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Abstract: Background: Epidemiological studies have demonstrated that folate, iodine and iron intake
during pregnancy impacts on foetal brain development and cognitive function. However, in human
studies, the relationship with other dietary nutrients is less clear. Objective: This systematic
review aims to critically appraise the current literature and meta-analyses results from nutritional
interventions during pregnancy that aimed to optimise infant and child cognitive outcomes.
Design: Ten electronic databases were searched for articles published up to August 2017. The search
was limited to articles published in English. Randomised controlled trials (RCTs) testing the impact of
any nutritional intervention (dietary counselling, education, nutrient supplementation, fortified foods
and/or foods) during pregnancy on cognitive outcomes of children (<10 years old). Two independent
reviewers assessed study eligibility and quality using the American Dietetic Association quality
criteria checklist for primary research. Standardised mean differences were used for nine cognitive
domains to measure effects for meta-analyses. Results: A total of 34 RCTs were included (21 studies
included children aged less than 35 months, 10 studies included children aged 36–60 months and
3 studies included children aged 61–119 months). The types of nutritional interventions included
nutrient supplements, whole foods, fortified foods and nutrition education. The following nine
cognition outcomes: attention, behaviour, crystallised intelligence, fluid intelligence, global cognition,
memory, motor skills, visual processing, and problem solving were not significantly impacted by
nutritional interventions, although 65% of studies conducted post-hoc data analyses and were likely to
be underpowered. Although, long chain polyunsaturated fatty acids (LCPUFA) supplementation was
associated with a marginal increase in crystallised intelligence (Effect size (ES): 0.25; 95% confidence
interval (95% CI): −0.04, 0.53), the effect was not statistically significant (p = 0.09), with significant
study heterogeneity (p = 0.00). Conclusions: LCPUFA supplementation may be associated with an
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improvement in child crystallised intelligence, however further research is warranted. The remaining
eight cognition domains were not significantly impacted by maternal nutritional interventions.

Keywords: behaviour; child; cognition; cognitive function; infant; nutrition; pregnancy; supplement

1. Introduction

Adequate nutrition during the prenatal period and early years of life is essential for brain
development and cognitive function. Approximately 28 days after conception the neural plate
folds and fuses, forming the neural tube, which gives rise to the development of the foetal
brain [1]. Adequate folate from the maternal diet during this period is essential for the formation
of the neural tube, a deficiency in this nutrient can adversely affect brain development, resulting
in neural tube defects, spina bifida and encephalocoele [2–6]. Following the formation of the
neural tube, neurodevelopmental processes including, cell proliferation and migration occur during
gestation, while neurogenesis, synaptic formation and myelination continue until late adolescence [7].
Iodine is necessary for neural cell migration and differentiation, synaptogenesis and myelination [8],
while dietary iron is necessary for neurogenesis and dopamine production [9–11]. Deficiency in these
nutrients are known to compromise brain development and cause significant cognitive impairment in
the offspring [8,12]. The importance of an adequate intake of folate, iodine and iron during pregnancy
for foetal brain development has been well explored; however, the developmental role of other
dietary nutrients (e.g., zinc, long-chain polyunsaturated fatty acids (LCPUFAs)) remains unclear from
human studies.

The link between early-life nutrition and child cognitive function is difficult to establish because
the brain is a heterogeneous organ consisting of multiple anatomic regions (e.g., the hippocampus,
striatum, cortex) and neurodevelopmental processes (e.g., synaptogenesis, myelination) with distinct
developmental trajectories that span and peak at different times [13,14]. For example, myelination
commences at 12–14th week of gestation and occurs at a peak rate during the first two years of life,
but continues until adulthood [15]. The prefrontal cortex, which has a prominent role in higher
cognitive control, develops in growth spurts during the first two years of life, once again between
seven and nine years of age and also at approximately 15 years of age [16,17]. The effect of nutrition
on cognitive function depends on the nutrients involved and the maturation stage of the brain.
These nutrient effects on brain structure and function may occur in the short-term, while others may
not be apparent until full maturation is reached [18].

Optimising brain development and cognitive function holds major long-term consequences
for individuals and societies. Cognitive function affects academic performance and the level of
education attained [19]. Higher educational attainment is related to a lower burden of disease,
due to greater health care access and healthy lifestyle behaviours [20]. Suboptimal cognition during
childhood has been associated with an increased risk of adolescent delinquency [21–23] and adult
violent criminality [21,24–26]. Incarceration can cause permanent cognitive damage, which holds
major implications for future education, employment and health [27]. Strategies that aim to maximise
the cognitive performance of children are therefore important for public health policy and nutrition
during pregnancy.

This systematic review and meta-analysis aimed to determine whether nutritional intervention/s
during pregnancy alter cognitive outcomes during infancy and late childhood. Larson et al. [28]
analysed the impact of maternal nutritional interventions on child cognition, however this review
focused on short-term cognitive outcomes in children under the age of two years in developing
countries. Therefore, a systematic review that considers the impact of maternal nutritional interventions
on long-term cognitive outcomes of children living in developed and developing countries is warranted
to provide the most comprehensive evaluation of the literature in this area.
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2. Methods

The review protocol was developed using The Cochrane Handbook for Systematic Reviews of
Interventions. The Preferred Reporting Items for Systematic Review Meta-Analyses (PRISMA) [29]
was applied. Similar methods have been followed previously by Gresham et al. [30]. The review
protocol can be found in Supplementary Figure S1.

2.1. Search Strategy

A search strategy was devised with the assistance of a medical research librarian (DB). The final
electronic literature search was conducted on August 2017, without date limits, using Medline,
Pre-Medline, Embase, PsycInfo and Maternity and Infant Care via Ovid (http://www.ovid.
com/), Scopus (http://www.scopus.com/), Proquest (http://www.proquest.com/), Web of Science
(http://apps.webofknowledge.com) and Cumulative Index to Nursing and Allied Health Literature
via EBSCO (http://www.ebsco.com/cinahl). The Cochrane Library was also searched separately to
identify any similar systematic reviews that have been conducted previously. The following keywords
were used: pregnan*, cognit*, neurodevelopment, infant*, child*, randomised control* trial, clinical trial,
food* nutrition and supplement*. Full details of the search strategy tailored for each database can
be found in Supplementary Table S1. The Boolean operation (i.e., AND, OR) was used to combine
keywords that were searched as free text in the title, abstract or topics from all papers. All searches
were limited to human studies published in English and citations were downloaded into the reference
manager program ENDNOTE X6.v (New York, NY, USA: Thomson Reuters 2012). The keywords:
mental development and motor development, were searched in all databases separately, to ensure that
no eligible studies were missed from the initial search strategy.

2.2. Study Selection

Eligibility of the retrieved publications was assessed by two independent reviewers (RMT and
SMF) as recommended by PRISMA [29]. Publication title and abstracts were evaluated against the
inclusion and exclusion criteria (Table 1) Publications were excluded by a hierarchical approach based
on the study design, population, intervention and outcomes. Publications meeting the initial eligibility
screening were retrieved in full and were then subjected to a second round of screening by the same two
reviewers to determine the final inclusion or exclusion. Assessment discrepancies between reviewers
were resolved by discussion or assessment by a third party independent reviewer (AJH). The reference
lists of the included publications were searched separately to identify any relevant articles that were
not detected by the electronic search strategy. The abstract and then the full texts were retrieved for
consideration. After the retrieval of the full text a final decision was made about the eligibility of the
publication by the first reviewer (RMT).

Table 1. Inclusion and exclusion criteria for selecting studies.

Criteria Study Design Population Intervention Outcome

Include

Randomised or
pseudorandomised

controlled trials
of any date

Pregnant women of
any age or ethnicity

Dietary intervention/s, including
dietary counselling and education
as well as food/s, fortified foods

or nutrient supplement/s

Measures cognitive
outcomes of infants and
children using cognitive

assessment tests

Singleton pregnancies

Dietary intervention/s provided
during pregnancy (exclusively) or

intervention/s commencing
during gestation and continued

during lactation

Cognition is measured
after birth in children

<10 years of age

Exclude

All other
designs including

animal studies

Women that are
not pregnant

Dietary intervention/s are not
provided to pregnant women

Cognitive outcomes are
not measured in children

after pregnancy

Multiple births for the
primary population

Dietary intervention/s that
commence after pregnancy

http://www.ovid.com/
http://www.ovid.com/
http://www.scopus.com/
http://www.proquest.com/
http://apps.webofknowledge.com
http://www.ebsco.com/cinahl
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2.3. Eligibility Criteria

Table 1 outlines the inclusion and exclusion criteria for this systematic review. Studies that
delivered nutritional interventions to the mother during pregnancy (exclusively) or during pregnancy
plus the post-natal period (<10 years) were included. This review included studies that measured
cognition in children up to nine years of age because the effect of nutritional interventions may
not be apparent until later life [18]. In addition, cognition assessment tests in older children
(>7 years) are a more reliable predictor of adult cognitive function [31]. Nutritional interventions that
commenced after pregnancy were excluded. This review included studies that measured cognition
(as a primary or secondary outcome) in infants and young children using one or more cognition
assessment tests or subtests. Cognition domains were based on the Cattell−Horn−Carroll (CHC)
Theory of Intelligence [32]. The domains fluid and crystallised intelligence, specified in the CHC
model [32], were combined to form the global cognition domain for cognition assessment tests that
reported an overall global composite score. Verbal composite scores were grouped in the crystallised
intelligence domain and non-verbal composite scores were grouped in the fluid intelligence domain.
Short-term memory and long-term retrieval domains were combined to form an overall memory
domain. The remaining six cognition domains of the CHC model [32] (quantitative reasoning, reading
and writing ability, visual processing, auditory processing, processing speed and correct/decision
speed) were included. Attention, motor skills and behaviour were also analysed because these
domains are commonly analysed in cognition assessment tests. For example, the Intergrowth-21st
Neurodevelopment Assessment reports child cognitive scores for the domains attention, motor skills
and behaviour [33]. In addition, Bayley Scales of Infant development (third edition) includes a
behaviour rating scale, which measures behavioural factors including orientation/engagement and
emotional regulation [34]. This review included the outcome visual processing that focuses on both the
response and comprehension of visual stimuli. Visual acuity which primarily focuses on vision clarity,
was not reported as an outcome in this review. Similar methods have been described previously by
Eilander et al. [35].

2.4. Quality Assessment

Articles considered eligible were assessed for methodological quality in their reporting using
the American Dietetic Association (ADA) Quality Criteria Checklist for Primary Research [36]
which is applicable to evaluating the validity of nutrition studies. The quality of the articles was
assessed by two independent reviewers (RMT and SMF) and assessment discrepancies between
reviewers, were managed through discussion or resolved by the third independent reviewer (AJH).
The Quality Criteria Checklist [36] rates the study design and execution, as well as the risk of bias
using ten validity questions, including four priority questions which must be satisfactory to gain
a positive rating. Based on the responses to these questions, the checklist assigns a quality rating:
positive (answered “yes” to six or more validity questions, including all four priority questions),
negative (answered “no” to six or more validity questions) or neutral (answered “no” to one or more
of the four priority criteria questions) [36]. No studies were given a negative rating in this review,
therefore no study exclusions were made.

2.5. Data Extraction

The first reviewer (RMT) extracted relevant data from the included studies using an Excel
spreadsheet. The Organisation for Economic Co-operation and Development (OECD) criteria [37]
were used to classify country income into four categories: low, lower-middle, higher-middle and
high. Nutritional interventions were divided into six categories; single nutrient supplement, multiple
micronutrient supplement, fortified foods, foods, supplements with foods, supplements with foods
and nutrition education or no nutrition intervention (control group). For the purpose of this review a
multiple micronutrient supplement was defined as two or more nutrients which is consistent with
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other authors [38–40]. The cognition outcomes data included the mean, standard deviation, confidence
intervals, minimum and maximum range and odds ratio. Corresponding authors were emailed if
additional data or clarification was required.

2.6. Data Synthesis

The nutritional interventions provided across the included studies were grouped together
according to the nutrient supplied and the type of intervention (i.e., supplement, dietary changes).
The cognition outcomes reported were organised into related cognition domains and the type
of scoring (i.e., subtest or composite score). Thirteen cognition domain categories were derived:
(i) fluid intelligence; (ii) crystallised intelligence; (iii) quantitative knowledge; (iv) memory;
(v) visual processing; (vi) auditory processing; (vii) processing speed; (viii) correct decision speed;
(ix) reading and writing; (x) global cognition; (xi) attention; (xii) motor skills; (xiii) behaviour.

2.7. Statistical Analysis

The aim of meta-analysis was to present a single effect size for the 13 specified cognition scores.
The standardised mean difference (SMD) was used to measure the effect considering that all outcomes
were measured using different cognition assessment tests and reporting units. The SMD, also known
as Cohen’s d, is defined as the difference between the mean of the intervention and control group
divided by the standard deviation of the data. Methods to convert other units (e.g., Odds ratio)
to SMD are described in Sanchez-Meca et al. [41]. Studies that presented multiple cognition outcomes
within the same cognition domain, multiple time-points, or multiple interventions for multiple
micronutrient supplementation with only a single control group, the respective method described by
Borenstein et al. [42] was used to calculate a summary SMD and standard error which accounts for
non-independence within each study. As the correlations between outcomes were not reported by the
studies, the correlation was assumed to be 0.5, and sensitivity analyses were performed using a higher
(0.8) or lower (0.2) correlation to assess the changes in the standard error.

Supplementary Table S2 shows an example of how the composite effect size was created.
A random effects meta-analytic model (using the method of DerSimonian and Laird [43])
was conducted for each cognitive outcome, where the observed effect sizes are regarded to vary
due to sampling variance. A fixed effects model using inverse variance weights was also conducted
for secondary analysis. The heterogeneity and total variation of studies were analysed using the I2

statistic [44]. Funnel plots were used to assess publication bias. Subgroup analysis was performed
for each outcome by the nutrient of interest. A sensitivity analysis with a random effects model
was conducted in which the studies were stratified by country income. The statistical analysis was
conducted using the metan command in the statistical software package STATA 13 (College Station,
TX, USA: StataCorp LP 2013).

3. Results

3.1. Search Results

A total of 1195 publications (excluding duplicates, n = 439) were assessed against the inclusion
and exclusion criteria (Figure 1). Seven included publications were identified from hand searching the
reference lists of included publications detected from the initial search strategy. These articles all used
the keyword mental development, which was not included separately. This systematic review resulted
in 34 included publications after inclusion and exclusion criteria were applied to full texts.
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Figure 1. Flow chart for study selection process.

3.2. Quality

A summary of the ADA quality assessment including participant selection, handling of withdrawals
and the use of study blinding for each trial is presented in Supplementary Table S3. Direct (e.g., blood,
urine tests) intervention compliance measures were used in 12 out of 34 studies [45–56]. Indirect
(e.g., pill count, self-reported) intervention compliance measures were used in 15 out of 34 studies [57–71].
The attrition rate ranged from 0–99% indicating the potential for bias with a loss to follow-up. Post-hoc
data analysis was used in 22 studies [46,47,49–51,53,55–58,60,61,63–67,69,72–75].
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3.3. Description of Studies

Table 2 summarises the characteristics of the included studies. The earliest publication was from
1979 [76] and the latest from 2017 [72,75]. A summary of the studies from the OECD is provided in
Supplementary Table S5. In summary, 50% of studies were from high-income countries, 29% of studies
were from middle-income countries and 21% of studies were from low-income countries.

3.4. Participants

The study populations were mostly healthy pregnant women, except one publication [61]
which included pregnant women with human immunodeficiency virus type 1 (HIV-1),
although pregnant women were excluded if they were diagnosed with acquired immunodeficiency
syndrome (AIDS) according to the World Health Organisation (WHO) definition [77].

3.5. Intervention

A summary of the nutritional interventions of the studies is provided in Supplementary Table S4.
In summary, 76% of studies provided a nutrient supplement exclusively for the study intervention, no
studies provided nutrition counselling or education as a stand-alone intervention.

3.6. Cognitive Outcomes

Table 2 summarises the cognition assessment tools used in each study. Further details about the
cognition assessment tests used is provided in Supplementary Table S5. The age of child cognitive
testing ranged from less than two weeks [76] to nine years old [71], however 62% of studies (n = 13 trials)
reported cognition outcomes in children less than 35 months, and 46% of these studies (n = 6 trials)
provided LCPUFA interventions in high-income countries. Meta-analysis was completed for nine
cognition outcomes measured in the 34 included studies. The analyses for each cognition domain
is described below, however in summary all cognition domains were not significantly affected by
nutritional interventions.
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Table 2. Overview of the characteristics of the randomised controlled trials (RCTs).

Source, Year,
Country, OECD

Infant
Sample (n) Intervention Group/s Control Group/s Intervention

Duration
Cognitive
Testing Age

Cognitive
Assessment Tests Main Findings

Choline Intervention vs. Control

Cheatham et al. [45]
2012, US, 1 99 Supplement:

Vitamins: 750 mg/day choline
Supplement: corn
oil capsules

18 weekends gestation
to 3 months
postnatally

10 and 12 month

Visuospatial
Memory Delayed
Response
Task [78–80],
Imitation
paradigms [81],
CDI [82] &
MSEL [83]

There were no significant differences
between the intervention and control
groups for global development,
language, short-term visuospatial
memory, or long-term episodic
memory test scores (p > 0.05) at 10
and 12 months

Iodine Intervention vs. Control

Santiago et al. [54],
Spain, 1 102

Supplement:
Mineral: I1: 200 µg/day iodine I2:
300 µg/day iodine

Fortified food: used
iodised salt

Before 10 weekends
gestation to delivery 6 to 18 month BSID-III [34]

There were no significant differences
between the groups for MDI and PDI
scores (p > 0.05) at 6 to 18 months

Zhou et al. [70],
Australia, 1 53 Supplement:

Mineral: 150 µg/day iodine No supplement Less than 20 weekends
gestation to delivery 18 month BSID-III [34]

There was no significant difference
between the intervention compared
to the control group for child
cognition (p = 0.42), language
(p = 0.83) and motor skills (p = 0.61)
at 18 months of age

Zhou et al. [65],
Australia, 1 302 Supplement:

Mineral: 20 mg/day Fe No supplement 20 weekends gestation
to delivery 48 months SB4 [84] & SDQ [85]

There were no significant differences
between groups for child cognition
and behaviour test scores (p > 0.05) at
48 months

Iron and Folic Acid or Multiple Micronutrient Intervention vs. Control

Chang et al. [73],
China, 3 850

Supplement: Vitamins: I1:
400 µg/day FA I2: 400 µg/day FA,
800 µg/day vit A, 1.4 mg/day vit
B1, 1.4 mg/day vit B2, 18 mg/day
B3, 1.9 mg/day vit B6, 2.6 µg/day
vit B12, 70 µg/day vit C, 5 µg/day
vit D, 10 mg/day vit E
Minerals: I1: 60 mg/day Fe I2:
2 mg/day Cu, 150 µg/day iodine,
30 mg/day Fe, 65 µg/day Se,
15 mg/day Zn

Supplement:
Vitamin: 400 µg/day FA

Less than 28 weekends
gestation to delivery

3,6,12,18
and 24 months

BSID-II (Chinese
translation) [86,87]

The prenatal IDA intervention
groups had a lower MDI (p = 0.046 in
folic acid; p = 0.034 in multiple
micronutrient supplements)
compared to the prenatal-non-IDA
group. There was no significant
difference in MDI scores in the
prenatal-IDA group and
prenatal-non-IDA group that
received iron and folic acid
supplements (p = 0.641)
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Table 2. Cont.

Source, Year,
Country, OECD

Infant
Sample (n) Intervention Group/s Control Group/s Intervention

Duration
Cognitive
Testing Age

Cognitive
Assessment Tests Main Findings

Li et al. [60],
China, 2 1305

Supplement:
Vitamins: I1: 800 µg/day vit A,
1.4 mg/day vit B1, 1.4 mg/day B2,
18 mg/day vit B3, 1.9 mg/day vit
B6, 2.6 mg/day vit B12, 70 mg/day
vit C, 10 µg/day vit D, 10 mg/day
vit E, 400 µg/day FA I2:
400 µg/day FA Minerals: I1:
2 mg/day Cu, 30 mg/day Fe,
150 µg/day iodine, 65 µg/day Se
I2: 30 mg/day Fe

Supplement
Vitamins:
400 µg/day FA

27 weekends gestation
to delivery

3, 6 and
12 months BSID-II [86]

Positive effects were demonstrated
from the multiple micronutrient
supplement on child MDI scores at
12 months (p = 0.01)

Hanieh et al. [48],
Vietnam, 3 1168

Supplement taken twice weekly
Vitamins: I1: 1500 µg/day FA I2:
1600 µg/day vit A, 2.8 mg/day vit
B1, 2.8 mg/day vit B2, 36 mg/day
vit B3, 3.8 mg/day vit B6,
2.8 mg/day vit B12, 140 mg/day
vit C, 10 mg/day vit D, 20 mg/day
vit E, 1500 µg/day FA
Minerals: I1: 60 mg/day Fe I2:
4 mg/day Cu, 60 mg/day Fe,
300 µg/day iodine, 130 µg/day Se

Supplement taken daily
Vitamin: 400 µg/day FA
Mineral: 60 mg/day Fe

Less than 16
weekends gestation to
3 months postnatally

6 months BSID-III [34]

A positive effect was demonstrated
from the twice weekly iron and folate
acid supplement groups on child
cognitive development scores
(MD 1.89; 95% CI 0.23 to 3.56)
at 6 months

LCPUFA s Intervention vs. Control

Brei et al. [72],
Germany, 1 130

Supplement: fish oil capsules
LCPUFAs: 1020 mg/day DHA,
180 mg/day EPA
Vitamin: 9 mg/day vit E
Dietary counselling to
lower ARA intake

Participants received
information for eating a
healthy diet
during pregnancy

15 weekends gestation
to 4 months
postnatally

60 months

Child Development
Inventory (German
translation) [88,89],
MM [90,91]

There were no differences between
the maternal fish oil supplemented
group compared to the control group
on child CDI scores and MM at 4 and
5 years of age (p > 0.05)

Dunstan et al. [46],
Australia, 1 72

Supplement: fish oil capsules
LCPUFAs: 2.2 g/day DHA,
1.1 g/day EPA
Vitamins: 3–4 mg/day vit E

Supplement: olive oil
capsules
LCPUFA: 2.7 g/day
oleic acid
Vitamins: 3–4 mg/day
vit E

20 weekends gestation
to delivery 18 months

GMDS 0-2 [92],
PPVT-III [93] &
CBCL [94]

A positive effect was demonstrated
from the maternal fish oil
intervention on eye and hand
coordination (p = 0.021) in children at
18 months

Gould et al. [47],
Australia, 1 185

Intervention: marine oil capsules
LCPUFAs: 0.8 g/day DHA,
0.1 g/day EPA

Supplement: capsule
with a blend of
vegetable oils

18–21 weekends
gestation to delivery 27 months

Single and multiple
object task [95,96] &
A-not-B task [97]

There were no significant differences
between the intervention and control
groups for child attention, working
memory and inhibitory control
development test scores (p > 0.05)
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Table 2. Cont.

Source, Year,
Country, OECD

Infant
Sample (n) Intervention Group/s Control Group/s Intervention

Duration
Cognitive
Testing Age

Cognitive
Assessment Tests Main Findings

Helland et al. [49],
Norway, 1 262

Supplement: cod liver oil
LCPUFAs: 75 mg/day ALA,
27.5 mg/day ARA, 1.18 g/day
DHA, 0.8 g/day EPA, 160 mg/day
LA, Vitamins: 117 µg/day vit A,
1 µg/day vit D, 1.4 mg/day vit E

Supplement: corn oil
LCPUFAs: 92 mg/day
ALA, 8.3 mg/day DHA,
4.7 g/day LA Vitamins:
117 µg/day vit A,
1 µg/day vit D,
1.4 mg/day vit E

17–19 weekends
gestation to 3 months
postnatally

27 and 39
weekends FTII-II [98]

There were no significant differences
between the intervention and control
groups for cognitive development
test scores (p > 0.05) at 27 and
39 months

Helland et al. [51],
Norway, 1 90

Supplement: cod liver oil
LCPUFAs: 75 mg/day ALA,
27.5 mg/day ARA, 1.18 g/day
DHA, 0.8 g/day EPA, 160 mg/day
LA, Vitamins: 117 µg/day vit A,
1 µg/day vit D, 1.4 mg/day vit E

Supplement: corn oil
LCPUFAs: 92 mg/day
ALA, 8.3 mg/day DHA,
4.7 g/day LAVitamins:
117 µg/day vit A,
1 µg/day vit D,
1.4 mg/day vit E

1–19 weekends
gestation to 3 months
postnatally

48 months KABC-II [99]

Apositive effect was demonstrated
from the cod liver oil supplement on
child mental processing composite
score (p = 0.049) at 48 months

Helland et al. [50],
Norway, 1 143

Supplement: cod liver oil
LCPUFAs: 75 mg/day ALA,
27.5 mg/day ARA, 1.18 g/day
DHA, 0.8 g/day EPA, 160 mg/day
LA, Vitamins: 117 µg/day vit A,
1 µg/day vit D, 1.4 mg/day vit E

Supplement: corn oil
LCPUFAs: 92 mg/day
ALA, 8.3 mg/day DHA,
4.7 g/day LA
Vitamins: 117 µg/day
vit A, 1 µg/day vit D,
1.4 mg/day vit E

1–19 weekends
gestation to 3 months
postnatally

84 months KABC-II [99]

No significant differences between
the intervention and control groups
for cognitive development test scores
(p > 0.05) at 84 months was found

Hurtado et al. [68],
Spain, 1 61

Supplement: fish oil drink
per 100 mL
Energy: 145 kJ
Macronutrients: 3.7 g prot., 6.7 g
carb., 1.8 g total fat
LCPUFAs: 80 mg DHA, 18 mg EPA
Vitamins: 0.4 µg vit B12, 9 mg vit C,
0.75 µg vit D, 1.5 mg vit E, 80 µg FA
Minerals: 23 µg iodine, 2.2 mg Fe

Supplement drink
per 100 mL
Energy: 145 kJ
Macronutrients: 3.7 g
prot., 6.7 g carb., 1.8 g
total fat
Vitamins: 0.4 µg vit B12,
9 mg vit C, 0.75 µg vit D,
1.5 mg vit E, 80 µg FA
Minerals: 23 µg iodine,
2.2 mg Fe

28 weekends gestation
to 4 months
postnatally

12 months BSID-II [86]

There were no differences between
the maternal fish oil supplemented
group compared to the control group
on child MDI and PDI composite
scores at 12 months of age

Judge et al. [59],
US, 1 29

Muesli bar with fish oil. Per bar;
Energy: 386 kJ Macronutrients: 18 g
carb., 0.3 g fibre, 1.3 g prot., 1.7 g
total fat, 300 mg DHA, 38 mg EPA

Muesli bar without fish
oil. Per bar;
Energy: 386 kJ
Macronutrient: 18 g
carb., 0.3 g fibre, 1.3 g
prot., 1.7 g total fat

24 weekends gestation
until delivery 9 months

2-step
problem-solving
test [100–103] &
FTII-II [98]

Positive effects were demonstrated
from the fish oil intervention group
on the problem-solving task
(p = 0.017), total intentional score
(p = 0.011) and the number of
intentional solution on both cloth
(p = 0.008) and cover steps (p = 0.004)
at 9 months



Nutrients 2017, 9, 1265 11 of 32

Table 2. Cont.

Source, Year,
Country, OECD

Infant
Sample (n) Intervention Group/s Control Group/s Intervention

Duration
Cognitive
Testing Age

Cognitive
Assessment Tests Main Findings

Makrides et al. [52],
Australia, 1 726

Supplement: fish oil capsules
LCPUFAs: 800 mg/day DHA,
100 mg/day EPA

Supplement: Capsules
with vegetable oil blend

21 weekends gestation
to delivery 18 months BSID-III [34]

There were no significant differences
between the groups for cognitive and
language test scores (p > 0.05)

Mulder et al. [62],
Canada 4, 1 216 Supplement: algal oil capsules

LCPUFAs: 400 mg/day DHA
Supplement: soybean
and corn oil capsules

16 weekends gestation
to delivery 9 and 18 months CDI [82] &

BSID-III [34]

Negative effects were demonstrated
from the maternal algal oil
supplement for CDI language
(p < 0.05) at 14 months and
18 months and BSID-III language
scores at 18 months (p < 0.05)

Ramakrishnan et al. [74],
Mexico, 2 797 Supplement: algal oil capsules

LCPUFAs: 400 mg/day DHA
Supplement: corn and
soy oil capsules

18–22 weekends
Gestation to delivery 60 months

MSCA (Spanish
translation) [104],
(BASC-2) [105], and
(K-CPT) [106]

There were no significant differences
between the intervention group
compared to the control group for
MSCA scores (p > 0.05), BASC-2 or
scores at 5 years. of age. The
intervention did significantly affect
K-CPT omissions scores (p = 0.01)
compared to the placebo group

Tofail et al. [63],
Bangladesh, 4 249

Supplement: fish oil capsules
LCPUFAs: 1.2 g/day DHA,
1.8 g/day EPA

Supplement: soy oil
capsules
LCPUFAs: 2.3 g/day LA

27 weekends gestation
to delivery 10 months

BSID-II [86] &
Wolke’s Behaviour
Rating Scale [107]

There were no significant differences
between the intervention and control
groups for cognitive or behaviour
development test scores (p > 0.05) at
10 months

Van Goor et al. [56],
Netherlands, 1 114

Fish oil capsules
I1: 220 mg/day DHA, 34 mg/day
EPA, 15 mg/day ARA, 274 mg/day
LA, 32 mg/day ALA I2:
220 mg/day DHA, 36 mg/day EPA,
220 mg/day ARA, 46 mg/day LA,
7 mg/day ALA

Supplement: soy bean
oil capsules

14–20 weekends
gestation to 3 months
postnatally

18 months BSID-II [86]

There were no significant differences
between the control and intervention
groups for cognitive development
test scores (p > 0.05) at 18 months

LCPUFA and Folic Acid Intervention vs. Control

Catena et al. [66],
Germany, Spain &
Hungary, 1

136

Dairy drink per sachet: I1:
500 mg/day DHA, 150 mg/day
EPA I2: 400 µg/day FA I3:
500 mg/day DHA, 150 mg/day
EPA, 400 µg/day FA

Dairy drink with
vitamins and minerals
in accordance to
European dietary
guidelines for
pregnancy

Less than 20 weekends
gestation to delivery 102 months

Attention Network
Test (child
version) [108,109]

Children born to mothers
supplemented with folic acid
alone solved the response conflict
more quickly than the control group
and the fish oiand folic acid group
(all p < 0.05)
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Table 2. Cont.

Source, Year,
Country, OECD

Infant
Sample (n) Intervention Group/s Control Group/s Intervention

Duration
Cognitive
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Cognitive
Assessment Tests Main Findings

Multiple Micronutrient Intervention vs. Control

Christian et al. [71],
Nepal, 4 676

Supplement:
Vitamins: I1: 1000 µg/day vit A,
400 µg/day FA I2: 1000 µg/day vit
A, 400 µg/day FA I3: 1000 µg/day
vit A, 400 µg/day FA I4:
1000 µg/day vit A, 400 µg/day FA,
1.6 mg/day vit B1, 1.8 mg/day vit
B2, 20 mg/day vit B3, 2.2 µg/day
vit B6, 2.6 µg/day vit B12,
100 mg/day vit C, 10 µg/day vit D,
10 mg/day vit E, 65 µg/day vit K
Minerals: I2: 60 mg/day Fe I3:
60 mg/day Fe, 30 mg/day Zn I4:
2 mg/day Cu, 60 mg/day Fe,
100 mg/day Mg, 30 mg/day Zn

Supplement: Vitamin:
1000 µg/day vit A

Pregnancy to
3 months postnatally 84–108 months

UNIT [110],
Go/no-go [111], the
Stroop test [112],
backward digit
span [113],
MABC [114],
finger-tapping
test [115]

The difference across all outcomes
(UNIT, executive function and motor
functioning) was significant in
children whose mother received iron
and folic acid supplementation
(p = 0.001) compared to the control
group but not for the other
intervention groups (p > 0.05)

Christian et al. [67],
Bangladeshi, 4 734

Supplement:
Vitamins: 770 µg/day vit A,
1.4 mg/day vit B1, 1.4 mg/day vit
B2, 18 mg/day vit B3, 1.9 mg/day
vit B6, 2.6 µg/day vit B12,
85 mg/day vit C, 5 µg/day vit D,
15 mg/day vit E, 600 µg/day FA
Minerals: 1000 µg/day
Cu,220 µg/day iodine, 27 mg/day
Fe, 60 µg Se, 12 mg/day Zn

Supplement: Vitamin:
600 µg/day FA
Mineral: 27 mg/day Fe

Pregnancy to
3 months postnatally 24 months BSID-III [34]

There were no differences between
the intervention and control group
on child composite scores for
cognition (p = 0.52), language
(p = 0.97), and motor performance
(p = 0.22) at 24 months of age

Joos et al. [116],
Taiwan, 2 198

Supplement: 1680 kJ,
50 g /day carb., 0.55 g/day fibre,
20 g/day prot., 13.3 g/day total
fatVitamins: 750 µg/day vit A,
0.8 mg/day vit B1, 0.9 mg/day vit
B2, 10 mg/day vit B3, 0.08 mg/day
vit B6, 1 mg/day vit B12,
37.5 mg/day vit C, 5 µg/day vit D,
3.35 mg/day vit E Minerals:
0.5 mg/day Ca, 0.5 mg/day Cu,
6 mg/day Fe, 1 mg/day Mn,
0.9 mg/day K, 0.2 mg/day Na,
0.4 mg/day

No supplement Conception to
lactation of 2nd child 8 months BSID-I [117]

A positive effect was demonstrated
from the multiple micronutrient
supplement on PDI (mean ± SD:
3.80 ± 1.90 compared to 3.31 ± 1.71)
at 8 months
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Prado et al. [53],
Indonesia, 3 487

Supplement
Vitamins: 800 µg/day vit A,
1.4 mg/day vit B1, 1.4 mg/day vit
B2, 18 mg/day vit B3, 1.9 mg/day
vit B6, 2.6 mg/day vit B12,
70 mg/day vit C, 5 µg/day vit D,
100 mg vit E, 400 µg/day FA
Minerals: 2 µg/day Cu, 30 mg/day
Fe, 150 µg/day iodine,
65 µg/day Se

Supplement:
Vitamins:
400 µg/day FA
Minerals: 30 mg/day Fe

Pregnancy to
3 months postnatally 42 months

BSID-II [86],
ASQ [118],
BPVS-II [119],
BAS-2 [120],
CDI [82],
NEPSY [121], Snack
Delay Test [122,123],
Windows Test [124]
& Socioemotional
Development
Scale [53].

No significant differences between
the intervention and control groups
for child motor, language, visual
attention/spatial,
executive, and socio-emotional
development test scores (p > 0.05) at
42 months was found

Tofail et al. [64],
Bangladesh, 4 2853

Food & supplements
Energy: 2512 kJ. Vitamins: I1: 400
µg folate I2: 1.4 mg/day vit B1,
1.4 mg/day vit B2, 18 mg/day vit
B3, 2.6 mg/day vit B6, 1.9 mg/day
vit B12, 70 mg/day vit C, 5 µg/day
vit D, 10 mg/day vit E,
400 µg/day FA
Minerals: I1: 30 mg/day Fe I2:
2 mg/day Cu, 60 mg/day Fe,
150 µg/day iodine, 65 µg/day, Se
15 mg/day Zn

Food & supplements
2512 kJ. Vitamins: I1:
400 µg folate I2:
1.4 mg/day vit B1,
1.4 mg/day vit B2,
18 mg/day vit B3,
2.6 mg/day vit B6,
1.9 mg/day vit B12,
70 mg/day vit C,
5 µg/day vit D,
10 mg/day vit E,
400 µg/day FA
Minerals: I1: 30 mg/day
Fe I2: 2 mg/day Cu,
60 mg/day Fe,
150 µg/day iodine,
65 µg/day, Se
15 mg/day Zn

17 weekends gestation
to delivery 7 months

Two step
problem-solving
tests [100–103],
BSID-II [86] &
Wolke’s Behaviour
Rating Scale [107]

There were no significant differences
between the intervention and control
groups for child problem solving
ability, cognitive or behaviour
development test scores (p > 0.05) at
7 months

Vuori et al. [76],
Colombia, 2 244

Food & supplements:
Energy: 3595 kJ
Prot: 38.4 g/day
Vitamin: 1807 µg/day vit A
Mineral: 18 mg/day Fe

No supplement
27 weekends gestation
and continued
during lactation

15 days Checkboard
activity [76]

Positive effects were demonstrated
from food supplements on infants
that achieved habituation (70%) in
comparison to the control group
(56%) p < 0.05. In addition the
supplemented infants moved less
during testing (mean = 11.80,
SD = 6.85) in comparison to the
supplemented group (mean = 10.19,
SD = 5.53)
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Waber et al. [125],
Colombia, 2 304

Food, supplements & nutrition
education
3595 kJ energy, 38.4 g prot., 25.8 g
total fat. Vitamins: 1807 µg vit A,
5.4 mg vit B1, 6.6 mg vit B2,
31.6 mg vit B3, 104.6 mg vit C
Mineral: 1146 mg Ca

No supplement
27 weekends gestation
to 6 months
postnatally

4, 6, 12, 18, 24
and 36 months

GMDS 0–2 [92] &
Escalona &
Corman’s Albert
Einstein Scales of
Sensorimotor
Development [126]

Positive effects were demonstrated
from food supplements on subtests
including personal social (p = 0.006),
speech and language (p = 0.019), eye
and hand coordination (p = 0.008), as
well as general quotient (p = 0.003)

Multiple Micronutrient or Vitamin A Intervention vs. Control

McGrath et al. [61],
Tanzania, 4 327

Supplement:
Vitamins: I1: 1500 µg/day vit A,
30 mg/day beta-carotene,
20 mg/day vit B1, 20 mg/day vit
B2, 100 mg/day vit B3, 25 mg/day
vit B6, 50 mg/day vit B12,
500 mg/day vit C, 30 mg/day vit E,
800 µg/day FA I2: 1500 µg/day vit
A, 30 mg/day beta-carotene,
20 mg/day

Supplement:
Vitamins: C1:
20 mg/day vit B1,
20 mg/day vit B2,
100 mg/day vit B3,
25 mg/day vit B6,
50 mg/day vit B12,
500 mg/day vit C,
30 mg/day vit E,
800 µg/day FA C2:
No supplements

12–27 weekends
gestation to 18 months
in postnatal period

6, 12 and
18 months BSID-II [86]

Positive effects were demonstrated
from the multiple micronutrient
supplement by increasing PDI score
by 2.6 points (95% CI: 0.1–5.1) over 6
to 18 months Vitamin A
supplementation was also associated
with 2.8 point increase (95% CI:
0.4-5.2) in PDI score at 6 months

Vitamin A, Folic Acid and Iron Intervention vs. Control

Schmidt et al. [69],
Indonesia, 4 188

Supplement:
Vitamins: 4800 µg/day vit A,
500 µg/day FA
Mineral: 120 mg/day Fe

Supplement: Vitamin:
500 µg/day FA
Mineral: 120 mg/day Fe

16–20 weekends
gestation to delivery 6 and 12 months BSID-I [117]

There were no significant effects of
vitamin A supplementation on MDI
and PDI scores at 6 or 12 months of
age (p > 0.05). There was no
significant difference between weekly
compared to daily iron
supplementation on child MDI and
PDI scores (p > 0.05)

Vitamin B12 Intervention vs. Control

Srinivasan et al. [75],
India, 3 178 Supplement: Vitamin: 50 µg/day

vit B12 No supplement
Less than 14 weekends
gestation to 6
weekends postnatally

9 months BSID-III [34]

There were no significant effects of
maternal B12 supplementation on
child MDI and PDI scores at
9 months (p > 0.05)

Zinc Intervention vs. Control

Hamadani et al. [58],
Bangladesh, 4 168 Supplement:

Vitamin: 30 mg/day Zn No supplement Pregnancy to delivery 13 months
BSID-II [86] &
Wolke’s Behaviour
Rating Scale [107]

Negative effects were demonstrated
from maternal zinc supplementation
on child MDI (p = 0.04) and
psychomotor development index
(PDI) (p = 0.04) at 13 months



Nutrients 2017, 9, 1265 15 of 32

Table 2. Cont.

Source, Year,
Country, OECD

Infant
Sample (n) Intervention Group/s Control Group/s Intervention

Duration
Cognitive
Testing Age

Cognitive
Assessment Tests Main Findings

Tamura et al. [55],
US, 1 347 Supplement:

Mineral: 25 mg/day Zn No supplement 19 weekends gestation
to delivery 60 months

DAS [127],
VSM [128],
ASM [128], Knox
Cube [129],
PDMS-2 [130] &
Grooved
Pegboard [131]

There were no significant differences
between the intervention and control
groups for cognitive, memory or
motor development test scores
(p > 0.05) at 60 months

Zinc, Folic Acid and Iron vs. Control

Caulfield et al. [57],
Peru, 2 184

Supplement:
Vitamins: 250 µg/day FA
Minerals: 25 mg/day Zn,
60 mg/day Fe

Supplement:
Vitamins:
250 µg/day FA
Minerals: 60 mg/day Fe

10–14 weekends
gestation to delivery 54 months

WPPSI-III [113], bear
story [132,133], the
counting game [57],
draw a person [134],
the friendship
interview [135,136],
Vinelands II [97] &
PBQ [137]

There were no significant differences
between the intervention and control
groups for child cognitive, social or
behavioural development test scores
(p > 0.05) at 54 moths

ALA: alpha-linolenic acid; ARA: arachidonic acid; ASQ: Ages and Stages Questionnaire, second edition; ASM: Auditory Sequential Memory; BAS-II: British Ability Scales, second
edition; BASC-2: Behavioural Assessment System for Children; BPVS: British Picture Vocabulary Scale, second edition; BSID-I: Bayley Scales of Infant Development, first edition; BSID-II:
Bayley Scales of Infant Development, second edition; BSID-III: Bayley Scales of Infant Development, third edition; C1: control 1; C2: control 2, Ca: calcium; CBCL: Child Behaviour
Checklist; Carb: carbohydrates; CDI: MacArthur-Bates Communicative Development Inventories; CI; confidence interval; CL: confidence level; Cu: copper; DAS: Differential Ability Scales,
first edition; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; FA: folic acid; Fe: iron; I1: intervention 1; FTII-II: Fagan Test of Infant Intelligence, second edition; I2: intervention 2;
I3: intervention 3; I4: intervention 4; IDA: iron deficiency anaemia; GMDS 0–2: Griffiths Mental Development Scales for ages 0–2 years; K: potassium; KABC-II: Kaufman Assessment
Battery for Children, second edition; K-CPT: Conners’ Kiddie Continuous Performance Test; LA: linoleic acid; LCPUFA: long chain polyunsaturated fatty acids; MABC: Movement
Assessment Battery for Children; MD: mean difference; MDI: motor development index; MM: lower mirror movements; Mn: manganese; MSCA: McCarthy Scales of Children’s Abilities;
MSEL: Mullen Scales of Early Learning; Na: sodium; NEPSY-II: A Developmental Neuropsychological Assessment, second edition; OR: odds ratio; P: phosphorus; PDI: psychomotor
development index; PBQ: Preschool Behaviour Questionnaire; PDMS-2: Peabody Developmental Motor Scales, 2nd edition; PPVT-III: Peabody Picture Vocabulary Test, third edition; Prot:
protein; SB4: The Stanford-Binet Intelligence Test; SD: standard deviation; DQ: Strength and Difficulties Questionnaire; Se: selenium; SE: standard error; UNIT: Universal Non-verbal
Intelligence Test; Vineland II: Vineland’s Adaptive Behaviour Scales, second edition; VSM: Visual Sequential Memory; Vit: vitamin; WPPSI-III: Wechsler Preschool Primary Scale of
Intelligence, third edition; Zn: zinc. OECD, the organisation for economic co-operation and development criteria: 1 = high income country, 2 = higher middle income country, 3 = lower
middle income country & 4 = low income country.
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3.7. Outcome 1: Behaviour

Ten RCTs [46,48,52,53,57,64,65,70,72,74] measured the effect of a nutritional intervention on
behaviour composite scores. Multiple outcomes were combined to create a composite score
in Brei et al. [72] (2 outcomes), Makrides et al. [52] (2 outcomes), Ramakrishnan et al. [74]
(4 outcomes), Zhou et al. [65] (5 outcomes), Zhou et al. [70] (2 outcomes), Caulfield et al. [57]
(5 outcomes), and Dunstan et al. [46] (4 outcomes). There was no significant effect of LCPUFA
supplementation (n = 4 trials) [46,52,72,74], multiple micronutrient supplementation (n = 1 trial) [53],
iron supplementation (n = 1 trial) [65], iodine supplementation (n = 1 trial) [70], zinc supplementation
(n = 1 trial) [57] or a food-based intervention (n = 1 trial) [64] (Table 3) (Table 3 and Figure 2).
Hanieh et al. [48] investigated the effect of nutrient supplements of varying dosage on cognition,
no significant effect on infant behaviour composite score was reported. From the statistical tests of
Egger (p = 0.72), there was no evidence of publication bias (Supplementary Figure S2). From the
sensitivity analysis, the country-income of the studies did not significantly (p > 0.05) affect child
behaviour outcomes in studies that provided LCPUFA supplementation (Supplementary Figure S3).
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Figure 2. Forest plot for child behaviour outcomes. The overall effect size was estimated
by standardised mean difference (SMD). LCPUFA, long chain polyunsaturated fatty acids.
D+L, random-effects estimate (Der Simonian and Laird method) and I-V, fixed-effects estimate (inverse
variance method).
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Table 3. Meta-analyses for cognitive outcomes in evaluation of nutritional interventions during pregnancy.

Dietary Nutrient Cognitive Outcome Study Authors Country (OECD) Studies (n) Children (n) SMD (95% CI) † p-Value I2 ‡

LCPUFA Attention Gould et al. [47]
Ramakrishnan et al. [74]

Australia (1)
Mexico (2) 2 955 −0.07 (−0.17 to 0.03) 0.19 0%

LCPUFA Behaviour

Dunstan et al. [46]
Makrides et al. [52]

Brei et al. [72]
Ramakrishnan et al. [74]

Australia (1)
Australia (1)
Germany (1)
Mexico (2)

4 1725 −0.05 (−0.12 to 0.03) 0.25 0%

MMN Motor skills

Li et al. [60]
McGrath et al. [61]

Prado et al. [53]
Chang et al. [73]

Christian [71]
Christian [67]

China (2)
Tanzania (4)
Indonesia (3)

China (3)
Nepal (4)

Bangladesh (4)

6 3572 0.02 (−0.04 to 0.17) 0.55 0%

LCPUFA Motor skills

Dunstan et al. [46]
Makrides et al. [52]
Mulder et al. [62]
Tofail et al. [63]

Van Goor et al. [56]
Brei et al. [72]

Ramakrishnan et al. [74]

Australia (1)
Australia (1)
Canada (1)

Bangladesh (4)
Netherlands (1)

Germany (1)
Mexico (2)

7 2265 0.06 (−0.03 to 0.15) 0.22 8.9%

Zinc Motor skills
Caulfield et al. [57]

Hamadani et al. [58]
Tamura et al. [55]

Peru (2)
Bangladesh (4)

United States (1)
3 985 −0.10 (−0.38 to 0.17) 0.49 72.5%

LCPUFA Fluid intelligence
Brei et al. [72]

Dunstan et al. [46]
Ramakrishnan et al. [74]

Germany (1)
Australia (1)
Mexico (2)

3 999 0.05 (−0.08 to 0.18) 0.45 10.1%

MMN Fluid intelligence Christian et al. [71]
Prado et al. [53]

Nepal (4)
Indonesia (3) 2 755 0.07 (−0.20 to 0.33) 0.63 78.2%

Zinc Fluid intelligence Caulifield et al. [57]
Tamura et al. [55]

Peru (2)
United States (1) 2 539 −0.10 (−0.25 to 0.06) 0.23 0%

MMN Global cognition

Joos et al. [116]
Li et al. [60]

McGrath et al. [61]
Waber et al. [125]
Chang et al. [73]

Christian et al. [67]

Taiwan (2)
China (2)

Tanzania (4)
Colombia (2)

China (3)
Bangladesh (4)

6 3126 0.09 (−0.02 to 0.19) 0.11 57.2%
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Table 3. Cont.

Dietary Nutrient Cognitive Outcome Study Authors Country (OECD) Studies (n) Children (n) SMD (95% CI) † p-Value I2 ‡

LCPUFA Global cognition

Dunstan et al. [46]
Helland et al. [49]
Helland et al. [51]
Judge et al. [59]

Makrides et al. [52],
Mulder et al. [62]
Tofail et al. [63]

Van Goor et al. [56]
Brei et al. [72]

Ramakrishnan et al. [74]

Australia (1)
Norway (1)
Norway (1)

United States (1)
Australia (1)
Canada (1)

Bangladesh (4)
Netherlands (1)

Germany (1)
Mexico (2)

10 2632 0.03 (−0.07 to 0.13) 0.55 21.3%

Zinc Crystallised intelligence Caulfield et al. [57]
Tamura et al. [55]

Peru (2)
United States (1) 2 539 −0.04 (−0.20 to 0.12) 0.61 0%

LCPUFA Crystallised intelligence

Dunstan et al. [46]
Makrides et al. [52]
Mulder et al. [62]

Brie et al. [72]
Ramakrishnan et al. [74]

Australia (1)
Australia (1)
Canada (1)

Germany (1)
Mexico (2)

5 1941 0.25 (−0.04 to 0.53) 0.09 87.8%

MMN Crystallised intelligence Christian et al. [67]
Prado et al. [53]

Bangladesh (4)
Indonesia (3) 2 1207 0.01 (−0.11 to 0.12) 0.91 0%

CI: confidence interval; LCPUFA: long chain polyunsaturated fatty acids; MMN: multiple micronutrient; SMD: standardised mean difference; OECD: the organisation for economic
co-operation and development criteria; 1 = high income country, 2 = higher middle income country, 3 = lower middle income country & 4 = low income country; † the main measure of
effect was SMD (also known as Cohens d). The SMD was determined by taking the difference between the mean of the intervention group compared to the control group, and dividing the
pooled standard deviation for the outcome across the whole trial. A random effects model using the method DerSimonian & Laird [43] was applied to the data; ‡ the I2 statistic is the
percentage of observed total variation across studies that is due to heterogeneity rather than chance. It is calculated using the following formula: I2 = 100% × (Q − df )/Q, where Q is
Cochran’s heterogeneity and df is the degrees of freedom [44].
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3.8. Outcome 2: Memory

Four RCTs [45,55,65,74] measured the effect of a nutritional intervention on memory composite
score. There was no significant effect of iron supplementation (n = 1 trial) [55], zinc supplementation
(n = 1 trial) [65], choline supplementation (n = 1 trial) [45] or LCPUFA supplementation (n = 1 trial) [74]
on memory composite scores.

3.9. Outcome 3: Motor Skills

Eighteen RCTs [46,48,52,53,55–58,60–64,67,71–74] measured the effect of a nutritional intervention
on the motor skills score. Multiple outcomes were combined to create a composite score in
Brei et al. [72] (2 outcomes), Dunstan et al. [46] (2 outcomes), Mulder et al. [62] (2 outcomes),
and Christian et al. [71] (2 outcomes). Li et al. [60] Chang et al. [73], and Christian et al. [71] used two
interventions and one control group, the sample populations were not independent, therefore the
effect sizes were combined. McGrath et al. [61] also used multiple independent intervention and
control groups, therefore the effect sizes were kept separate. There was no significant effect of
multiple micronutrient interventions (n = 6 trials) [53,60,61,67,71,73], LCPUFA supplementation
(n = 7 trials) [46,52,56,62,63,72,74], zinc supplementation (n = 3 trials) [55,57,58] or food-based
intervention (n = 1 trial) [64] on motor skills composite scores (Table 3 and Figure 3). Hanieh et al. [48]
investigated the effect of nutrient supplementation of varying dosage on cognition, no significant effect
on infant motor skills composite score was reported. The heterogeneity among the zinc intervention
trials was significant (p = 0.03). From the statistical tests of Egger (p = 0.54), there was no evidence
of publication bias (Supplementary Figure S4). The heterogeneity among the zinc intervention trials
was significant (p = 0.03). From the sensitivity analysis, the country-income of the studies did not
significantly (p > 0.05) affect child motor skills (Supplementary Figure S5).
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3.10. Outcome 4: Fluid Intelligence

Eight RCTs [46,53,55,65,71,72,74] measured the effect of a nutritional intervention on the fluid
intelligence composite score. Multiple outcomes were combined to create a composite score in
Brei et al. [72] (2 outcomes), and Ramakrishnan et al. [74] (2 outcomes).There was no significant
effect of LCPUFA supplementation (n = 3 trials) [46,72,74], multiple micronutrient supplementation
(n = 2 trials) [53,67], zinc supplementation (n = 2 trials) [55,57] or iron supplementation (n = 1 trial) [65]
on fluid intelligence composite scores (Table 3 and Figure 4). From the statistical tests of Egger
(p = 0.39), there was no evidence of publication bias (Supplementary Figure S6). From the sensitivity
analysis, the country-income of the studies did not significantly (p > 0.05) affect child fluid intelligence
(Supplementary Figure S7).

Nutrients 2017, 9, 1265 21 of 33 

 

3.10. Outcome 4: Fluid Intelligence 

Eight RCTs [46,53,55,65,71,72,74] measured the effect of a nutritional intervention on the fluid 
intelligence composite score. Multiple outcomes were combined to create a composite score in Brei 
et al. [72] (2 outcomes), and Ramakrishnan et al. [74] (2 outcomes).There was no significant effect of 
LCPUFA supplementation (n = 3 trials) [46,72,74], multiple micronutrient supplementation (n = 2 
trials) [53,67], zinc supplementation (n = 2 trials) [55,57] or iron supplementation (n = 1 trial) [65] on 
fluid intelligence composite scores (Table 3 and Figure 4). From the statistical tests of Egger (p = 0.39), 
there was no evidence of publication bias (Supplementary Figure S6). From the sensitivity analysis, 
the country-income of the studies did not significantly (p > 0.05) affect child fluid intelligence 
(Supplementary Figure S7).  

 

Figure 4. Forest plot for child fluid intelligence outcomes. The overall effect size was estimated by 
standardised mean difference (SMD). LCPUFA, long chain polyunsaturated fatty acids; MMN, 
multiple micronutrient. D+L, random-effects estimate (Der Simonian and Laird method) and I-V, 
fixed-effects estimate (inverse variance method). 

3.11. Outcome 5: Global Cognition 

Twenty RCTs [46,48,49,51,52,56,57,59–63,65,67,69,72–74,116,125] measured the effect of a 
nutritional intervention on global cognition. The effect size of multiple time points were combined in 
Chang et al. [73], Helland et al. [49], Helland et al. [51] and Helland et al. [50]. Li et al. [60] Van Goor 
et al. [56] Chang et al. [73] and Waber et al. [125] used multiple interventions and one control group, 
the sample populations were not independent, therefore the effect sizes were combined. McGrath et 
al. [61] also used multiple independent intervention and control groups, therefore the effect sizes 
were kept separate. There was no significant effect of multiple micronutrient interventions (n = 6 
trials) [60,61,67,73,116,125] LCPUFA interventions (n = 10 trials) [46,49,51,52,56,59,62,63,72,74] iron 
supplementation (n = 1 trial) [65] or vitamin A supplementation (n = 1 trial) [69] on global cognition 
composite scores (Table 3 and Figure 5). Hanieh et al. [48] investigated the effect of nutrient 
supplementation of varying dosage on cognition, iron and folic acid supplements given twice weekly 
was shown to significantly effect global cognition composite scores in infants at six months. The 
heterogeneity among the multiple micronutrient intervention trials was significant (p = 0.04). From 
the statistical tests of Egger (p = 0.82), there was no evidence of publication bias (Supplementary 

Figure 4. Forest plot for child fluid intelligence outcomes. The overall effect size was estimated by
standardised mean difference (SMD). LCPUFA, long chain polyunsaturated fatty acids; MMN, multiple
micronutrient. D+L, random-effects estimate (Der Simonian and Laird method) and I-V, fixed-effects
estimate (inverse variance method).

3.11. Outcome 5: Global Cognition

Twenty RCTs [46,48,49,51,52,56,57,59–63,65,67,69,72–74,116,125] measured the effect of a
nutritional intervention on global cognition. The effect size of multiple time points were combined
in Chang et al. [73], Helland et al. [49], Helland et al. [51] and Helland et al. [50]. Li et al. [60]
Van Goor et al. [56] Chang et al. [73] and Waber et al. [125] used multiple interventions and one
control group, the sample populations were not independent, therefore the effect sizes were combined.
McGrath et al. [61] also used multiple independent intervention and control groups, therefore the
effect sizes were kept separate. There was no significant effect of multiple micronutrient interventions
(n = 6 trials) [60,61,67,73,116,125] LCPUFA interventions (n = 10 trials) [46,49,51,52,56,59,62,63,72,74]
iron supplementation (n = 1 trial) [65] or vitamin A supplementation (n = 1 trial) [69] on global
cognition composite scores (Table 3 and Figure 5). Hanieh et al. [48] investigated the effect of
nutrient supplementation of varying dosage on cognition, iron and folic acid supplements given
twice weekly was shown to significantly effect global cognition composite scores in infants at six
months. The heterogeneity among the multiple micronutrient intervention trials was significant
(p = 0.04). From the statistical tests of Egger (p = 0.82), there was no evidence of publication bias
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(Supplementary Figure S8). From the sensitivity analysis, the country-income of the studies did not
significantly (p > 0.05) affect child global cognition outcomes (Supplementary Figure S9).
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3.12. Outcome 6: Crystallised Intelligence

Eleven RCTs [46,48,52,53,55,57,62,65,67,72,74] measured the effect of a nutritional intervention on
crystallised intelligence composite score. Multiple outcomes were combined to create a composite
score in Brei et al. [72] (2 outcomes), Caulfield et al. [57] (3 outcomes), Dunstan et al. [46]
(4 outcomes) and Mulder et al. [62] (7 outcomes). There was no significant effect of LCPUFA
supplementation (n = 5 trials) [46,52,62,72,74], multiple micronutrient supplementation [53,67]
(n = 2 trials), zinc supplementation (n = 2 trials) [55,57] or iron supplementation (n = 1 trial) [65]
on crystallised intelligence composite scores (Table 3 and Figure 6). Hanieh et al. [48] investigated the
effect of nutrient supplementation of varying dosage on cognition, no significant effect on child
crystallised intelligence composite score was reported. The heterogeneity among the LCPUFA
intervention trials was significant (p = 0.00). From the statistical tests of Egger (p = 0.05), there was
no evidence of publication bias, however there is asymmetry in the funnel plot (Figure 7). From the
sensitivity analysis, the country-income of the studies did not significantly (p > 0.05) affect child
crystallised intelligence (Supplementary Figure S10).
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3.13. Outcome 7: Visual Processing

Three RCTs [45,53,55] measured the effect of a nutritional intervention on visual processing.
There was no significant effect of choline supplementation (n = 1 trial) [45], multiple micronutrient
supplementation (n = 1 trial) [53] or zinc supplementation (n = 1 trial) [55] on visual processing
composite scores.

3.14. Outcome 8: Attention

Four RCTs [47,66,74,76] measured the effect of a nutritional intervention on attention. There was
no significant effect of multiple or LCPUFA supplementation (n = 2 trials) [47,74] on attention.
Vuori et al. [76] reported that multiple micronutrient supplementation during pregnancy did positively
affect attention in infants at 15 days postnatally.

3.15. Outcome 9: Problem Solving

Two RCTs [59,64] measured the effect of a nutritional intervention on the problem solving
composite score. There was no significant effect of multiple micronutrient intervention (n = 1 trial) [64]
or LCPUFA intervention (n = 1 trial) [59] on problem composite scores.

4. Discussion

This systematic review and meta-analysis indicates that nutritional interventions during
pregnancy do not significantly impact on child cognitive outcomes. There is some evidence to
suggest that LCPUFA supplementation may marginally improve child crystallised intelligence,
however the effect was not statistically significant and study heterogeneity among the trials was
significant. Although a wide scope of literature was assessed and a rigorous selection methodology
was applied, the data included in this systematic review were affected by significant methodological
limitations. From the included studies, 79% were exclusively nutrient supplementation trials, the
effect of food-based interventions or nutrition counselling alone during pregnancy on child cognition
was not well explored. Many studies were small, and attrition rates were high due to the length of
follow-up required. Child cognition was a secondary outcome of interest in many studies, even with
meta-analysis our findings are likely to be underpowered. This systematic was unable to perform a
meta-analysis in specific age ranges due to the lack of data available for children older than 35 months,
especially in low and middle income countries. Therefore, it is important that future trials include a
longer child follow-up, to explore any possible delayed effects of maternal nutritional interventions on
child cognition.

4.1. Quality of Included Studies

Many included studies were considered to be of high quality. While, the Quality Checklist
Criteria [36] is designed to assess the methodological quality and reporting within an article, it does not
assess the appropriateness of the methodology in addressing the research question. This is a concern
considering that many of included RCTs are likely to be at risk of type 2 error, due to the use of
secondary data analysis and not powered to detect differences in cognitive outcome as a primary
outcome variable. In addition, many post-hoc studies excluded participants after randomisation and
in some cases multiple variable adjustments were required to address the significant characteristic
differences between the groups, suggesting the assumptions of randomisation had been breached.
Most post-hoc studies did not perform intention-to-treat analysis to evaluate the randomisation of
the study groups. This approach is likely to introduce bias and systematic error that will reduce
the power of the study. Therefore, it is important that future evidence is derived from adequately
powered primary studies to reduce the risk of a type 2 error and systematic bias in post-hoc studies
and determine whether there are any effects of nutritional interventions during pregnancy on
child cognition.
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4.2. Measuring Child Cognition

There are many methodological challenges when measuring child cognition using psychological
assessment tests. The cognitive performance of infants and children will be affected by their mood,
motivation, amount of sleep and personal effort [138]. Environmental factors, including who conducts
the cognition tests, who else is present during testing and where the tests are held can also influence a
child’s performance ability [138]. In addition, most cognition tests were devised in developed countries,
using stimuli relevant to their culture, therefore this stimuli is likely to be unfamiliar or unacceptable
to children from developing countries.

Many studies in this review used global development assessments (e.g., Bayley’s Scales of Infant
Development) to determine the children’s overall cognitive ability. However, broad measures of
cognitive function may only detect highly significant nutritional effects, especially if the study is
underpowered [138]. Specific cognitive skills (e.g., attention, memory) that contribute to overall
function are regulated by distinct neural mechanisms, that may be differentially affected by nutritional
manipulations [139]. Therefore, Cognitive Assessment Tests that analyse specific skills, may be more
sensitive to detect subtle effects of nutritional interventions on cognition. For this reason, future trials
may be improved by the use of assessment tests that measure specific cognitive skills, as well as global
measures of cognition. The choice of specific cognition test should be based on the hypothesised neural
mechanisms that are expected to be altered by nutrients.

To determine cognitive function later in childhood and adolescence, future studies should
consider linking and analysing school performance data. Pilot data should be used to determine
the appropriateness of the sample size and ensure that the study is adequately powered. This approach
also has the advantage of the outcome assessors being blinded to the randomisation.

4.3. Nutrition Intervention Design

Due to methodological and ethical challenges, most trials analysed the effects of nutrient
supplementation during pregnancy on child cognition rather than using food-based interventions.
This may reflect the perception that obtaining adherence to food-based interventions is a challenge and
therefore nutrient supplementation is a more feasible strategy/study design. However, performing
a meta-analysis for the supplementation trials proved to be difficult because many studies used a
supplemented control group rather than an unsupplemented placebo group. Consequently, only the
effect of the additional nutrient supplemented in the intervention group compared to the control
group could be accessed. In Australia, evidence-based guidelines recommend the use of folic acid
and iodine supplementation during pregnancy, therefore it is unethical to use an unsupplemented
control group within this population. Li et al. [60] and Caulfield et al. [57] attempted to address
this dilemma by providing the same dosage of folic acid across all study groups while women in
the intervention groups received a multiple micronutrient supplement (including folic acid) or folic
acid with iron. In addition, 88% of the studies conducted in high-income countries provided a single
nutrient supplement to women during pregnancy. Since the effect of a single nutrient supplement on
child cognition is likely to be modest, especially in a population that is well-nourished, this is likely
to explain why a significant summary effect was not found. While, 88% of middle and low-income
country studies, provided multiple micronutrient supplementation in a population that is likely to be
undernourished, but no significant effect on child cognition was found. However, since child cognition
assessment test were validated in a western population, this may have resulted in summary effect that
was underestimated.

By convention, many randomised control trials analyse the effect of nutrition on cognition
by distilling complex dietary patterns into a single agent using a nutrient supplement. A single
nutrient supplement is However, the bioavailability and efficacy of nutrient supplements can
differ compared to nutrients contained in food [140]. Nutrient bioavailability is affected by the
specific nutrient, absorptive capacity of intestinal mucosa, physiological states (e.g., pregnancy) and
nutrient-nutrient interactions [140]. For example, the bioavailability of inorganic iron is enhanced by
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an interaction with vitamin C and increasing the bioavailability of iron can decrease magnesium
and calcium absorption [140]. Huang et al. [141] reported that the bioavailability of natural
vitamin was approximately 50 percent greater than synthetic vitamin E (α-tocopherol) in adults.
In addition, synthetic vitamin E supplementation was also associated with a significant reduction in
the bioavailability of other forms of vitamin E [141]. This trial highlights the limitations of analysing the
effects of nutrition via a single agent without considering the biochemical pathways in which nutrients
interact that is likely to be important for cognitive development [142–144]. Given the limited evidence
available, there is a clear need for trials that are designed from a sound biologically plausible basis.

4.4. Public Health Implications

Based on the meta-analyses presented, there is a lack of robust evidence on which to base
recommendations for maternal diet or for the use of nutrient supplements as a strategy to
enhance cognition in children. Given that the synergistic effect of micronutrients in metabolic
pathways is important for enhancing cognitive development of children [145], it is important
that future trials focus on food-based interventions that aim to improve the overall diet quality
of pregnant women. In developing countries, pregnant women are more likely to experience
protein-energy malnutrition, as well as multiple micronutrient deficiencies in comparison to
high-income countries [146]. Therefore, further evidence is required to determine whether protein
and energy as well as micronutrients interventions are effective for improving child cognition in the
long-term in developing countries.

5. Conclusions

In conclusion, this systematic review suggests that the infant and child cognitive outcomes were
not significantly improved by nutritional interventions (dietary counselling, education, nutrition
supplementation, fortified foods and/or whole foods). However, the possible association between
LCPUFA supplementation and child crystallised intelligence warrants further investigation in
high quality RCTs powered to detect difference in cognitive variables as the primary outcome.
Further evidence from primary research is required to test whether maternal nutritional interventions
during pregnancy, in particular food-based interventions, are beneficial for improving child cognition.
This review emphasises the need for well-designed pilot studies to inform adequately powered RCTs
and data linkage studies. This evidence is important because gains in child cognition are likely to have
extended reach to other areas of public health and carry economic benefit.
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Abbreviations

CHC Cattell–Horn–Carroll
CI confidence interval
DHA docosahexaenoic acid
HIV-1 human immunodeficiency virus type 1
LCPUFA long chain polyunsaturated fatty acids
OECD Organisation for Economic Co-operation and Development
PRISMA Preferred Reporting Items for Systematic Review Meta-Analyses
PRISMA randomised controlled trials
SMD standardised mean difference

References

1. Couperus, J.W.; Nelson, C.A. Early brain development and plasticity. In The Blackwell Handbook of Early
Childhood Development; McCartney, K., Phillips, D., Eds.; Blackwell Publishing Ltd.: Malden, MA, USA, 2006;
pp. 85–105.

2. Hibbard, E.D.; Smithells, R.W. Folic acid metabolism and human embryopathy. Lancet 1965, 285, 1254.
[CrossRef]

3. Wald, N.; Sneddon, J. Prevention of neural tube defects: Results of the Medical Research Council Vitamin
Study. Lancet 1991, 338, 131–137. [CrossRef]

4. Smithells, R.W.; Sheppard, S.; Schorah, C.J. Vitamin deficiencies and neural tube defects. Arch. Dis. Child.
1976, 51, 944–950. [CrossRef] [PubMed]

5. Smithells, R.W.; Sheppard, S.; Schorah, C.J.; Seller, M.J.; Nevin, N.C.; Harris, R.; Read, A.P.; Fielding, D.W.
Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch. Dis. Child.
1981, 56, 911–918. [CrossRef] [PubMed]

6. Czeizel, A.E.; Dudas, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamins
supplementation. N. Engl. J. Med. 1992, 327, 1832–1835. [CrossRef] [PubMed]

7. Thompson, R.A.; Nelson, C.A. Developmental science and the media. Early brain development. Am. Psychol.
2001, 56, 5–15. [CrossRef] [PubMed]

8. Bernal, J.; Nunez, J. Thyroid hormones and brain development. Eur. J. Endocrinol. 1995, 133, 390–398.
[CrossRef] [PubMed]

9. Rao, R.; Tkac, I.; Townsend, E.L.; Ennis, K.; Gruetter, R.; Georgieff, M.K. Perinatal iron deficiency predisposes
the developing rat hippocampus to greater injury from mild to moderate hypoxia-ischemia. J. Cereb. Blood
Flow Metab. 2007, 27, 729–740. [CrossRef] [PubMed]

10. Ward, K.L.; Tkac, I.; Jing, Y.; Felt, B.; Beard, J.; Connor, J.; Schallert, T.; Georgieff, M.K.; Rao, R. Gestational
and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young
rats. J. Nutr. 2007, 137, 1043–1049. [PubMed]

11. Wiesinger, J.A.; Buwen, J.P.; Cifelli, C.J.; Unger, E.L.; Jones, B.C.; Beard, J.L. Down-regulation of dopamine
transporter by iron chelation in vitro is mediated by altered trafficking, not synthesis. J. Neurochem. 2007,
100, 167–179. [CrossRef] [PubMed]

12. Lozoff, B.; De Andraca, I.; Castillo, M.; Smith, J.B.; Walter, T.; Pino, P. Behavioral and Developmental Effects
of Preventing Iron-Deficiency Anemia in Healthy Full-Term Infants. Pediatrics 2003, 112, 846–854. [PubMed]

13. Fox, S.E.; Levitt, P.; Nelson, C.A. How the Timing and Quality of Early Experiences Influence the
Development of Brain Architecture. Child. Dev. 2010, 81, 28–40. [CrossRef] [PubMed]

14. Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the
“First 1000 Days”. J. Pediatr. 2016, 175, 16–21. [CrossRef] [PubMed]

15. Sampaio, R.C.; Truwit, C.L. Myelination in the developing human brain. In Handbook of Developmental
Cognitive Neuroscience; Nelson, C.A., Luciana, M., Eds.; MIT Press: Cambridge, MA, USA, 2001; pp. 35–44.

16. Thatcher, R.W. Maturation of the human frontal lobes: Physiological evidence for staging. Dev. Neuropsychol.
1991, 7, 397–419. [CrossRef]

17. Bryan, J.; Osendarp, S.; Hughes, D.; Calvaresi, E.; Baghurst, K.; Van Klinken, J.W. Nutrients for cognitive
development in school-aged children. Nutr. Rev. 2004, 62, 295–306. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(65)91895-7
http://dx.doi.org/10.1016/0020-7292(92)90076-U
http://dx.doi.org/10.1136/adc.51.12.944
http://www.ncbi.nlm.nih.gov/pubmed/1015847
http://dx.doi.org/10.1136/adc.56.12.911
http://www.ncbi.nlm.nih.gov/pubmed/7332338
http://dx.doi.org/10.1056/NEJM199212243272602
http://www.ncbi.nlm.nih.gov/pubmed/1307234
http://dx.doi.org/10.1037/0003-066X.56.1.5
http://www.ncbi.nlm.nih.gov/pubmed/11242988
http://dx.doi.org/10.1530/eje.0.1330390
http://www.ncbi.nlm.nih.gov/pubmed/7581959
http://dx.doi.org/10.1038/sj.jcbfm.9600376
http://www.ncbi.nlm.nih.gov/pubmed/16868555
http://www.ncbi.nlm.nih.gov/pubmed/17374674
http://dx.doi.org/10.1111/j.1471-4159.2006.04175.x
http://www.ncbi.nlm.nih.gov/pubmed/17227437
http://www.ncbi.nlm.nih.gov/pubmed/14523176
http://dx.doi.org/10.1111/j.1467-8624.2009.01380.x
http://www.ncbi.nlm.nih.gov/pubmed/20331653
http://dx.doi.org/10.1016/j.jpeds.2016.05.013
http://www.ncbi.nlm.nih.gov/pubmed/27266965
http://dx.doi.org/10.1080/87565649109540500
http://dx.doi.org/10.1111/j.1753-4887.2004.tb00055.x
http://www.ncbi.nlm.nih.gov/pubmed/15478684


Nutrients 2017, 9, 1265 27 of 32

18. Anjos, T.; Altmae, S.; Emmett, P.; Tiemeier, H.; Closa-Monasterolo, R.; Luque, V.; Wiseman, S.;
Pérez-García, M.; Lattka, E.; Demmelmair, H.; et al. Nutrition and neurodevelopment in children: Focus on
NUTRIMENTHE project. Eur. J. Nutr. 2013, 52, 1825–1842. [CrossRef] [PubMed]

19. Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284.
[CrossRef] [PubMed]

20. Florence, M.; Asbridge, M.; Veugelers, P.J. Diet quality and academic performance. J. School Health 2008, 78,
209–215. [CrossRef] [PubMed]

21. Farrington, D.P. Early predictors of adolescent aggression and adult violence. Violence Vict. 1989, 4, 79–100.
[PubMed]

22. Kaslow, F.W.; Lipsitt, P.D.; Buka, S.L.; Lipsitt, L.P. Family law issues in family therapy practice:
Early intelligence scores and subsequent delinquency: A Prospective study. Am. J. Fam. Ther. 1990,
18, 197–208. [CrossRef]

23. Hinshaw, S.P. Externalizing behavior problems and academic underachievement in childhood and
adolescence: Causal relationships and underlying mechanisms. Psychol. Bull. 1992, 111, 127–155. [CrossRef]
[PubMed]

24. Fergusson, D.M.; Horwood, L.J.; Ridder, E.M. Show me the child at seven II: Childhood intelligence and later
outcomes in adolescence and young adulthood. J. Child Psychol. Psychiatry Allied Discip. 2005, 46, 850–858.
[CrossRef] [PubMed]

25. Stattin, H.; Klackenberg-Larsson, I. Early language and intelligence development and their relationship to
future criminal behavior. J. Abnorm. Psychol. 1993, 102, 369–378. [CrossRef] [PubMed]

26. Frisell, T.; Pawitan, Y.; Långström, N. Is the Association between General Cognitive Ability and Violent
Crime Caused by Family-Level Confounders? PLoS ONE 2012, 7, e41783. [CrossRef] [PubMed]

27. Wildeman, C.; Muller, C. Mass Imprisonment and Inequality in Health and Family Life. Annu. Rev. Law
Soc. Sci. 2012, 8, 11–30. [CrossRef]

28. Larson, L.M.; Yousafzai, A.K. A meta-analysis of nutrition interventions on mental development of children
under-two in low- and middle-income countries. Mater. Child Nutr. 2017, 13. [CrossRef] [PubMed]

29. Liberati, A.; Altman, D.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.;
Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of
Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 339.
[CrossRef]

30. Gresham, E.; Bisquera, A.; Byles, J.E.; Hure, A.J. Effects of dietary interventions on pregnancy outcomes:
A systematic review and meta-analysis. Mater. Child Nutr. 2014, 12, 5–23. [CrossRef] [PubMed]

31. McCall, R.B. Childhood IQ as Predictors of Adult Educational and Occupational Status. Science 1977, 197,
482–483. [CrossRef] [PubMed]

32. Carroll, J. Human Cognitive Abilities: A Survey of Factor-Analytic Studies; Cambridge University Press:
New York, NY, USA, 1993.

33. Fernandes, M.; Stein, A.; Newton, C.R.; Cheikh-Ismail, L.; Kihara, M.; Wulff, K.; de León Quintana, E.;
Aranzeta, L.; Soria-Frisch, A.; Acedo, J.; et al. The INTERGROWTH-21st Project Neurodevelopment Package:
A Novel Method for the Multi-Dimensional Assessment of Neurodevelopment in Pre-School Age Children.
PLoS ONE 2014, 9, e113360. [CrossRef] [PubMed]

34. Bayley, N. Bayley Scales of Infant Development, 3rd ed.; Harcourt Assessment: San Antorio, TX, USA, 2005.
35. Eilander, A.; Gera, T.; Sachdev, H.S.; Transler, C.; van der Knaap, H.C.; Kok, F.J.; Osendarp, S.J. Multiple

micronutrient supplementation for improving cognitive performance in children: Systematic review of
randomized controlled trials. Am. J. Clin. Nutr. 2010, 91, 115–130. [CrossRef] [PubMed]

36. Academy of Nutrition and Dietetics. Evidence Analysis Manual: Steps in the Academy Evidence Analysis Process;
ADA Research and Strategic Business Development: Chicago, IL, USA, 2012.

37. The World Bank Group. Country and Lending Groups: High Income OCED Members 2015.
Available online: http://data.worldbank.org/about/country-and-lending-groups#OECD_members
(accessed on 23 January 2015).

38. Gera, T.; Sachdev, H.P.S.; Nestel, P. Effect of combining multiple micronutrients with iron supplementation
on Hb response in children: Systematic review of randomized controlled trials. Public Health Nutr. 2009, 12,
756–773. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00394-013-0560-4
http://www.ncbi.nlm.nih.gov/pubmed/23884402
http://dx.doi.org/10.1111/nure.12102
http://www.ncbi.nlm.nih.gov/pubmed/24684384
http://dx.doi.org/10.1111/j.1746-1561.2008.00288.x
http://www.ncbi.nlm.nih.gov/pubmed/18336680
http://www.ncbi.nlm.nih.gov/pubmed/2487131
http://dx.doi.org/10.1080/01926189008250804
http://dx.doi.org/10.1037/0033-2909.111.1.127
http://www.ncbi.nlm.nih.gov/pubmed/1539086
http://dx.doi.org/10.1111/j.1469-7610.2005.01472.x
http://www.ncbi.nlm.nih.gov/pubmed/16033633
http://dx.doi.org/10.1037/0021-843X.102.3.369
http://www.ncbi.nlm.nih.gov/pubmed/8408948
http://dx.doi.org/10.1371/journal.pone.0041783
http://www.ncbi.nlm.nih.gov/pubmed/22911856
http://dx.doi.org/10.1146/annurev-lawsocsci-102510-105459
http://dx.doi.org/10.1111/mcn.12229
http://www.ncbi.nlm.nih.gov/pubmed/26607403
http://dx.doi.org/10.1136/bmj.b2700
http://dx.doi.org/10.1111/mcn.12142
http://www.ncbi.nlm.nih.gov/pubmed/25048387
http://dx.doi.org/10.1126/science.197.4302.482
http://www.ncbi.nlm.nih.gov/pubmed/17783247
http://dx.doi.org/10.1371/journal.pone.0113360
http://www.ncbi.nlm.nih.gov/pubmed/25423589
http://dx.doi.org/10.3945/ajcn.2009.28376
http://www.ncbi.nlm.nih.gov/pubmed/19889823
http://data.worldbank.org/about/country-and-lending-groups#OECD_members
http://dx.doi.org/10.1017/S1368980008003145
http://www.ncbi.nlm.nih.gov/pubmed/18671894


Nutrients 2017, 9, 1265 28 of 32

39. Roberts, J.L.; Stein, A.D. The Impact of Nutritional Interventions beyond the First 2 Years of Life on Linear
Growth: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 323–336. [CrossRef] [PubMed]

40. Murphy, S.P.; White, K.K.; Park, S.Y.; Sharma, S. Multivitamin-multimineral supplements’ effect on total
nutrient intake. Am. J. Clin. Nutr. 2007, 85, 280S–284S. [PubMed]

41. Sanchez-Meca, J.; Marin-Martinez, F.; Chacon-Moscoso, S. Effect-size indices for dichotomized outcomes in
meta-analysis. Psychol. Methods 2003, 8, 448–467. [CrossRef] [PubMed]

42. Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Effect Sizes Based on Correlations. In Introduction
to Meta-Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 41–43.

43. DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [CrossRef]
44. Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ

2003, 327, 557–560. [CrossRef] [PubMed]
45. Cheatham, C.; Davis Goldman, B.; Fischer, L.; da Costa, K.A.; Reznick, J.S.; Zeisel, S.H. Phosphatidylcholine

supplementation in pregnant women consuming moderate-choline diets does not enhance infant cognitive
function: A randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2012, 96, 1465–1472.
[CrossRef] [PubMed]

46. Dunstan, J.A.; Simmer, K.; Dixon, G.; Prescott, S.L. Cognitive assessment of children at age 2(1/2) years
after maternal fish oil supplementation in pregnancy: A randomised controlled trial. Arch. Dis. Child. Fetal
Neonatal Ed. 2008, 93, F45–F50. [CrossRef] [PubMed]

47. Gould, J.; Makrides, M.; Colombo, J.; Smithers, L. Randomized controlled trial of maternal omega-3
long-chain PUFA supplementation during pregnancy and early childhood development of attention, working
memory, and inhibitory control. Am. J. Clin. Nutr. 2014, 99, 851–859. [CrossRef] [PubMed]

48. Hanieh, S.; Ha, T.T.; Simpson, J.A.; Casey, G.J.; Khuong, N.C.; Thoang, D.D.; Thung, T.T.; Pasricha, R.S.;
Tran, T.D.; Tuan, T.; et al. The effect of intermittent antenatal iron supplementation on maternal and infant
outcomes in rural Viet Nam: A cluster randomised trial. PLoS Med. 2013, 10, e1001470. [CrossRef] [PubMed]

49. Helland, I.; Saugstad, O.; Smith, L.; Saarem, K.; Solvoll, K.; Ganes, T.; Drevon, C. A. Similar effects on
infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics 2001, 108,
E82. [CrossRef] [PubMed]

50. Helland, I.; Smith, L.; Blomen, B.; Saarem, K.; Saugstad, O.; Drevon, C. Effect of supplementing pregnant
and lactating mothers with n-3 very-long-chain fatty acids on children’s IQ and body mass index at 7 years
of age. Pediatrics 2008, 122, e472–e479. [CrossRef] [PubMed]

51. Helland, I.; Smith, L.; Saarem, K.; Saugstad, O.; Drevon, C. Maternal supplementation with very-long-chain
n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics 2003, 111,
e39–e44. [CrossRef] [PubMed]

52. Makrides, M.; Gibson, R.A.; McPhee, A.J.; Yelland, L.; Quinlivan, J.; Ryan, P. Effect of DHA supplementation
during pregnancy on maternal depression and neurodevelopment of young children: A randomized
controlled trial. JAMA 2010, 304, 1675–1683. [CrossRef] [PubMed]

53. Prado, E.L.; Ullman, M.T.; Muadz, H.; Alcock, K.J.; Shankar, A.H. The effect of maternal multiple
micronutrient supplementation on cognition and mood during pregnancy and postpartum in indonesia:
A randomized trial. PLoS ONE 2012, 7, e32519. [CrossRef] [PubMed]

54. Santiago, P.; Velasco, I.; Muela, J.A.; Sanchez, B.; Martinez, J.; Rodriguez, A.; Berrio, M.; Gutierrez Repiso, C.;
Carreira, M.; Monreno, A.; et al. Infant neurocognitive development is independent of the use of iodised salt
or iodine supplements given during pregnancy. Br. J. Nutr. 2013, 110, 831–839. [CrossRef] [PubMed]

55. Tamura, T.; Goldenberg, R.L.; Ramey, S.L.; Nelson, K.G.; Chapman, V.R. Effect of zinc supplementation
of pregnant women on the mental and psychomotor development of their children at 5 y of age. Am. J.
Clin. Nutr. 2003, 77, 1512–1516. [PubMed]

56. Van Goor, S.A.; Dijck-Brouwer, D.A.J.; Erwich, J.; Schaafsma, A.; Hadders-Algra, M. The influence of
supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment
at eighteen months. Prostaglandins Leukot. Essent. Fat. Acids 2011, 84, 139–146. [CrossRef] [PubMed]

57. Caulfield, L.; Putnick, D.; Zavaleta, N.; Lazarte, F.; Albornoz, C.; Dipietro, J.; Chen, P.; Bornstein, M. Maternal
gestational zinc supplementation does not influence multiple aspects of child development at 54 mo of age
in Peru. Am. J. Clin. Nutr. 2010, 92, 130–136. [CrossRef] [PubMed]

http://dx.doi.org/10.3945/an.116.013938
http://www.ncbi.nlm.nih.gov/pubmed/28298275
http://www.ncbi.nlm.nih.gov/pubmed/17209210
http://dx.doi.org/10.1037/1082-989X.8.4.448
http://www.ncbi.nlm.nih.gov/pubmed/14664682
http://dx.doi.org/10.1016/0197-2456(86)90046-2
http://dx.doi.org/10.1136/bmj.327.7414.557
http://www.ncbi.nlm.nih.gov/pubmed/12958120
http://dx.doi.org/10.3945/ajcn.112.037184
http://www.ncbi.nlm.nih.gov/pubmed/23134891
http://dx.doi.org/10.1136/adc.2006.099085
http://www.ncbi.nlm.nih.gov/pubmed/17185423
http://dx.doi.org/10.3945/ajcn.113.069203
http://www.ncbi.nlm.nih.gov/pubmed/24522442
http://dx.doi.org/10.1371/journal.pmed.1001470
http://www.ncbi.nlm.nih.gov/pubmed/23853552
http://dx.doi.org/10.1542/peds.108.5.e82
http://www.ncbi.nlm.nih.gov/pubmed/11694666
http://dx.doi.org/10.1542/peds.2007-2762
http://www.ncbi.nlm.nih.gov/pubmed/18676533
http://dx.doi.org/10.1542/peds.111.1.e39
http://www.ncbi.nlm.nih.gov/pubmed/12509593
http://dx.doi.org/10.1001/jama.2010.1507
http://www.ncbi.nlm.nih.gov/pubmed/20959577
http://dx.doi.org/10.1371/journal.pone.0032519
http://www.ncbi.nlm.nih.gov/pubmed/22427850
http://dx.doi.org/10.1017/S0007114512005880
http://www.ncbi.nlm.nih.gov/pubmed/23375074
http://www.ncbi.nlm.nih.gov/pubmed/12791632
http://dx.doi.org/10.1016/j.plefa.2011.01.002
http://www.ncbi.nlm.nih.gov/pubmed/21316208
http://dx.doi.org/10.3945/ajcn.2010.29407
http://www.ncbi.nlm.nih.gov/pubmed/20484451


Nutrients 2017, 9, 1265 29 of 32

58. Hamadani, J.D.; Fuchs, G.J.; Osendarp, S.J.; Huda, S.N.; Grantham-McGregor, S.M. Zinc supplementation
during pregnancy and effects on mental development and behaviour of infants: A follow-up study. Lancet
2002, 360, 290–294. [CrossRef]

59. Judge, M.; Harel, O.; Lammi-Keefe, C. Maternal consumption of a docosahexaenoic acid-containing
functional food during pregnancy: Benefit for infant performance on problem-solving but not on recognition
memory tasks at age 9 mo. Am. J. Clin. Nutr. 2007, 85, 1572–1577. [PubMed]

60. Li, Q.; Yan, H.; Zeng, L.; Cheng, Y.; Liang, W.; Dang, S.; Wang, Q.; Tsuji, I. Effects of Maternal
Multimicronutrient Supplementation on the Mental Development of Infants in Rural Western China:
Follow-up Evaluation of a Double-Blind, Randomized, Controlled Trial. Pediatrics 2009, 123, e685–e692.
[CrossRef] [PubMed]

61. McGrath, N.; Bellinger, D.; Robins, J.; Msamanga, G.I.; Tronick, E.; Fawzi, W.W. Effect of Maternal
Multivitamin Supplementation on the Mental and Psychomotor Development of Children Who Are Born to
HIV-1–Infected Mothers in Tanzania. Pediatrics 2006, 117, e216–e225. [CrossRef] [PubMed]

62. Mulder, K.A.; King, D.J.; Innis, S.M. Omega-3 fatty acid deficiency in infants before birth identified using a
randomized trial of maternal DHA supplementation in pregnancy. PLoS ONE 2014, 9, e83764. [CrossRef]
[PubMed]

63. Tofail, F.; Kabir, I.; Hamadani, J.; Chowdhury, F.; Yesmin, S.; Mehreen, F.; Huda, S. Supplementation of
Fish-oil and Soy-oil during Pregnancy and Psychomotor Development of Infants. J. Health Popul. Nutr. 2006,
24, 48–56. [PubMed]

64. Tofail, F.; Persson, L.; El Arifeen, S.; Hamadani, J.; Mehrin, F.; Ridout, D.; Ekstrom, E.; Huda, S.;
Grantham-McGregor, S. Effects of prenatal food and micronutrient supplementation on infant development:
A randomized trial from the Maternal and Infant Nutrition Interventions, Matlab (MINIMat) study. Am. J.
Clin. Nutr. 2008, 87, 704–711. [PubMed]

65. Zhou, S.; Gibson, R.; Crowther, C.A.; Baghurst, P.; Makrides, M. Effect of iron supplementation during
pregnancy on the intelligence quotient and behavior of children at 4 y of age: Long-term follow-up of a
randomized controlled trial. Am. J. Clin. Nutr. 2006, 83, 1112–1117. [PubMed]

66. Catena, A.; Muñoz-Machicao, J.A.; Torres-Espínola, F.J.; Martínez-Zaldívar, C.; Diaz-Piedra, C.; Gil, A.;
Haile, G.; Gyorei, E.; Molloy, A.M.; Decsi, T.; et al. Folate and long-chain polyunsaturated fatty acid
supplementation during pregnancy has long-term effects on the attention system of 8.5-y-old offspring:
A randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 115–127. [CrossRef] [PubMed]

67. Christian, P.; Kim, J.; Mehra, S.; Shaikh, S.; Ali, H.; Shamim, A.A.; Wu, L.; Klemm, R.; Labrique, A.B.;
West, K.P. Effects of prenatal multiple micronutrient supplementation on growth and cognition through 2 y
of age in rural Bangladesh: The JiVitA-3 Trial. Am. J. Clin. Nutr. 2016, 104, 1175–1182. [CrossRef] [PubMed]

68. Hurtado, J.A.; Iznaola, C.; Pena, M.; Ruiz, J.; Pena-Quintana, L.; Kajarabille, N.; Rodriguez-Santana, Y.;
Sanjurjo, P.; Aldamiz-Echevarria, L.; Ochoa, J.; et al. Effects of Maternal Omega-3 Supplementation on Fatty
Acids and on Visual and Cognitive Development. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 472–480. [CrossRef]
[PubMed]

69. Schmidt, M.K.; Muslimatun, S.; West, C.E.; Schultink, W.; Hautvast, J.G. Mental and psychomotor
development in Indonesian infants of mothers supplemented with vitamin A in addition to iron during
pregnancy. Br. J. Nutr. 2004, 91, 279–286. [CrossRef] [PubMed]

70. Zhou, S.J.; Skeaff, S.A.; Ryan, P.; Doyle, L.W.; Anderson, P.J.; Kornman, L.; McPhee, A.J.; Yelland, L.N.;
Makrides, M. The effect of iodine supplementation in pregnancy on early childhood neurodevelopment and
clinical outcomes: Results of an aborted randomised placebo-controlled trial. Trials 2015, 16, 563. [CrossRef]
[PubMed]

71. Christian, P.; Murray-Kolb, L.E.; Khatry, S.K.; Katz, J.; Schaefer, B.A.; Cole, P.M.; Leclerq, S.C.; Tielsch, J.M.
Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in
Nepal. JAMA 2010, 304, 2716–2723. [CrossRef] [PubMed]

72. Brei, C.; Stecher, L.; Brunner, S.; Ensenauer, R.; Heinen, F.; Wagner, P.; Hermsdorfer, J.; Hauner, H. Impact
of the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on offspring neurodevelopment:
5-year follow-up of a randomized controlled trial. Eur. J. Clin. Nutr. 2017, 71, 1114–1120. [CrossRef]
[PubMed]

73. Chang, S.; Zeng, L.; Brouwer, I.D.; Kok, F.J.; Yan, H. Effect of iron deficiency anemia in pregnancy on child
mental development in rural China. Pediatrics 2013, 131, e755–e763. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(02)09551-X
http://www.ncbi.nlm.nih.gov/pubmed/17556695
http://dx.doi.org/10.1542/peds.2008-3007
http://www.ncbi.nlm.nih.gov/pubmed/19336358
http://dx.doi.org/10.1542/peds.2004-1668
http://www.ncbi.nlm.nih.gov/pubmed/16452331
http://dx.doi.org/10.1371/journal.pone.0083764
http://www.ncbi.nlm.nih.gov/pubmed/24427279
http://www.ncbi.nlm.nih.gov/pubmed/16796150
http://www.ncbi.nlm.nih.gov/pubmed/18326610
http://www.ncbi.nlm.nih.gov/pubmed/16685054
http://dx.doi.org/10.3945/ajcn.115.109108
http://www.ncbi.nlm.nih.gov/pubmed/26561619
http://dx.doi.org/10.3945/ajcn.116.135178
http://www.ncbi.nlm.nih.gov/pubmed/27604769
http://dx.doi.org/10.1097/MPG.0000000000000864
http://www.ncbi.nlm.nih.gov/pubmed/25988553
http://dx.doi.org/10.1079/BJN20031043
http://www.ncbi.nlm.nih.gov/pubmed/14756914
http://dx.doi.org/10.1186/s13063-015-1080-8
http://www.ncbi.nlm.nih.gov/pubmed/26654905
http://dx.doi.org/10.1001/jama.2010.1861
http://www.ncbi.nlm.nih.gov/pubmed/21177506
http://dx.doi.org/10.1038/ejcn.2017.79
http://www.ncbi.nlm.nih.gov/pubmed/28537583
http://dx.doi.org/10.1542/peds.2011-3513
http://www.ncbi.nlm.nih.gov/pubmed/23400604


Nutrients 2017, 9, 1265 30 of 32

74. Ramakrishnan, U.; Gonzalez-Casanova, I.; Schnaas, L.; DiGirolamo, A.; Quezada, A.D.; Pallo, B.C.; Hao, W.;
Neufeld, L.M.; Rivera, J.A.; Stein, A.D.; et al. Prenatal supplementation with DHA improves attention at 5 y
of age: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 1075–1082. [CrossRef] [PubMed]

75. Srinivasan, K.; Thomas, T.; Kapanee, A.R.M.; Ramthal, A.; Bellinger, D.C.; Bosch, R.J.; Kurpad, A.V.;
Duggan, C. Effects of maternal vitamin B12 supplementation on early infant neurocognitive outcomes:
A randomized controlled clinical trial. Mater. Child Nutr. 2017, 13. [CrossRef] [PubMed]

76. Vuori, L.; Christiansen, N.; Clement, J.; Mora, J.; Wagner, M.; Herrera, M. Nutritional supplementation and
the outcome of pregnancy. II. Visual habituation at 15 days. Am. J. Clin. Nutr. 1979, 32, 463–469. [PubMed]

77. World Health Organisation. Case Definition for Acquired Immune Deficiency Syndrome (AIDS); World Health
Organisation: Geneva, Switzerland, 1986; pp. 69–73.

78. Pelphrey, K.; Reznick, J.; Goldman, B.D.; Sasson, N.; Morrow, J.; Donahoe, A.; Hodgson, K. Development
of visuospatial short-term memory in the second half of the first year. Dev. Psychol. 2004, 40, 836–851.
[CrossRef] [PubMed]

79. Diamond, A.; Doar, B. The performance of human infants on a measure of frontal cortex function, delayed
response task. Dev. Psychol. 1989, 22, 271–294. [CrossRef] [PubMed]

80. Schwartz, B.; Reznick, J. Measuring infant spatial working memory using a modified delayed-response
procedure. Memory 1999, 7, 1–17. [CrossRef] [PubMed]

81. Meltzoff, A.; Moore, M. Newborn infants imitate adult facial gestures. Child Dev. 1983, 54, 702–709. [CrossRef]
[PubMed]

82. Fenson, L.; Marchman, V.; Thal, D.; Dale, P.; Reznick, J.; Bates, E. The MacArthur-Bates Communicative
Development Inventories: User’s Guide and Technical Manual, 2nd ed.; Paul H. Brookes Publishing Co.: Baltimore,
MD, USA, 2007.

83. Mullen, E. Mullen Scales of Early Learning, AGS Edition: Manual and Item Assessment Book; American Guidance
Service Inc.: Circle Pines, MN, USA, 1995.

84. Thorndike, R.; Hagen, E.; Sattler, J. Stanford-Binet Intelligence Scale: Technical Manual, 4th ed.; The Riverside
Publishing Company: Itasca, IL, USA, 1986.

85. Goodman, R. Strengths and Difficulties Questionnaire 1999. Available online: http://www.sdqinfo.com/
(accessed on 25 January 2015).

86. Bayley, N. Bayley Scales of Infant Development, 2nd ed.; Psychological Corporation: San Antonio, TX, USA, 1993.
87. Huang, H.; Tao, S.; Zhang, Y. Standarization of Bayley scales of infant development in Shanghai. Chin. J.

Child Health 1993, 1, 158–160.
88. Ireton, H. Child Development Inventory Manual; Behavior Science Systems: Minneapolis, MN, USA, 1992.
89. Brandstetter, G.; Siebler, V.; Schneider, H.; Grässle, A.; Steinmacher, J.; Bode, H. Elternfragebogenzur

Entwicklung im Kleinkindalter (EFkE)—Ein Screeninginstrument: I. Normierung Kinderarztl Prax 2002, 5,
338–344.

90. Hermsdorfer, J.; Mai, N.; Marquardt, C. Evaluation of precision grip using pneumatically controlled loads.
J. Neurosci. Methods 1992, 45, 117–126. [CrossRef]

91. Uttner, I.; Mai, N.; Esslinger, O.; Danek, A. Quantitative evaluation of mirror movements in adults with focal
brain lesions. Eur. J. Neurol. 2005, 12, 964–975. [CrossRef] [PubMed]

92. Griffiths, R. The abilities of young children. In A Comprehensive System of Mental Measurement for the First
Eight Years of Life; Child Development Research Centre: London, UK, 1970.

93. Dunn, L.M.; Dunn, L. Peabody Picture Vocabulary Test-Revised (PPVT-R); American Guidance Service:
Pine Circle, MN, USA, 1981.

94. Achenbach, T. Manual for the Child Behaviour Checklist 1.5–5 and 1991 Profile; University of Vermont Department
of Psychiatry: Burlington, VT, USA, 1991.

95. Colombo, J.; Kannass, K.; Shaddy, D.; Kundurthi, S.; Maikranz, J.; Anderson, C.J.; Blaga, O.M.; Carlson, S.E.
Maternal DHA and the development of attention in infancy and toddlerhood. Child Dev. 2004, 75, 1254–1267.
[CrossRef] [PubMed]

96. Kannass, K.; Colombo, J.; Carlson, S. Maternal DHA levels and toddler free-play attention. Dev. Neuropsychol.
2009, 34, 159–174. [CrossRef] [PubMed]

97. Sparrow, S.; Balla, D.; Cicchetti, D. Vineland Adaptive Behavior Scales: Interview Edition, Survey Form Manual;
American Guidance Service: Circle Pines, MN, USA, 1984.

http://dx.doi.org/10.3945/ajcn.114.101071
http://www.ncbi.nlm.nih.gov/pubmed/27604770
http://dx.doi.org/10.1111/mcn.12325
http://www.ncbi.nlm.nih.gov/pubmed/27356547
http://www.ncbi.nlm.nih.gov/pubmed/420136
http://dx.doi.org/10.1037/0012-1649.40.5.836
http://www.ncbi.nlm.nih.gov/pubmed/15355170
http://dx.doi.org/10.1002/dev.420220307
http://www.ncbi.nlm.nih.gov/pubmed/2707496
http://dx.doi.org/10.1080/741943714
http://www.ncbi.nlm.nih.gov/pubmed/10645370
http://dx.doi.org/10.2307/1130058
http://www.ncbi.nlm.nih.gov/pubmed/6851717
http://www.sdqinfo.com/
http://dx.doi.org/10.1016/0165-0270(92)90049-J
http://dx.doi.org/10.1111/j.1468-1331.2005.01098.x
http://www.ncbi.nlm.nih.gov/pubmed/16324090
http://dx.doi.org/10.1111/j.1467-8624.2004.00737.x
http://www.ncbi.nlm.nih.gov/pubmed/15260876
http://dx.doi.org/10.1080/87565640802646734
http://www.ncbi.nlm.nih.gov/pubmed/19267293


Nutrients 2017, 9, 1265 31 of 32

98. Fagan, J.; Detterman, D. The Fagan test of infant intelligence: A technical summary. J. Appl. Dev. Psychol.
1992, 13, 173–193. [CrossRef]

99. Kaufman, A.S.; Kaufman, N.L. Kaufman Assessment Battery for Children, 2nd ed.; American Guidance Service:
Circle Pines, MN, USA, 2004.

100. Willatts, P. Beyond the couch potato infant: How infants use their knowledge to regulate action,
solve problems and achieve goals. In Infant Development: Recent Advances Hove; Bremmer, J.G., Slater, A.,
Butterworth, G., Eds.; Psychology Press: Hove, UK, 1997; pp. 109–135.

101. Willatts, P. Development of means-end behavior in young infants: Pulling a support to retrieve a distant
object. Dev. Psychol. 1999, 35, 651–667. [CrossRef] [PubMed]

102. Willatts, P. The stage-IV infant’s solution of problems requiring the use of supports. Infant Behav. Dev. 1984,
7, 125–134. [CrossRef]

103. Willatts, P. Stages in the development of intentional search by young infants. Dev. Psychol. 1984, 20, 389–396.
[CrossRef]

104. McCarthy, D. Manual for the McCarthy scales of children’s abilities. In The Psychological Corporation; Harcourt
Brace Jovanovich Inc.: New York, NY, USA, 1972.

105. Reynolds, C.R.; Kamphaus, R.W. The Clinician’s Guide to the Behavior Assessment System for Children (BASC);
The Guilford Press: New York, NY, USA, 2002.

106. Conners, C.K. Conners’ Continuous Performance Test II: Computer Program for Windows Technical Guide and
Software Manual; Multi-Health Systems Inc.: Tonawanda, NY, USA, 2000.

107. Wolfe, D.; Skuse, D.; Mathisen, V. Behavioral style in failure to thrive infants: A preliminary communication.
J. Pediatr. Psychol. 1990, 15, 237–254.

108. Rueda, M.R.; Fan, J.; McCandliss, B.D.; Halparin, J.D.; Gruber, D.B.; Lercari, L.P.; Posner, M.I. Development
of attentional networks in childhood. Neuropsychologia 2004, 42, 1029–1040. [CrossRef] [PubMed]

109. Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of
attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [CrossRef] [PubMed]

110. Bracken, B.A.; McCallum, R.S. Universal Non-Verbal Intelligence Test (UNIT); PRO-ED: Austin, TX, USA, 1998.
111. Konishi, S.; Nakajima, K.; Uchida, I.; Sekihara, K.; Miyashita, Y. No-go dominant brain activity in human

inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur. J. Neurosci. 1998, 10,
1209–1213. [CrossRef] [PubMed]

112. Bull, R.; Scerif, G. Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching,
and working memory. Dev. Neuropsychol. 2001, 19, 273–293. [CrossRef] [PubMed]

113. Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence, 3rd ed.; Harvcourt Assessment Inc.:
San Antonio, TX, USA, 2002.

114. Henderson, S.E.; Sugden, D.A. Movement Assessment Battery for Children (MABC); Psychological Corp:
London, UK, 1992.

115. Reitan, R.M.; Wolfson, D. The Halstead-Reitan Neuropsychological Test Battery: Theory & Clinical Interpretation;
Neuropsychology Press: Tucson, AZ, USA, 1985.

116. Joos, S.K.; Pollitt, E.; Mueller, W.H.; Albright, D.L. The Bacon Chow Study: Maternal Nutritional
Supplementation and Infant Behavioral Development. Child Dev. 1983, 54, 669–676. [CrossRef] [PubMed]

117. Bayley, N. Manual for Bayley Scales of Infant Development, 1st ed.; Psychological Corp: New York, NY, USA, 1969.
118. Squires, J.; Potter, L.; Bricker, D. The Ages and Stages Questionnaire User’s Guide, 2nd ed.; Paul H. Brookes

Publishing, Co.: Baltimore, MD, USA, 1999.
119. Dunn, L.M.; Dunn, L.; Whetton, C.; Burley, J. British Picture Vocabulary Scale, 2nd ed.; NFER-Nelson Publishing

Co., Ltd.: London, UK, 1997.
120. Elliot, C. British Ability Scales, 2nd ed.; NFER-Nelson Publishing Co., Ltd.: London, UK, 1996.
121. Korkman, M.; Kirk, U.; Kemp, S. NEPSY: A Developmental Neuropsychological Assessment; The Psychological

Corporation: Orlando, FL, USA, 1998.
122. Kochanska, G.; Murray, K.; Harlan, E. Eftortful control in early childhood: Continuity and change,

antecedents and implications for social development. Dev. Psychol. 2000, 36, 220–232. [CrossRef] [PubMed]
123. Carlson, S.M. Developmentally sensitive measures of executive function in preschool children.

Dev. Neuropsychol. 2005, 28, 595–616. [CrossRef] [PubMed]
124. Russell, J.; Mauthner, N.; Sharpe, S.; Tidswell, T. The ‘windows task’ as a measure of strategic deception in

preschoolers and autistic subjects. Br. J. Dev. Psychol. 1991, 9, 331–349. [CrossRef]

http://dx.doi.org/10.1016/0193-3973(92)90028-G
http://dx.doi.org/10.1037/0012-1649.35.3.651
http://www.ncbi.nlm.nih.gov/pubmed/10380857
http://dx.doi.org/10.1016/S0163-6383(84)80053-3
http://dx.doi.org/10.1037/0012-1649.20.3.389
http://dx.doi.org/10.1016/j.neuropsychologia.2003.12.012
http://www.ncbi.nlm.nih.gov/pubmed/15093142
http://dx.doi.org/10.1162/089892902317361886
http://www.ncbi.nlm.nih.gov/pubmed/11970796
http://dx.doi.org/10.1046/j.1460-9568.1998.00167.x
http://www.ncbi.nlm.nih.gov/pubmed/9753190
http://dx.doi.org/10.1207/S15326942DN1903_3
http://www.ncbi.nlm.nih.gov/pubmed/11758669
http://dx.doi.org/10.2307/1130054
http://www.ncbi.nlm.nih.gov/pubmed/6406165
http://dx.doi.org/10.1037/0012-1649.36.2.220
http://www.ncbi.nlm.nih.gov/pubmed/10749079
http://dx.doi.org/10.1207/s15326942dn2802_3
http://www.ncbi.nlm.nih.gov/pubmed/16144429
http://dx.doi.org/10.1111/j.2044-835X.1991.tb00881.x


Nutrients 2017, 9, 1265 32 of 32

125. Waber, D.P.; Vuori Christiansen, L.; Ortiz, N.; Clement, J.R.; Christiansen, N.E.; Mora, J.O.; Reed, R.B.;
Herrera, M.G. Nutritional supplementation, maternal education, and cognitive development of infants at
risk of malnutrition. Am. J. Clin. Nutr. 1981, 34, 807–813. [PubMed]

126. Corman, H.; Escalona, S. Stages of sensorimotor development: A replication study. Merrill-Palmer Q. 1969,
15, 351–361.

127. Elliott, C.D. Differential Ability Scales Mannual 2: Technical Handbook; National Foundation for Educational
Research-Nelson: Berkshire, UK, 1983.

128. Kirk, S.; McCarthy, J.; Kirk, W. Illinois Test of Pycholinguistic Abilities (Revised); University of Illinois Press:
Champaign, IL, USA, 1968.

129. Stone, M.; Wright, B. Knox’s Cube Test; Stoelting Company: Chicago, IL, USA, 1980.
130. Folio, M.; Fewell, R. Peabody Development Motor Scales and Acuity Cards; DLM Teaching Resources: Allen,

TX, USA, 1983.
131. Wilson, B.; Lacoviello, J.; Wilson, J.; Risucci, D. Purde pegboard performance of normal children. J. Clin.

Neurophysiol. 1982, 4, 19–26.
132. Fein, G.G. Toys and stories. In The Future of Play Theory: A Multidisciplinary Inquiry into the Contributions of

Brian Sutton-Smith; Pellegrini, A.D., Ed.; State University of New York Press: Albany, NY, USA, 1995.
133. Morrow, L. Effects of structural guidance in story telling on children’s dictation of original stories. J. Read.

Behav. 1986, 18, 135–152. [CrossRef]
134. Harris, D. Children’s Drawings as Measures of Intellectual Maturity: A Revision and Extension of the Goodenough

Draw-a-Man Test; Harcourt, Brace and World: New York, NY, USA, 1963.
135. Selman, R. The Growth of Interpersonal Understanding: Developmental and Clinical Analyses; Academic Press:

New York, NY, USA, 1980.
136. Serafica, F.C. Conceptions of friendship and interaction between friends: An Organismic-Developmental

Perspective. In Social Cognitive Development in Context; Serafica, F.C., Ed.; The Guilford Press: New York,
NY, USA, 1982.

137. Behar, L.; Stringfield, S. A behaviour rating scale for the preschool child. Dev. Psychol. 1974, 10, 601–610.
[CrossRef]

138. Isaacs, E.; Oates, J. Nutrition and cognition assessing cognitive abilities in children and young people.
Eur. J. Nutr. 2008, 47, 4–24. [CrossRef] [PubMed]

139. Wainwright, P.E.; Colombo, J. Nutrition and the development of cognitive functions: Interpretation of
behavioral studies in animals and human infants. Am. J. Clin. Nutr. 2006, 84, 961–970. [PubMed]

140. Yetley, E.A. Multivitamin and multimineral dietary supplements: Definitions, characterization,
bioavailability, and drug interactions. Am. J. Clin. Nutr. 2007, 85, 269S–276S. [PubMed]

141. Huang, H.Y.; Appel, L.J. Supplementation of Diets with α-Tocopherol Reduces Serum Concentrations of γ-
and δ-Tocopherol in Humans. J. Nutr. 2003, 133, 3137–3140. [PubMed]

142. Cheatham, C.; Sheppard, K. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition
Memory: An Observational Study. Nutrients 2015, 7, 9079–9095. [CrossRef] [PubMed]

143. Black, M.M. Effects of Vitamin B12 and Folate Deficiency on Brain Development in Children. Food Nutr. Bull.
2008, 29, S126–S131. [CrossRef] [PubMed]

144. Benton, D. The influence of dietary status on the cognitive performance of children. Mol. Nutr. Food Res.
2010, 54, 457–470. [CrossRef] [PubMed]

145. Nyaradi, A.; Jiang Hong, L.; Hickling, S.; Foster, J.; Oddy, W.H. The role of nutrition in children’s
neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 2013, 7, 1–16.
[CrossRef] [PubMed]

146. Muller, O.; Krawinkel, M. Malnutrition and health in developing countries. CMAJ 2005, 173, 279–286.
[CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/7223696
http://dx.doi.org/10.1080/10862968609547561
http://dx.doi.org/10.1037/h0037058
http://dx.doi.org/10.1007/s00394-008-3002-y
http://www.ncbi.nlm.nih.gov/pubmed/18683026
http://www.ncbi.nlm.nih.gov/pubmed/17093144
http://www.ncbi.nlm.nih.gov/pubmed/17209208
http://www.ncbi.nlm.nih.gov/pubmed/14519797
http://dx.doi.org/10.3390/nu7115452
http://www.ncbi.nlm.nih.gov/pubmed/26540073
http://dx.doi.org/10.1177/15648265080292S117
http://www.ncbi.nlm.nih.gov/pubmed/18709887
http://dx.doi.org/10.1002/mnfr.200900158
http://www.ncbi.nlm.nih.gov/pubmed/20077417
http://dx.doi.org/10.3389/fnhum.2013.00097
http://www.ncbi.nlm.nih.gov/pubmed/23532379
http://dx.doi.org/10.1503/cmaj.050342
http://www.ncbi.nlm.nih.gov/pubmed/16076825
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Search Strategy 
	Study Selection 
	Eligibility Criteria 
	Quality Assessment 
	Data Extraction 
	Data Synthesis 
	Statistical Analysis 

	Results 
	Search Results 
	Quality 
	Description of Studies 
	Participants 
	Intervention 
	Cognitive Outcomes 
	Outcome 1: Behaviour 
	Outcome 2: Memory 
	Outcome 3: Motor Skills 
	Outcome 4: Fluid Intelligence 
	Outcome 5: Global Cognition 
	Outcome 6: Crystallised Intelligence 
	Outcome 7: Visual Processing 
	Outcome 8: Attention 
	Outcome 9: Problem Solving 

	Discussion 
	Quality of Included Studies 
	Measuring Child Cognition 
	Nutrition Intervention Design 
	Public Health Implications 

	Conclusions 

