and then mechanically homogenized, placed in 0.5 mL homogenization buffer (20 mM 

Tris pH 7.2; 2 mM MgCl2; 0.25 M sucrose; 1 mg/mL Leupeptin; 1 mM Pepstatin; 1 mM PMSF and 

0.1% BHT). Tissues were mechanically homogenized using an Ultraturrax (Kinematica, Littau, Suiza). 

α-TOH content was determined by reverse phase HPLC-EC as described by Motchnik et al. [37]. 

Briefly, the sample was resuspended in ethanol and mixed briefly. Afterwards, hexane was added. The 

solution was mixed, centrifuged for 15 min at 1000× g, and the upper hexane layer was transferred to a 

glass tube; the hexane extraction procedure was repeated twice. Hexane extracts were pooled and dried 

at room temperature under a stream of nitrogen, and the resulting pellet was dissolved in 

methanol/ethanol (1:1, v/v). Samples were then separated in columns using 20 mM Lithium 

Perchlorate in ethanol/H2O (96:4, v/v) as mobile phase. 

2.9. Statistical Analysis 

Mean and standard error of the mean values with the corresponding number of experiments are 

indicated in the figure legends. Probability values of the data for Student t-tests and ANOVA tests with 

Bonferroni’s post-test were obtained using the GraphPad Prism 5 (Graph Pad Software, Inc., San 

Diego, CA, USA). 

3. Results 

3.1. Vitamin E Treatment Increases Survival and Improves Locomotor Function of NPC Mice 

In order to test the effect of the vitamin E treatment, wild-type and NPC mice were fed with an  

α-TOH supplemented diet (2000 IU/Kg DL-Alpha Tocopherol Acetate) and a control diet starting at 

p28. Weight was registered during the full period of treatment (Figure 1A). The α-TOH rich diet 

delayed loss of weight in the NPC mice compared to those with the control diet. Weight started to 

decline at approximately 6 and 7 weeks of age in NPC mice fed control and α-TOH rich diets, 

respectively, and the rate of decline was reduced in the mice treated with the α-TOH rich diet  

(Figure 1A). 

We evaluated coordination and locomotor function using two different tests (Figure 1B,C) at 

regular intervals throughout treatment. The α-TOH rich diet-treated NPC mice exhibited an 

improvement in the hanging test, which evaluates coordination of the four paws and the tail  

(Figure 1B). A delay in the onset of symptoms was observed in the α-TOH rich diet-treated NPC mice 

from 7 week of age. 
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Figure 1. Vitamin E treatment increases survival and improves locomotor function of NPC 

mice. Wild-type (WT) and NPC mice received vitamin E (Vit E) (2000 IU/kg DL-alpha 

tocopherol acetate) or control diets starting at p28. (A) Weight was registered during the 

full period of treatment; (B and C) Motor coordination was assessed weekly by the hanging 

test and the beam test, respectively. For A and B white and black circles are shown for 

control- and Vit E-treated WT mice and white and black triangles are shown for control- 

and Vit E-treated NPC mice. For C white and black bars are shown for control- and  

Vit E-treated NPC mice. Control- and Vit E-treated WT mice did not fall down in this test 

(bars for these groups are not shown); (D) Survival was determined by continuing with the 

treatment until death. The dotted and solid lines are shown for control- and Vit E-treated 

NPC mice; (E) Mean survival age graphic. White and black bars are shown for control- 

and Vit E-treated NPC mice. Data are shown as mean ± SE, except for A in which SE  

are not shown to improve the visualization of each group. * p <0.05, ** p < 0.01,  

*** p < 0.0001. For A–C the following number of animals were used: WT control n = 6, 

WT Vit E n = 9, NPC control n = 8, and NPC Vit E n = 8. For D and E survival was 

measured in a group of 4 and 5 NPC mice fed with control and Vit E diets, respectively. 

 

In the beam test, which evaluates equilibrium and coordination, the α-TOH rich diet-treated NPC 

mice showed fewer falls than the control diet treated-NPC mice (Figure 1C). In this test, a significant 

improvement was observed from 7 weeks until 9 weeks of age. At 11 weeks of age, only NPC mice 

treated with the α-TOH rich diet survived. 

Next, we analyzed the effect of α-TOH supplemented diet on the lifespan of NPC mice, starting the 

treatment from p28. Interestingly, α-TOH treatment significantly improved survival of NPC mice 

(Figure 1D). We observed a mean increase of 11 days in survival (Figure 1E). This increase in survival 

correlated with a tendency toward a greater corporal weight and improved locomotor function. 
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3.2. Vitamin E Treatment Improves Purkinje Cell Survival and Decreases Astrogliosis and 

Nitrotyrosine Levels in the Cerebellum of NPC Mice 

Since vitamin E treatment improved neurological function in the NPC mice, we examined the effect 

of the α-TOH therapy on the survival of cerebellar Purkinje cells in mice treated for three weeks, from 

p28 to 7 weeks of age. Cerebella from control- and α-TOH-treated WT and NPC mice were analyzed 

for calbindin, a specific staining of cerebellum Purkinje cells, by immunohistochemistry. α-TOH 

treatment substantially improved Purkinje cell survival in NPC mice (Figure 2A). A quantification of 

calbindin-immunoreactive Purkinje cell bodies in cerebellar sections (n = 3 mice/group) is shown 

(Figure 2B). The greatest loss of Purkinje cells occurs in cerebellar frontal lobes, especially 2 and 4 [14]. 

Vitamin E treatment significantly improved Purkinje cell survival in lobe 3. Furthermore, the treatment 

had a trend to improve survival in lobe 2 and 4–5. In accordance with previous studies [38], lobes 7–10 

from cerebella of NPC mice exhibited a marked resistance to cell death at 7 weeks of age, which was 

the time when the cerebella were analyzed. 

In order to correlate the improvement in Purkinje cell survival with the vitamin E diet we measured 

α-TOH content in brain and cerebellum of control- and vit E-treated NPC mice. We found a significant 

increase in α-TOH levels in brain and cerebellum of vit E-treated NPC mice compared with  

control-treated NPC mice (Figure 2C). 

Figure 2. Vitamin E treatment improves Purkinje cell survival in the cerebellum of NPC 

mice. Wild-type (WT) and NPC mice received vitamin E (Vit E) (2000 IU/Kg DL-Alpha 

Tocopherol Acetate) or control (Ct) diets starting at p28. Cerebella from Ct- and Vit  

E-treated WT and NPC mice were analyzed at 7 weeks of age. (A) Calbindin was  

analyzed by immunohistochemistry. Scale bar, 100 μm; (B) A quantification of  

calbindin- immunoreactive Purkinje cell bodies in cerebellar sections (n = 3 mice/group) is 

shown; white and black bars are shown for Ct-and Vit E-treated NPC mice. Results are 

means ± SE. * p = 0.0091; (C) α-TOH content was measured by HPLC in brain and 

cerebellum. The following numbers of animals were used: Ct-and Vit E-treated NPC mice, 

n = 2 for brain and cerebellum analysis. Results are means ± SE. * p < 0.05. 
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Figure 2. Cont. 

 

We also analyzed astrogliosis and the oxidative stress marker nitrotyrosine using anti-GFAP and 

anti-nitrotyrosine antibodies, respectively, in the cerebellum of control-and α-TOH-treated WT and 

NPC mice. We found decreased levels of both markers in the cerebellum of the α-TOH-treated NPC 

mice (Figure 3A,B). 

In summary, α-TOH-treated NPC mice showed an increase in Purkinje cell survival that correlated 

with increased α-TOH levels and decreased levels of GFAP and nitrotyrosine in the cerebellum. 

Figure 3. Vitamin E treatment decreases astrogliosis and nitrotyrosine levels in the 

cerebellum of NPC mice. Wild-type (WT) and NPC mice received vitamin E (Vit E)  

(2000 IU/kg DL-alpha tocopherol acetate) or control (Ct) diets starting at p28.  

Cerebella from Ct- and Vit E-treated WT and NPC mice were analyzed at 7 weeks of age; 

(A) Astrogliosis was analyzed by GFAP immunofluorescence. Scale bar, 100 μm.  

(B) Nitrotyrosine levels were determined using an anti-nitrotyrosine antibody and 

immunofluorescence analysis. A negative control (Neg ct) without the primary antibody 

was included. TOPRO-3 iodide was used for nuclear staining. Scale bar, 50 μm. 3 mice of 

each group (WT and NPC mice treated with Ct and Vit E diets) were used in each analysis. 
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Figure 3. Cont. 

 

3.3. Vitamin E Treatment Prevents U18666A Induced-cAbl/p73 and Caspase 3 Activation in HT22 

Neurons and p73 Activation in the Cerebellum of NPC Mice 

To complement our studies we evaluated the connection between vitamin E, the c-Abl/p73 

proapoptotic pathway and NPC neurodegeneration, studying the expression of the phosphorylated and 

activated form of c-Abl and p73 in a pharmacological in vitro neuronal NPC model. We treated the 

HT22 neuronal hippocampal cell line with U18666A (U18) (0.5 μg/mL for 24 h), a well-known NPC 

phenotype inducer [39–41] that triggers significant cholesterol accumulation, in the presence of 

vitamin E (50 µM). In U18 treated cells we found dramatically increased p-c-Abl and p73 

immunostaining relative to untreated cells. Interestingly, in the presence of vitamin E, p-c-Abl and p73 

immunostaining were significantly decreased (Figure 4A,B). 

On the other hand, we studied the levels of phosphorylated p73 and activated caspase 3 by Western 

blot analysis. We found that U18 increased both phosphorylated p73 and activated caspase 3 protein 

levels relative to untreated cells. Interestingly, we observed that the cells treated with U18 and vitamin 

E presented lower increases in phosphorylated p73 and activated caspase 3 expression (Figure 4C,D). 

As a positive control for the inhibition of c-Abl and its signaling pathways, we used U18-treated 

HT22 cells in presence of Imatinib in both Western blot and immunofluorescence analysis [14]. As 

expected, we observed that Imatinib treatment significantly decreased p-c-Abl, p73, phosphorylated 

p73 and activated caspase 3 levels. 

To evaluate the in vivo relevance of these findings we studied the expression of the phosphorylated 

and activated form of p73 in cerebellum homogenates of control- and α-TOH-treated WT and NPC 

mice by Western blot analysis (Figure 4E). We found that under the control diet, NPC cerebella had an 
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approximately 2.5-fold increase with respect to wild-type cerebella. Moreover, we found a 4-fold 

decrease in the phosphorylated p73 protein levels in α-TOH treated NPC mice compared to the control 

diet treated-NPC mice. 

Figure 4. Vitamin E prevents U18666A induced cAbl/p73 and caspase 3 activation in 

HT22 neurons and p73 activation in the cerebellum of NPC mice. (A,B) Control (Ct) and 

U18-treated (0.5 μg/mL for 24 h) HT22 cells in absence or presence of vitamin E (Vit E) 

(50 μM) or Imatinib (5 μM) were fixed and immunostained using anti-p-cAbl, anti-p73, 

Phalloidin:TRITC and anti-β-tubulin antibodies. Data shown are an average of three 

independent experiments, and graphs shown quantifications, in arbitrary units (AU) of  

both phosphorylated (phospho)-c-Abl and p73 levels; (C,D) Immunoblot analysis of 

phosphoporylated (phospho)-p73 and caspase 3 active. Lysates from control and U18-treated 

(0.5 μg/mL for 24 h) HT22 cells in presence of vitamin E (Vit E) (50 μM) or Imatinib  

(5 μM) were resolved by 10% SDS-PAGE and analyzed by Western blot with anti-p-p73 

and anti-caspase 3 active antibodies. Graphs show quantifications of phosphorylated 

(phospho)-p73 and caspase 3 active levels normalized by β-tubulin expression (arbitrary 

units, AU); (E) Immunoblot analysis of phospho p73 in NPC cerebellum. Cerebella 

homogenates from control- and Vit E-treated WT and NPC mice were analyzed at 7 weeks 

of age. The graph shows the quantification of p73 normalized by ε-cop expression 

(arbitrary units, AU). * p < 0.05, ** p < 0.01, *** p < 0.0001. Representative images of 

some experimental conditions are shown. 

 

In summary, these results show that vitamin E treatment prevented the activation of the c-Abl/p73 

signaling pathway in NPC mice cerebellum and neurons. 
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4. Discussion 

The most relevant finding of our study is that vitamin E treatment increased the quality of life of 

NPC mice by delaying body weight loss and neurological symptoms, decreasing cerebellar oxidative 

stress and astrogliosis and increasing Purkinje cell survival. Furthermore, vitamin E was supplemented 

on diet in relatively old p28 NPC mice and is a non-invasive therapy without apparent side effects.  

Interestingly, previous work from our group demonstrates that oxidative stress is the main upstream 

stimulus activating apoptosis in NPC neurons through the c-Abl/p73 proapoptotic pathway [24]. For 

instance, we have shown that treatment with the antioxidant N-Acetyl Cysteine (NAC) prevented  

c-Abl/p73 activation and apoptosis in in vitro NPC-like neurons [24]. However, oral supplementation 

of NAC only partially improved liver function and moderately reduced neurologic symptoms of 

Npc1−/− mice [15,23]. These results suggested a limited efficacy of acute NAC intervention in NPC 

disease. Here we found that vitamin E can delay neurodegeneration in NPC mice and prevent  

c-Abl/p73 activation in vivo and in a neuron NPC model. However, treatment with vitamin E did not 

show positive effects on NPC mice liver (data not shown), whereas NAC treatment improved liver 

inflammation. These results support the idea that one of the major beneficial effects of the α-TOH diet 

is decreasing oxidative stress in the CNS. Accordingly, the levels of the oxidative stress marker, 

nitrotyrosine, were decreased in NPC mice cerebella with the α-TOH treatment. 

Previous studies suggested that vitamin E transport could be altered in NPC cells, primary in 

Purkinje neurons. In fact, α-TTP (α-TOH transport protein) is expressed in Purkinje cells of patients 

having vitamin E deficiency or oxidative stress-associated diseases [42]. Moreover, we have 

previously published that NPC cells cannot transport vitamin E correctly leading to α-TOH buildup in 

the endosomal/lysosomal system. This may result in a decreased bioavailability and impaired 

antioxidant function of vitamin E in NPC, contributing to the disease pathogenesis [25,26]. Indeed, 

recently it was demonstrated that vitamin E is essential for Purkinje neuron integrity [43]. In this sense, 

a previous in vivo study showed that treatment with vitamin E, administered orally via gavage once a 

week, significantly delayed weight loss only in females. It also produced a significant but relatively 

small delay in the rate of disease progression in Npc1−/− mice [31]. However, we show a more robust 

result with dietary vitamin E supplementation and using only male mice. Furthermore we observed an 

11-day increase in NPC mice survival. Differences between this previous study and ours may be 

caused by the route and/or periodicity of vitamin E administration and by the gender of animal used. 

Although we obtained similar results in survival using the c-Abl inhibitor Imatinib [14], it is notable 

that in this work vitamin E supplementation was initiated relatively late, at p28, whereas improvement 

in NPC mice survival with Imatinib was achieved if treatment was initiated earlier, at p7 [14]. 

Our results demonstrated that a vitamin E supplemented diet caused a beneficial effect on Purkinje 

neurons and cerebellum, but we cannot rule out the possibility that the diet is improving other regions 

of the brain. The lobes in which we observed improvement are those that exhibit more cell death in 

NPC mice at the age in which the samples were taken [38]. 

Although vitamin E appears to have a protective function in the brain, relatively little is known 

about its mechanism of action or how it reaches the brain. Interestingly, the beneficial effects observed 

in NPC mice where achieved although vitamin E blood-brain barrier (BBB) penetrance is low in mice. 

Previous reports, in mouse brain showed small increases in α-TOH levels in response to a high dosage 
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α-TOH supplementation when compared to those of plasma and liver. On average, the brain showed a 

1.6-fold increase to 2 μM, as compared to the 6-fold increase in plasma to 4.9 μM and the 4.9-fold 

increase in liver to 240 μM [44]. This result suggests the presence of brain-specific mechanisms that 

limit α-TOH uptake into the brain, potentially at the BBB and apparently, the physiological benefit of 

supplementation was achieved despite the modest increase in cerebellar α-TOH [44]. 

On the other hand, in another mouse model, a very small increase in cerebellar α-TOH was 

physiologically relevant [43]. Accordingly, in this study authors showed that the average neuronal 

body size of the vitamin E-depleted Ttpa−/− animals was markedly reduced by 25% compared to the 

Ttpa+/+ mice and long-term supplementation with vitamin E completely prevented this atrophy. This 

finding indicates that vitamin E deficiency contributes to marked atrophy of the Purkinje neurons, and 

that this fate was prevented by a high-dose, long-term supplementation with α-TOH. Apparently, the 

physiological benefit of supplementation was achieved despite the modest increase in cerebella  

α-TOH levels [43]. In addition, our results showed that after three weeks of dietary supplementation 

brain and cerebellum α-TOH levels were increased in NPC mice. Together our results and the data 

from the literature suggest that vitamin E is crossing the BBB and a modest increase in α-TOH levels 

is physiologically relevant. 

Another possible scenario is that alterations in the BBB in the NPC mice, as well as in the Ttpa−/− 

mice, which has been shown to improve with dietary vitamin E supplementation, allow its increased 

brain penetrance. 

In this study we used a diet with high α-TOH content, and extrapolation to human treatment is 

difficult to determine. Further experiments are needed to determinate the effect and dose of vitamin E 

in NPC patients, because in humans serum α-TOH concentrations are poorly correlated with dietary 

vitamin E estimates and appear to be regulated by the α-TTP [45]. Moreover, determination of 

cerebellum physiological α-TOH relevant levels in NPC patients would be required. 

As a major lipid-soluble antioxidant, α-TOH is essential for all cells due to its reactive oxygen 

species (ROS) scavenging activity [46]. However, vitamin E appears to be especially critical for CNS 

function. Little is known regarding the specific roles of α-TOH in the CNS, or the mechanisms by 

which it elicits its neuroprotective effects. Our results show a decrease in the levels of the  

well-accepted oxidative stress marker nitrotyrosine in α-TOH-treated NPC mice. 

One possible target of α-TOH in NPC disease is mitochondria. Mitochondrial alterations have been 

reported in NPC cells [47,48] and in many neurodegenerative diseases [49,50] and studies have 

demonstrated that increased level of α-TOH in mitochondria is critical against oxidative stress in this 

organelle [51,52]. In fact, recent findings indicate that enrichment of mitochondria with protective  

α-TOH weakens production of ROS and antioxidant enzyme activities, especially in hepatic 

mitochondria [53]. This is important in NPC disease because the most affected organs are liver and 

brain. These organs are very active metabolically and contain the largest number of mitochondria. 

Furthermore another antioxidant that is decreased in NPC disease is GSH [54] and α-TOH prevented 

GSH depletion [55]. 

Another antioxidant function of α-TOH is counteracting the 7-ketocholesterol (7-KC) effect [56,57].  

7-KC is mainly produced from cholesterol autoxidation, and is increased in NPC disease [22]. On 

various cell types, 7-KC has often been shown to induce a complex mode of cell death by apoptosis 
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associated with phospholipidosis. On murine oligodendrocytes treated with 7-KC the induction of 

apoptosis cell death was inhibited by α-TOH [56].  

Interestingly, recent studies have shown that δ-tocopherol, a minor vitamin E specie, reduced 

lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and 

alleviated pathological phenotypes in NPC1 fibroblasts [58]. These effects were correlated with a 

tocopherol-induced intracellular Ca(2+) response and a subsequent enhancement of lysosomal exocytosis.  

Finally our results showing that vitamin E treatment, both in vivo and in neuronal NPC models, 

decreased the activation of the proapototic c-Abl/p73 pathway, also supports the idea that one of the 

major beneficial effects of the α-TOH diet is decreasing oxidative stress, but we cannot rule out other 

non-antioxidant actions of vitamin E. 

5. Conclusions 

In conclusion, our results show that vitamin E can delay neurodegeneration in NPC mice, and that 

this effect is related with its antioxidant capacity and suggest that its supplementation in the diet could 

be useful for the treatment of NPC patients. 
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