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Abstract: The effect of germinated Superhongmi, a reddish brown pigmented rice cultivar, on the
glucose profile and bone turnover in the postmenopausal-like model of ovariectomized rats was
determined. The ovariectomized Sprague-Dawley rats were randomly divided into three dietary
groups (n = 10): normal control diet (NC) and normal diet supplemented with non-germinated
Superhongmi (SH) or germinated Superhongmi (GSH) rice powder. After eight weeks, the SH
and GSH groups showed significantly lower body weight, glucose and insulin concentrations,
levels of bone resorption markers and higher glycogen and 17-β-estradiol contents than the NC
group. The glucose metabolism improved through modulation of adipokine production and
glucose-regulating enzyme activities. The GSH rats exhibited a greater hypoglycemic effect and
lower bone resorption than SH rats. These results demonstrate that germinated Superhongmi rice
may potentially be useful in the prevention and management of postmenopausal hyperglycemia and
bone turnover imbalance.
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1. Introduction

Germination is considered as a simple, effective, and inexpensive method of improving
the nutritional quality of rice [1]. The soaking of rice grains in water for a few days induces
slight germination which causes an increase in nutrient bioavailability and absorption [2].
During germination, biochemical changes occur including the release of free and bound materials and
the activation of dormant enzymes which break down large molecular substances, resulting in the
generation of bioactive compounds and an increase in nutrients [3]. Germinated rice has been found
to have higher amounts of bioactive compounds such as γ-oryzanol, γ-aminobutyric acid (GABA),
tocopherols, and tocotrienols than non-germinated rice [4,5]. Moreover, it has been shown to possess
strong antidiabetic, antihyperlipidemic, and antioxidative properties [1,6].

Pigmented rice cultivars with black, purple, red, or brown pericarp are known for their higher
nutritional value and greater antioxidant potential than non-pigmented cultivars [7,8]. They contain
high amounts of anthocyanins, phenolic compounds and bioactive components [9,10] and their
consumption has been associated with a reduced risk of diabetes and cardiovascular disease [11].
Investigations on various pigmented cultivars revealed that ingestion of pigmented rice could improve
the lipid and glucose profiles in mice, delay the starch and sugar absorption in rats, and suppress
postprandial blood sugar elevation in human subjects [12,13].

Menopause, the permanent cessation of menstruation, promotes metabolic syndromes and
increases the risk of diabetes, dyslipidemia, and obesity in women [14]. An elevation in the
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concentrations of glucose, insulin, cholesterol, and triglyceride has been observed in postmenopausal
women relative to premenopausal ones [14–16]. Menopause is also believed to be associated with the
pathogenesis of osteoporosis, a metabolic bone disorder characterized by enhanced bone fragility and
increased fracture risk, in elderly women [17]. The rapid decrease of the ovarian hormone estrogen after
menopause is regarded as the primary cause of these metabolic dysfunctions [14]. The surgical removal
of ovaries, known as ovariectomy, mimics the estrogen-deficient condition in postmenopausal women.
Hence, ovariectomized animal models are widely used in investigating the pathophysiological changes
associated with menopause and in developing therapeutic strategies against menopause-induced
metabolic disorders [18].

Superhongmi is a new pigmented rice cultivar with a reddish brown pericarp developed in Korea.
Recent studies have shown that germinated Superhongmi rice has a strong antioxidant capacity and
could improve the lipid metabolism in ovariectomized rats [19,20]. To further explore the therapeutic
potential of Superhongmi rice against metabolic dysfunctions, particularly those caused by menopause,
the present study investigated the effect of germinated Superhongmi rice on the glucose metabolism
and bone turnover in the postmenopausal-like model of ovariectomized rats.

2. Materials and Methods

2.1. Rice Samples and Chemicals

Whole grains of Superhongmi rice were obtained from the department of Agricultural Science,
Korea National Open University. They were grown from May to October 2014 in Dangjin,
Chungcheongnam-do, South Korea. All chemicals and standards used in this study were of
analytical grade and purchased from Merck KGaA (Darnstadt, Germany) and Sigma-Aldrich, Inc.
(Steinhein, Germany).

2.2. Rice Germination

Dehusked whole rice grains were germinated following the method of Wu et al. [21] with slight
modifications. The grains (50 g) were washed twice with distilled water to remove any dirt and placed
evenly in a tray overlaid with cotton pads and cheesecloth. Distilled water (100 mL) was added and
the whole tray was covered with a clean transparent plastic wrap with holes to allow for ventilation
and incubated at 30 ◦C in an oven. The grains were regularly checked every 12 h to ensure there
was no foul odor and fungal growth. After 72 h, the germinated rice grains, including the emerged
radicles, were dried at 50 ◦C for 2 h, ground and pulverized (200–300 µm) using a grinding machine
(HMF-3250S, Hanil Electronics, Seoul, South Korea), packed in hermetically sealed Ziploc plastic
bags, and stored at −20 ◦C until further analysis. For the non-germinated samples, 50 g rice grains
were washed, dried, ground (200–300 µm), and stored using the same method described above for
the germinated grains. Both the germinated and non-germinated rice samples were analyzed for
their bioactive compounds γ-oryzanol, GABA, phytic acid, tocols (tocopherols and tocotrienols), and
policosanol, based on previously described methods [22–26] and for their proximate compositions
using the methods of AOAC [27]. The results are shown in Table 1.

2.3. Animals and Diet

Thirty female ovariectomized Sprague-Dawley rats (10-week-old), weighing approximately
229 g each, were purchased from Central Laboratory Animal Inc. (Seoul, Korea). The animals were
individually housed in a hanging stainless steel cage in a room (25 ± 2 ◦C, 50% relative humidity) with
12/12 h light-dark cycle and fed initially with a pelletized chow diet and distilled water ad libitum for
1 week. They were then randomly divided into three dietary groups (n = 10): normal control diet (NC)
and NC diet supplemented with either 20% (w/w) non-germinated Superhongmi (SH) or germinated
Superhongmi (GSH) rice powder. They were fed for 8 weeks and allowed free access to distilled water.
The composition of the experimental diet (Table 2) was based on the AIN-93M diet [28]. At the end
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of the experimental period, the rats were anaesthetized with carbon dioxide by inhalation following
a 12-h fast. The blood samples were drawn from the inferior vena cava into a heparin-coated tube and
centrifuged at 1000× g for 15 min at 4 ◦C to obtain the plasma. The liver, heart, kidney, and white
adipose tissues (perirenal and inguinal) were removed, rinsed with physiological saline, weighed, and
stored at −70 ◦C until analysis. The current study protocol was approved by the Ethics Committee of
Kyungpook National University for animal studies (approval No. 2015-0087).

Table 1. Bioactive components and proximate composition of Superhongmi rice powder.

Bioactive Compound Non-Germinated Germinated

γ-Oryzanol (mg/100 g rice) 33.21 ± 2.66 51.96 ± 1.99 1,*
GABA (mg/100 g rice) 98.54 ± 3.96 1102.02 ± 11.63 *

Phytic acid (mg/100 g rice) 2.01 ± 0.09 4.02 ± 0.14 *
Tocols (µg/100 g rice) 133.69 ± 8.62 256.79 ± 6.98 *

Policosanol (mg/100 g rice) 21.69 ± 1.02 26.51 ± 1.24 *

Proximate composition (% dry basis)

Carbohydrates 76.58 ± 0.91 * 53.92 ± 0.98
Crude protein 7.11 ± 0.12 * 5.71 ± 0.41

Crude fat 2.31 ± 0.19 3.58 ± 0.17 *
Crude ash 1.34 ± 0.04 * 1.11 ± 0.02
Moisture 12.66 ± 0.32 35.68 ± 0.61 *

1 Values are means ± standard error (n = 3); * indicates significant difference (p < 0.05) between germinated and
non-germinated samples.

Table 2. Composition of experimental diets (%).

NC 1 SH GSH

Casein 14.0 12.4 12.2
Sucrose 10.0 10.0 10.0

Dextrose 15.5 15.5 15.5
Corn starch 46.6 28.7 29.1

Cellulose 5.00 5.00 5.00
Soybean oil 4.00 3.50 3.24
Mineral mix 3.50 3.50 3.50
Vitamin mix 1.00 1.00 1.00

L-Cystine 0.18 0.18 0.18
Choline bitartrate 0.25 0.25 0.25

Non-germinated rice - 20.0 -
Germinated rice - - 20.0

Total 100 100 100
Kcal 380 380 380

1 NC, normal control diet (AIN-93M); SH, normal diet + non-germinated Superhongmi rice powder;
GSH, normal diet + germinated Superhongmi rice powder.

2.4. Determination of Glucose Profile and Plasma Adipokine Levels

The levels of blood glucose and plasma insulin were determined using Accu-Chek Active Blood
Glucose Test Strips (Roche Diagnostics, Berlin, Germany) and enzyme-linked immunosorbent assay
(ELISA) kits (TMB Mouse Insulin ELISA kit, Shibayagi Co., Gunma, Japan), respectively. The hepatic
glycogen level was determined using the anthrone-H2SO4 method with glucose as standard [29].
The homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated using
the equation described by Vogeser et al. [30]. The following plasma adipokines were analyzed
using commercial assay kits: adiponectin (Shibayagi Co., Gunma, Japan), leptin (Cayman Chemical,
Ann Arbor, MI, USA), resistin (B-Bridge International Inc., Santa Clara, CA, USA), and tumor necrosis
factor (TNF)-α (Abcam, Cambridge, MA, USA).
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2.5. Determination of Hepatic Glucose-Regulating Enzymes Activities

The liver tissue was homogenized in a buffer solution containing triethanolamine, EDTA,
and dithiothreitol and centrifuged at 1000× g at 4 ◦C for 15 min [31]. The pellet was removed
and the supernatant was centrifuged at 10,000× g at 4 ◦C for 15 min. The resulting precipitate
served as the mitochondrial fraction and the supernatant was further centrifuged at 105,000× g
at 4 ◦C for 1 h. The resulting precipitate and supernatant served as the microsome and cytosol
fractions, respectively. The protein content was measured using the Bradford protein assay [32].
The phosphoenolpyruvate carboxykinase (PEPCK) activity was determined based on the method of
Bentle and Lardy [33]. The absorbance of the assay mixture was measured at 340 nm. The glucokinase
(GK) activity was measured following the method described by Davidson and Arion [34]. The reaction
mixture was incubated at 37 ◦C for 10 min and the change in absorbance at 340 nm was recorded.
The glucose-6-phosphatase (G6pase) activity was determined using the method of Alegre et al. [35].
The reaction mixture was incubated at 37 ◦C for 4 min and the change in absorbance at 340 nm was
recorded. The enzyme activities were expressed as µmol/min/mg protein.

2.6. Measurement of Bone Metabolism Biochemical Markers

The levels of calcium and alkaline phosphatase (ALP) were measured using Ca and ALP assay kits
(Cobas, Indianopolis, IN, USA), respectively. The levels of 17-β-estradiol, intact parathyroid hormone
(PTH), osteocalcin, N-terminal telopeptide of type 1 collagen (NTx-1) and C-terminal telopeptide of
type 1 collagen (CTx-1) were analyzed using commercial assay kits (MyBiosource Inc., San Diego,
CA, USA).

2.7. Statistical Analysis

All data are presented as the mean ± standard error (SE). The data were evaluated by
one-way ANOVA using a Statistical Package for Social Sciences software program version 19.0
(SPSS Inc., Chicago, IL, USA) and the differences between the means were assessed using Tukey’s test.
An independent t-test was used to assess the difference between the germinated and non-germinated
rice samples. Statistical significance was considered at p < 0.05.

3. Results

3.1. Body and Organ Weights

The final body weight markedly decreased in both SH (389 g) and GSH (374 g) groups relative to
that of the control group (403 g) (Table 3). The feed intake and feed efficiency ratio were lowest in the
GSH group and highest in the NC group. The white adipose tissue weight was lowest in GSH rats
(8.56 g), followed by the SH group (9.04 g), then the NC group (10.26 g). The weights of liver and heart
were significantly lower in the SH and GSH groups compared to that of the NC group.

3.2. Glucose Profile

As shown in Table 4, the final blood glucose level was lowest in the GSH group (5.04 nmol/L),
followed by the SH group (5.61 nmol/L), then the NC group (6.98 nmol/L). The plasma insulin level
was also lowest in the GSH group (3.39 mU/L) and highest in the NC group (4.93 mU/L). Accordingly,
the HOMA-IR index was highest in the NC group (1.49), followed by the SH group (0.97), then the
GSH group (0.78). Both the SH and GSH groups showed significantly higher hepatic glycogen level
(149–153 mg/g) than the NC group (94.7 mg/g).
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Table 3. Body weight gain and weights of organs and adipose tissue in ovariectomized rats fed with
germinated Superhongmi rice powder.

Parameter NC SH GSH

Initial weight (g) 229.24 ± 1.25 228.32 ± 1.18 228.14 ± 0.79
Final weight (g) 402.65 ± 5.33 c 388.69 ± 4.92 b 374.25 ± 5.41 a

Weight gain (g) 174.68 ± 5.63 c 160.24 ± 4.72 b 148.32 ± 3.30 a

Feed intake (g/week) 181.58 ± 4.32 c 162.25 ± 3.20 b 149.44 ± 3.41 a

Feed efficiency ratio 0.16 ± 0.00 c 0.14 ± 0.00 b 0.12 ± 0.00 a

White adipose tissue
weight (g) 10.26 ± 0.19 c 9.04 ± 0.19 b 8.56 ± 0.12 a

Organ weight (g)
Liver 2.88 ± 0.01 c 2.57 ± 0.02 b 2.50 ± 0.01 a

Heart 0.26± 0.01 b 0.23 ± 0.01 a 0.22 ± 0.01 a

Kidney 0.40 ± 0.01 0.39 ± 0.02 0.39 ± 0.04
a−c Values are means ± SE (n = 10). Means in the same row not sharing a common superscript are significantly
different at p < 0.05. NC, normal control diet (AIN-93M); SH, normal diet + non-germinated Superhongmi;
GSH, normal diet + germinated Superhongmi rice.

Table 4. Glucose profile, adipokine level, and glucose-regulating enzyme activity in ovariectomized
rats fed with germinated Superhongmi rice powder.

Parameter NC SH GSH

Initial blood glucose (mmol/L) 4.98 ± 0.02 5.01 ± 0.02 5.08 ± 0.02
Final blood glucose (mmol/L) 6.98 ± 0.05 c 5.61 ± 0.03 b 5.04 ± 0.03 a

Plasma insulin (mU/L) 4.93 ± 0.03 c 3.91 ± 0.05 b 3.39 ± 0.01 a

Hepatic glycogen (mg/g liver) 94.68 ± 2.26 a 149.25 ± 2.78 b 152.88 ± 3.07 b

HOMA-IR index 1.49 ± 0.00 c 0.97 ± 0.02 b 0.78 ± 0.00 a

Plasma adipokine
Adiponectin (ng/mL) 0.26 ± 0.03 a 0.48 ± 0.03 b 0.71 ± 0.06 c

Leptin (ng/mL) 3.76 ± 0.27 3.32 ± 0.33 3.36 ± 0.26
Resistin (ng/mL) 32.55 ± 0.12 c 22.88 ± 1.43 b 18.25 ± 1.05 a

TNF-α (µg/mL) 9.58 ± 0.81 c 7.25 ± 0.58 b 4.51 ± 0.12 a

Hepatic glucose-regulating enzymes (µmol/min/mg protein)

PEPCK 3.74 ± 0.87 c 2.98 ± 0.52 b 1.18 ± 0.41 a

GK 1.62 ± 0.13 a 2.89 ± 0.19 b 2.98 ± 0.22 b

G6pase 76.95 ± 1.32 c 68.33 ± 1.47 b 47.58 ± 1.51 a

GK/G6pase ratio 0.02 ± 0.00 a 0.04 ± 0.00 b 0.06 ± 0.00 c

a−c Values are means ± SE (n = 10). Means in the same row not sharing a common superscript are significantly
different at p < 0.05. NC, normal control diet (AIN-93M); SH, normal diet + non-germinated Superhongmi rice;
GSH, normal diet + germinated Superhongmi rice; HOMA-IR, homeostasis model of insulin resistance = (fasting
insulin × fasting glucose)/22.5; TNF, tumor necrosis factor; PEPCK, phosphoenolpyruvate carboxynase;
GK, glucokinase; G6pase, glucose-6-phosphatase.

3.3. Plasma Adipokine Level

The adiponectin level was highest in the GSH group (0.71 ng/mL) and lowest in the NC group
(0.26 ng/mL) (Table 4). On the other hand, the levels of resistin and TNF-α were lowest in the GSH
group and highest in the NC group. No significant difference was found in the leptin level among the
animal groups.

3.4. Hepatic Glucose-Regulating Enzymes Activities

The hepatic PEPCK and G6pase activities were lowest in GSH rats and highest in the NC group
(Table 4). Both the SH and GSH rats exhibited significantly higher GK activity (2.89–2.98 µmol/min/mg
protein) than the control ones (1.62 µmol/min/mg protein). The GK to G6pase ratio was highest in the
GSH group (0.06), followed by the SH group (0.04), then the NC group (0.02).
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3.5. Biochemical Markers of Bone Metabolism

The GSH group showed significantly higher levels of 17-β-estradiol (0.87 ng/mL) and lower
levels of intact PTH (18.05 pg/mL), NTx-1 (121.44 nmol/L), and CTx-1 (13.29 nmol/L) than the NC
and SH groups (Table 5). No significant difference was found in the calcium and osteocalcin contents
among the groups. The ALP level, on the other hand, was below 0.50 µg/L in all groups.

Table 5. Biochemical markers of bone metabolism in ovariectomized rats fed with germinated
Superhongmi rice powder.

NC SH GSH

17-β-estradiol (ng/mL) 0.47 ± 0.03 a 0.52 ± 0.02 a 0.87 ± 0.05 b

Intact PTH (pg/mL) 22.58 ± 0.63 b 21.22 ± 1.02 b 18.05 ± 0.57 a

Calcium (mg/dL) 9.65 ± 0.53 10.68 ± 0.43 10.58 ± 0.58
Osteocalcin (ng/mL) 13.55 ± 1.23 13.16 ± 0.73 12.57 ± 0.54

Alkaline phosphatase (µg/L) <0.50 ± 0.00 <0.50 ± 0.00 <0.50 ± 0.00
NTx-1 (nmol/L) 181.58 ± 2.37 c 145.25 ± 1.23 b 121.44 ± 3.45 a

CTx-1 (nmol/mL) 23.71 ± 0.85 c 18.69 ± 0.65 b 13.29 ± 1.58 a

a−c Values are means ± SE (n = 10). Means in the same row not sharing a common superscript are significantly
different at p < 0.05. NC, normal control diet (AIN-93M); SH, normal diet + non-germinated Superhongmi rice;
GSH, normal diet + germinated Superhongmi rice; PTH, parathyroid hormone; NTx-1, N-terminal telopeptide
of type 1 collagen; CTx-1, C-terminal telopeptide of type 1 collagen.

4. Discussion

Ovarian hormone deficiency resulting from menopause or ovariectomy increases the risk of
diabetes, obesity, dyslipidemia, and osteoporosis [14,17,36]. The present study analyzed the effect
of germinated Superhongmi rice, a reddish-brown pigmented cultivar, on the glucose and bone
metabolisms in the postmenopausal-like model of ovariectomized rats. Results showed that diet
supplementation of germinated and non-germinated Superhongmi rice powder significantly decreased
the body weight gain, amount of body fat, blood glucose level, and plasma insulin concentrations and
increased the hepatic glycogen level in ovariectomized rats. Both the SH and GSH animal groups also
exhibited a markedly lower HOMA-IR index—an indicator of insulin resistance—than the control
group, suggesting an increase in the insulin sensitivity in these animals. Studies in the past have also
shown that pigmented rice could lower the body weight gain and improve the glucose metabolism in
both laboratory animals and human subjects [12,13]. Between the two Superhongmi rice-fed groups,
the GSH rats exhibited a greater body weight-lowering effect and hypoglycemic activity than the
SH group. Germinated rice, especially pigmented cultivar, contains substantially higher amounts
of bioactive compounds than non-germinated rice [4,5,19]. In the present study, γ-oryzanol, GABA,
phytic acid, tocols, and policosanol were significantly higher in a germinated rice sample than that
of the non-germinated one. γ-oryzanol, GABA, and phytic acid have hypolipidemic, hypoglycemic,
and anti-obesity effects [4,7,37–39]. The tocols and policosanol possess antioxidative and antidiabetic
property [4,40,41]. Hence, the strong hypoglycemic activity observed in GSH rats relative to the
SH group is probably due to the increased amounts of bioactives in the germinated Superhongmi
rice. This increase in the bioactive content is caused by the breaking down of the cell wall during
germination, releasing the free and bound materials, and the activation of dormant enzymes associated
with the synthesis of bioactive compounds [3].

The metabolism of glucose is influenced by adipokines and glucose-regulating enzymes.
The ovariectomized rats fed with germinated Superhongmi rice powder showed the lowest resistin and
TNF-α levels and highest adiponectin concentration. They also exhibited the lowest PEPCK and G6pase
activities and highest GK activity and GK/G6pase ratio. The adipokines resistin and TNF-α regulate
the lipid and glucose metabolisms and their elevated levels have been associated with the progression
of obesity and diabetes [42–44]. The adiponectin, on the other hand, induces insulin-sensitizing effects
and its enhanced expression has been shown to improve insulin sensitivity and glucose tolerance



Nutrients 2016, 8, 658 7 of 10

while its deficiency could induce insulin resistance [42]. An elevated level of adiponectin has also been
reported to protect postmenopausal women against the development of diabetes [45]. The PEPCK,
GK, and G6pase are major enzymes associated with glucose metabolism, wherein PEPCK and G6pase
are involved in the regulation of gluconeogenesis and hepatic glucose output and an increase in their
activities could result in an increased production of glucose [46,47]. The GK enzyme, on the other hand,
is involved in glucose homeostasis and its enhanced activity has been associated with an increased
glycogen level and reduced blood glucose content [48]. The GK/G6pase ratio, which reflects the
balance between glucose uptake and output, was highest in GSH rats, indicating an enhanced glucose
metabolism in these animals. Thus, the increase in adiponectin level and GK activity and the reduction
in resistin and TNF-α concentrations and PEPCK and G6pase activities are possibly responsible for the
improved glucose profile found in the rice-fed ovariectomized rats, particularly the GSH group.

Menopause and ovariectomy cause metabolic dysfunctions due to the rapid decrease of the
estrogen hormone [14]. In the present study, the GSH rats showed significantly higher amount
of 17-β-estradiol—the most potent form of estrogen—than the control group, suggesting that the
germinated Superhongmi rice was able to inhibit the ovariectomy-induced reduction of estrogen level
in these animals. Estrogen plays a central role in the regulation of bone metabolism, and administration
of 17-β-estradiol has been reported to decrease the rate of bone turnover and prevent bone loss
in postmenopausal women [49–51]. The ovariectomized rats fed with germinated Superhongmi
rice also exhibited relatively low levels of intact PTH, NTx-1, and CTx-1, which are biochemical
markers of bone resorption, indicating a reduced bone turnover in the GSH group. Increased bone
resorption and imbalanced bone turnover are considered the main cause of the rapid rate of bone
loss and enhanced risk of bone fracture in postmenopausal women [51,52]. Rice cultivars with
colored pericarp, such as Superhongmi, are rich in antioxidant compounds such as anthocyanins,
tocols, γ-oryzanol, and phytic acid [53] and germination could further increase the amount of these
antioxidant compounds. Germinated Superhongmi rice has been previously reported to contain
a substantial amount of antioxidant compounds and to have a strong antioxidant capacity [19]. Past
investigations revealed that dietary antioxidants could prevent bone loss in postmenopausal women
and ovariectomized animals and may be useful in the prevention and treatment of osteoporosis [54,55].
Since oxidative stress plays a central role in the pathogenesis of osteoporosis [56,57], the antioxidant
compounds present in germinated Superhongmi rice may have been partly responsible for the
improved bone metabolism observed in GSH rats.

5. Conclusions

The pigmented rice Superhongmi significantly reduced the body weight gain, glucose level,
insulin concentration, and bone turnover in the postmenopausal-like model of ovariectomized
rats through a mechanism involving the regulation of adipokine production and modulation of
glucose-regulating enzyme activities. Germination for 72 h further enhanced the hypoglycemic effect
and bone metabolism-improving action of this pigmented rice cultivar which may have been due
to the increased amounts of various bioactive compounds such as GABA, γ-oryzanol, and tocols.
Germinated Superhongmi rice may be beneficial as a functional food with therapeutic potential against
menopause-induced hyperglycemia and bone turnover imbalance.
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