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Abstract: The present study evaluated the effects of a calcium (Ca) supplement derived from
Gallus gallus domesticus (GD) on breaking force, microarchitecture, osteogenic differentiation and
osteoclast differentiation factor expression in vivo in Ca-deficient ovariectomized (OVX) rats.
One percent of Ca supplement significantly improved Ca content and bone strength of the
tibia. In micro-computed tomography analysis, 1% Ca supplement attenuated OVX- and low
Ca-associated changes in bone mineral density, trabecular thickness, spacing and number. Moreover,
1% Ca-supplemented diet increased the expression of osteoblast differentiation marker genes, such as
bone morphogenetic protein-2, Wnt3a, small mothers against decapentaplegic 1/5/8, runt-related
transcription factor 2, osteocalcin and collagenase-1, while it decreased the expression of osteoclast
differentiation genes, such as thrombospondin-related anonymous protein, cathepsin K and receptor
activator of nuclear factor kappa B. Furthermore, 1% Ca-supplemented diet increased the levels of
phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase. The increased
expression of osteoblast differentiation marker genes and activation of mitogen-activated protein
kinase signaling were associated with significant increases in trabecular bone volume, which plays
an important role in the overall skeletal strength. Our results demonstrated that 1% Ca supplement
inhibited osteoclastogenesis, stimulated osteoblastogenesis and restored bone loss in OVX rats.
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1. Introduction

Osteoporosis, a major public health problem, is particularly prevalent in postmenopausal women.
Genetics, deficient calcium (Ca) intake, cigarette smoking, excessive alcohol intake and reduction
in estrogen levels are considered risk factors for osteoporosis [1]. Estrogen deficiency due to the
cessation of ovarian function is an important contributor to bone loss in postmenopausal women [2].
The beneficial effects of estrogen replacement in the treatment of estrogen-deficiency-induced bone loss
have been clearly established, but this therapy might enhance undesirable side effects include breast,
endometrial cancers and ovarian in postmenopausal women [3–5]. Standard therapeutic drugs for
osteoporosis, including antiresorptive drugs, such as bisphosphonate, osteocalcin and estrogen, do not
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significantly stimulate new bone synthesis [6]. Therefore, new agents for improving bone formation
are needed, and functional foods containing natural substances as alternatives to estrogen replacement
therapy represent a new approach for the prevention of postmenopausal osteoporosis [1].

Generally, Ca deficiencies are associated with hypertension, arteriosclerosis, diabetes,
neurodegenerative diseases, malignant tumors and degenerative joint diseases [7]. National and
international guidelines suggest that the Recommended Dietary Allowance (RDA) of Ca is
1000–1200 mg/day for patients with osteoporosis [8]. Many postmenopausal women do not acquire
the optimum amount of Ca from the diet and rely on bioavailable Ca supplements [9]. Therefore,
exploring suitable Ca supplementation or naturally occurring substances, especially those of animal
origin, may help to prevent osteoporosis without causing adverse effects [10]. Previous studies
of Ca supplementation showed that the bones of Nile tilapia (Oreochromis niloticus) and mola
(Amblypharyngodon mola) fish were good sources of Ca [11,12]. In addition, milk and marine organisms,
oyster shell electrolysate and calcium-binding peptide derived from pepsinolytic hydrolysates of
hoki are important sources of calcium in the human diet [13–15]. Marine algae exhibit osteoblast
cell proliferation and mineralization effects [9]. Moreover, sea tangle (Kjellemaniella crassifolia)
intake contributes to the bone calcium content and breaking force of femurs in growing female
rats [16]. Ca promotes osteoblast to osteocyte differentiation, as indicated by the increased
expression of osteocalcin and runt-related transcription factor 2 (RUNX2) through the extracellular
signal-regulated kinase (ERK) signaling pathway. However, the role of bone morphogenetic protein-2
(BMP-2), small mothers against decapentaplegic (SMADs) and RUNX2 in osteoblastogenesis and
osteoclast-associated signaling of thrombospondin-related anonymous protein (TRAP), cathepsin K
and receptor activator of nuclear factor kappa B (RANK) are still unknown.

Gallus gallus domesticus (GD) is a common Korean indigenous chicken breed. It possesses
unique morphological features, such as black fluffy head feathers, earlobes, pupils and four toes [17].
Previous studies of Ogolgye chickens reported on their physicochemical characteristics and storage
and sensory properties [17,18]. In addition, oligopeptide powder from this chicken has beneficial
antioxidant effects [19]. Moreover, the water extracts of GD promoted alkaline phosphatase (ALP)
activity and bone mineralization and inhibited bone resorption [20]. However, studies investigating
the effects of the Ca derived from bone of GD on bone formation via osteoblast differentiation have
not been reported.

Our study investigated the effect of Ca supplement derived from GD in a Ca-deficient
ovariectomized (OVX) animal model. Ca supplement derived from GD showed effects on BMP-2,
osteocalcin, collagenase-1 (COL-1), RUNX2 and SMAD5. Our results provide new insights into
osteoblastic differentiation induced by Ca supplement and confirm its possible utilization as a
functional food and bone health supplement.

2. Materials and Methods

2.1. Preparation of Sample

Gallus gallus var. domesticus chickens were obtained from Jisan Plantation (Chungnam, Republic of
Korea) and reared until they were 3 years old. Bone samples were used after separating the bone from
the other structures. The procedure for the preparation of bone powder was as follows: bone sample
was dried at 110 ◦C for 18 h and kept under a vacuum in a desiccator. After being dried, the bone was
homogenized and sieved with a stainless steel mesh (0.15–0.42 mm), and only the fine particles were
mixed into rat feed.

2.2. Animals and Diet

All of the experiments were performed with the approval of the Institutional Animal Care and
Use Committee at Konkuk University (IACUC, Approval Number KU 15133). Forty-eight 5-week-old
Wistar-rats (body weight 117 ± 7 g) were purchased from Doo Yeol Biotech (Seoul, Republic of Korea).
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Forty-eight 5-week-old Wistar rats (body weight 117 ± 7 g) were purchased from Doo Yeol Biotech
(Seoul, Korea). Animals were housed in an air-conditioned room at 23 ± 1 ◦C, 55–60% relative
humidity, a 12 h light/dark cycle (07:00 lights on, 19:00 lights off). After acclimatization for 1 week,
rats were anesthetized with 2% isoflurane, and ovaries were removed bilaterally. A sham operation,
during which the ovaries were only touched with forceps, was performed on the sham group. After a
2-week acclimation period, the sham and normal diet groups were fed a normal (0.6% Ca) diet
(TD.97191), while the other groups were fed a low Ca (0.01%) diet (TD.95027). All rats had free
access to distilled water. Rats were divided into four treatment groups (12 rats per group) as follows:
(1) sham (normal diet); (2) low Ca (OVX + low Ca); (3) normal diet (OVX + normal diet); (4) 1% Ca
(OVX + low Ca + 1% Ca); dietary-supplement data shown in Table 1. Food intake was recorded every
3 days, and body weights were measured weekly. After the 8-week feeding period, rats were sacrificed
by lethal intraperitoneal ether overdose. For each animal, tibial bones were dissected and stored
at −20 ◦C. Micro-CT and breaking force were performed in the left tibia of all rats. Samples were
analyzed by RT-PCR and Western blotting. The right tibia was used for calcium content measurement
and histology experiments. All experiments were conducted in triplicate.

Table 1. Composition of the experimental diets.

Composition Sham Low Ca Normal Diet 1% Ca

Casein (g/kg) 200.0 200.0 200.0 200.0
L-Cystine (g/kg) 3.0 3.0 3.0 3.0
Sucrose (g/kg) 334.288 334.288 334.288 334.288

Corn Starch (g/kg) 313.0 320.0 313.0 320.0
Soybean Oil (g/kg) 60.0 60.0 60.0 60.0

Cellulose (g/kg) 40.0 40.0 40.0 40.0
Mineral Mix (g/kg) a 13.37 13.37 13.37 13.37

Potassium Phosphate, monobasic (g/kg) 11.43 11.43 11.43 11.43
Vitamin Mix (g/kg) b 10.0 10.0 10.0 10.0

Calcium (%) 0.6 0.01 0.6 1.0
P (%) 0.4 0.4 0.4 0.4

a (NaCl: 193.7325, C6H7K3O8: 575.9615, K2SO4: 136.1363, MgO: 62.8322, MnCO3: 9.163, C6H5FeO7: 15.708, ZnCO3:
4.1888, CuCO3: 0.7854, KIO3: 0.0262, Na2SeO3·5H2O: 0.0262, CrK(SO4)2·12H2O: 1.4399). b (p-Aminobenzoic
Acid: 11.0132, Vitamin C, ascorbic acid, coated (97.5%): 101.6604, Biotin: 0.0441, Vitamin B12 (0.1% in mannitol):
2.9736, Calcium Pantothenate: 6.6079, Choline Dihydrogen Citrate: 349.6916, Folic Acid: 0.1982, Inositol: 11.0132,
Vitamin K3, menadione: 4.9559, Niacin: 9.9119, Pyridoxine HCl: 2.2026, Riboflavin: 2.2026, Thiamin (81%): 2.2026,
Vitamin A Palmitate (500,000 IU/g): 3.9648, Vitamin D3, cholecalciferol (500,000 IU/g): 0.4405, Vitamin E, DL-alpha
tocopheryl acetate (500 IU/g): 24.2291, Corn Starch: 466.6878).

2.3. Biochemical Analyses

Serum estrogen levels were measured using commercial kits (Creative Diagnostics, Shirley,
NY, USA).

2.4. Biomechanical Testing of Tibia

Destructive biomechanical testing was performed on thawed specimens using the texture analyzer
(Model TA.XT Express; Stable Micro Systems, Godalming, UK), employing exponent lite express
software (Stable Micro Systems). The wedge was fractured by a downward motion (3 mm/s) of a
steel blade with a thickness of 30 mm. The maximum force (highest value in N) applied to break the
wedge was used to quantify the firmness. The samples were thawed, and all measurements were
carried out at room temperature (25 ◦C). The breaking force of the tibia was evaluated by three-point
bending (maximum breaking force of failure when a load was applied in a perpendicular plane to the
longitudinal axis of the tibia). All tests were conducted in the mid-diaphyseal region of the tibia.
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2.5. Ca Content of Tibia

Ca in the tibia was quantified using a microwave digestion system (Multiwave 3000; Anton Paar,
Graz, Austria) and inductively coupled plasma mass spectrometry (HP-4500; Hewlett-Packard,
Avondale, PA, USA). All tests were performed following official methods; association of official
analytical chemists (AOAC).

2.6. Micro-Computed Tomography

Micro-CT was performed in the left tibia of all rats. Imaging of the cortical and trabecular bones
was performed using a micro-CT system (Inveon PET; Siemens Medical Solutions, Knoxville, TN,
USA) with the following acquisition parameters: 80 kVp, 500 µA, 211-ms exposure time, 30.74 mm
field of view and 60.04-µm pixel size. A global threshold value was set to binarize bone tissue from
non-bone tissue. A global threshold was visually determined by two independent examiners (based on
slice-wise 2D comparisons between the grey scale and segmented image of all samples). The region
of interest was indicated in green color in the trabecular bone. The resulting images were evaluated
using the Inveon acquisition workplace software (Siemens Medical Solutions). Parameters such as
bone mineral density (BMD), bone surface area/bone volume (BSA/BV), bone volume/total volume
(BV/TV), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp) and trabecular plate number (Tb.N)
were calculated three-dimensionally from measurements of trabecular bone mass and its distribution.
The results were reported according to the guidelines for assessment of bone microarchitecture of
rodents using µCT [21].

2.7. Histology and Tartrate-Resistant Acid Phosphatase Staining

The cleaned tibias were fixed in 10% neutral buffered formalin solution for 2 days at 40 ◦C.
Decalcification was achieved by treatment with 10% EDTA (pH 7.4) replaced daily, under stirring,
for 10 days at 25 ◦C and washed in tap water for 4 h. The tibias were paraffin-embedded, sectioned
at 4 µm and stained with hematoxylin and eosin (H&E) [22]. Sections were stained after being
mounted and observed for histopathological changes on the slides. Tartrate-resistant acid phosphatase
(TRAP) and nuclear staining were performed according to the leukocyte acid phosphatase assay kit
(Sigma Chemical Co., St. Louis, MO, USA) instructions. The specimens were examined using a Nikon
Eclipse TS100 microscope (Nikon, Tokyo, Japan) at 200× magnification, and the results were analyzed
using OptiView image analysis software (Korea Lab Tech, Seongnam, Korea).

2.8. Reverse Transcription-Polymerase Chain Reaction Assay

The total RNA was extracted from the tibia using TRIzol reagent (Thermo Fisher Scientific
Inc., Waltham, MA, USA). For each reaction, 1 µg of total RNA was reverse-transcribed to cDNA
using SuperScript III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). The obtained cDNA
was used to determine the tibia mRNA levels of BMP-2, RUNX2, Wnt3a, osteocalcin, COL-1, TRAP,
cathepsin K and RANK using Taq DNA polymerase (Kapa Biosystems, London, UK). Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used as an internal control. Primer sequences
were as follows: GAPDH: 5′-AACTCCCATTCCACCTT-3′, 5′-GAGGGCCTCTCT CTTGCTCT-3′,
BMP-2: 5′-AAGGCACCCTTTGTATGTGGACT-3′, 5′-CATGCCTTAGGGATTTTGGA-3′, RUNX2:
5′-TCCAGCCACCTTCACTTACAC-3′, 5′-GCGTCAACACCATCATTCTG-3′, Wnt3a: 5′-TCCGACT
CTTGGCAGAACTT-3′, 5′-AATGGAATAGGTCCCGAACA-3′, osteocalcin: 5′-AGCTCAACCCC
AATTGTGAC-3′, 5′-AGCTGTGCCGTCCATACTTT-3′, COL-1: 5′-TTGACCCTAACCAAGGATGC-3′,
5′-CACCCCTTCTGCGTTGTATT-3′, TRAP: 5′-CGCCAGAACCGTGCAGA-3′, 5′-TCAGGCTGCTGG
CTGAC-3′, cathepsin K: 5′-CCCAGACTCCATCGACTATCG-3′, 5′-CTGTACCCTCTGCACTTA
GCTGCC-3′, RANK: 5′-GTGACTCTCCAGGTCACTCC-3′, 5′-GGCAGACACACACTGTCG-3′.
PCR was initiated at 95 ◦C for 3 min followed by 30 cycles at 95 ◦C for 30 s and 50–60 ◦C for
30 s. The number of cycles and annealing temperature for each primer pair were optimized. A final
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extension at 72 ◦C for 10 min was conducted. The PCR products were detected by 1.2% agarose
gel electrophoresis with ethidium bromide and visualized using a UV transilluminator Genosens
1500 system (CLINX, Shanghai, China). Relative expression was quantified using Image J software
(NIH, Bethesda, Rockville, MD, USA) and calculated compared to GAPDH.

2.9. Western Blot Analysis

Tibial bone homogenates were lysed in lysis buffer containing protease inhibitor
(Roche, Mannheim, Germany) and centrifuged at 10,000× g for 10 min at 4 ◦C. The total protein
levels were determined using a Bio-Rad protein kit (Bio-Rad, Hercules, CA, USA). The proteins were
subjected to 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred onto
Immobilon-P transfer membranes (Millipore Co., Bedford, MA, USA), which were blocked with 5%
bovine serum albumin prior to incubation with a specific primary antibody against BMP-2 (Abcam,
Cambridge, UK), RUNX2 (Abcam), p-SMAD1/5/8 (Santa Cruz Biotechnology, Inc., Santa Cruz, TX,
USA), Wnt3a (Abcam), osteocalcin (Abcam), COL-1 (Abcam), phosphorylated serine/threonine kinase
(p-AKT) (Cell Signaling Technology, Danvers, MA, USA), p-ERK (Cell Signaling Technology), p38 (Cell
Signaling Technology) and β-actin (Cell Signaling Technology) followed by goat anti-rabbit IgG (H + L)
horseradish peroxidase (HRP)-conjugated secondary antibody (Zymax, San Francisco, CA, USA).
The antigen-antibody complexes were visualized by enhanced chemiluminescence. Densitometric
analysis of the signal was performed using a C-DiGit Blot Scanner (Li-COR Inc., Lincoln, NE, USA).
Relative expression was quantified using Image J (NIH, Bethesda, Rockville, MD, USA) and compared
to β-actin.

2.10. Immunohistochemical Stain

Tibia sections 4 µm thick were initially submitted to deparaffinization in serial concentrations
of xylene and alcohol for 5 min, with subsequent recovery of antigenic sites on steam fluent (pot
value) for 30 min. The slides were washed twice for 5 min with 1× phosphate-buffered saline (PBS),
and then endogenous peroxidase blocking was carried out by immersion in hydrogen peroxide at
0.3% for 30 min at 25 ◦C. Sections were incubated with 10% goat (for polyclonal antibodies) serum
for 30 min before overnight incubation at 4 ◦C followed by incubation with the appropriate specific
primary antibody (BMP-2 (Abcam), RUNX2 (Abcam), Wnt3a (Abcam), osteocalcin (Abcam) or COL-1
(Abcam)). Samples were then incubated with biotinylated goat anti-rabbit IgG (H + L) HRP-conjugated
(or goat anti-mouse IgG (H + L) HRP-conjugated) antibodies (Zymax). The sections were incubated
with 3,3′diaminobenzidine (DAB; Sigma Chemical Co.) for 15 min at 25 ◦C. The sections were then
counterstained with hematoxylin solution for 20 s, fixed in alcohol-xylene series and mounted with
cover slip and mounting medium Permount (Thermo Fisher Scientific). Negative controls were
incubated with normal goat IgG (Zymax, San Francisco, CA, USA) instead of the primary antibody.
The specimens were examined using a Nikon Eclipse TS100 microscope (Nikon) at 200×magnification,
and the results were analyzed using OptiView image analysis software (Korea Lab Tech).

2.11. Statistical Analysis

Statistical analysis was performed using SPSS 18.0 (SPSS Inc., Chicago, IL, USA). Averages and
standard deviations were calculated, and differences between groups were assessed by the analysis of
variance (ANOVA) method and Duncan’s multiple range test. A difference was considered significant
if p < 0.05.

3. Results

3.1. Serum Estrogen Concentrations of Tibia

Serum estrogen levels were measured to determine the effect of estrogen on bone mass.
Normal physiological estrogen concentrations were determined using serum samples from OVX
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rats. Serum estrogen concentrations were significantly decreased in the low Ca group compared to in
the other study groups (Figure 1). However, evaluation of the normal diet and 1% Ca groups showed
that estrogen levels increased by 38.7% and 52.8%, respectively, compared to that in the low Ca group.
These data indicate that 1% Ca restored serum estrogen in OVX rats.
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Figure 1. In vivo serum estrogen concentrations. Results are expressed as the mean ± standard
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multiple range test).

3.2. Feed Efficiency Ratio

The food intake, body weight gain and food efficiency ratio (FER) did not differ significantly
among the experimental groups. However, the weight gain of low Ca group was lower than that of the
other groups (Table 2).

Table 2. Bodyweight and food intake.

Sham Low Ca Normal Diet 1% Ca

Feed intake (g/day) 33.60 ± 4.19 a 34.80 ± 3.84 a 33.20 ± 3.64 a 33.30 ± 4.74 a

Body weight (g)
Initial 117.33 ± 8.4 a 118.75 ± 7.68 a 118.50 ± 7.0 a 113.66 ± 5.8 a

Final 339.75 ± 16.34 a 324.25 ± 30.89 a 338.25 ± 32.34 a 320.33 ± 50.58 a

Body weight gain (g/week) 32.90 ± 2.24 a 30.81 ± 3.21 a 33.14 ± 3.97 a 32.59 ± 6.54 a

FER * 0.14 ± 0.02 a 0.13 ± 0.01 a 0.14 ± 0.02 a 0.13 ± 0.03 a

* Body weight gain (g/week)/feed intake (g/week). a (NaCl: 193.7325, C6H7K3O8: 575.9615, K2SO4: 136.1363,
MgO: 62.8322, MnCO3: 9.163, C6H5FeO7: 15.708, ZnCO3: 4.1888, CuCO3: 0.7854, KIO3: 0.0262, Na2SeO3·5H2O:
0.0262, CrK(SO4)2·12H2O: 1.4399).

3.3. Tibia Bone Strength and Ca Content of Tibia

In order to investigate the effects of Ca supplement on bone strength, we conducted breaking force
tests using a texture analyzer (Figure 2A). The breaking force of the low Ca group was significantly
lower than that in the sham group. Assuming that the breaking force of the sham group was 100%,
the low Ca, normal diet and 1% Ca groups breaking forces were 34.1%, 52.9% and 66.4%, respectively.
The breaking force of the low Ca group decreased 65.9% compared to the sham group. In addition,
breaking force of the normal diet and 1% Ca groups increased 18.8% and 32.3% compared to low Ca
group, respectively (p < 0.05) (Figure 2B,C). Thus, 1% Ca supplement feed improved tibial breaking
force compared to the low Ca group. These results suggested that the increase of breaking force
depended on the increase of Ca content.

Assuming that the Ca content in the Sham group was 100%, the tibia Ca content of the 1%
Ca group increased 34.7% and 12.3% compared to low Ca and normal diet groups, respectively.
Furthermore, there were no significant difference between sham and 1% Ca groups (Figure 2D,E). Thus,
these findings proved that the dietary supplementation of 1% Ca increased Ca contents of the tibia.
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was set to 100%. Results are expressed as the mean ± standard deviation (SD). Values not sharing a
common superscript (a, b, c and d) differed significantly (Duncan’s multiple range test).

3.4. Effects on Bone Morphometric Parameters

We performed ex vivo micro-CT after eight weeks on all animals, and tibial architecture was
investigated using maximum intensity projection images (Figure 3). Figure 3A illustrates the process
used to analyze trabecular and cortical bone and the resulting measurements. Figure 3a indicates the
three-dimensional (3D) structure of the tibia, and Figure 3b shows the 3D green-colored area used to
measure tibial parameters. The green-colored area of Figure 3c indicates the longitudinal section of
Figure 3b. Figure 3d shows the image of isosurfaces taken from the green-colored region indicated in
Figure 3b,c. Micro-CT scanning and analysis revealed that the rat tibial bones were severely affected
by ovariectomy. The scanning results showed that in the low Ca group bone mass decreased compared
to the sham group. Micro-CT scanning also confirmed that the 1% Ca-supplemented diet showed
induced remission of bone loss after eight weeks in OVX rats (Figure 3B). Longitudinal sections of
tibias from the low Ca group showed central spaces in the trabecular bone. In addition, upper and
lower tibial cross-sections from the low Ca group showed large spaces within the marrow. However,
longitudinal and cross-sectional analyses of sham, normal diet and 1% Ca-supplemented groups
showed that the bone marrow space was more occupied compared to the low Ca group.

The bone structure of 1% Ca groups was distributed relatively uniformly to form a well-connected
network compared to the low Ca group (Figure 3B). Micro-CT analysis of the tibia metaphysis was used
to calculate trabecular BMD, cortical BMD, BSA/BV, BV/TV, Tb.Th, Tb.Sp, Tb.N and Ct.Th. Trabecular
BMD values of sham, low Ca, normal diet and 1% Ca rats were 291, 153, 210 and 196 mg/cm3,
respectively. In addition, the cortical BMD values of sham, low Ca, normal diet and 1% Ca rats were
1069, 734, 811 and 966 mg/cm3, respectively. Analysis of data indicated that low Ca feed decreased
BV/TV, Tb.Th and Ct.Th. In contrast, low Ca feed increased BSA/BV, Tb.N and Tb.Sp. In addition,
the 1% Ca supplement from GD increased BV/TV and Ct.Th by 53.5% and 36.5% compared to the
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low Ca group, respectively. Furthermore, BSA/BV, Tb.N and Tb.Sp decreased 13.8%, 15% and 54.9%
compared to the low Ca group. However, Tb.Th was no significantly different in low Ca and 1% Ca
groups (Figure 3C). These data indicated that 1% Ca supplementation was more effective in relieving
osteoporosis than normal diets, when osteoporosis is already induced.
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We examined the impact of 1% Ca supplementation on bone metabolism indicators, including 
BMP-2, Wnt3a, SMAD1/5/8, RUNX2, osteocalcin and COL-1, by RT-PCR and Western blot analysis 
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BMP-2, Wnt3a, RUNX2, osteocalcin and COL-1 of the 1% Ca group was significantly upregulated 
compared to the low Ca group. In particular, the mRNA expression level of COL-1 was 2.4-fold 
higher than that of the low Ca group. Furthermore, in 1% Ca group, the expression level of Wnt3a, 

Figure 3. Tibial bone microstructure analyses in rats. (A) Process used to analyze trabecular and cortical
bone and resulting measurements. a indicates the three-dimensional structure of the tibia, while b
shows the three-dimensional green-colored area used to measure tibial parameters. The green-colored
area in c indicates the longitudinal section of b. d shows the image of isosurfaces, taken from the
green-colored region indicated in b and c. (B) Longitudinal section and cross-section of the trabecular in
sham, low Ca, normal diet, and 1% Ca groups. (C) The micro-CT scanner parameter of trabecular BMD,
cortical BMD, tibia bone surface area, volume, thickness, spacing, number and cortical thickness in
sham, low Ca, normal diet, and 1% Ca groups. Results are expressed as the means± standard deviation
(SD). Values not sharing a common superscript (a, b, c and d) differed significantly (Duncan’s multiple
range test).

3.5. Expression of Osteoblastogenesis Marker Genes

We examined the impact of 1% Ca supplementation on bone metabolism indicators,
including BMP-2, Wnt3a, SMAD1/5/8, RUNX2, osteocalcin and COL-1, by RT-PCR and Western
blot analysis (calculated compared to GAPDH and β-actin), as shown in Figure 4. The mRNA
expression level of BMP-2, Wnt3a, RUNX2, osteocalcin and COL-1 of the 1% Ca group was significantly
upregulated compared to the low Ca group. In particular, the mRNA expression level of COL-1 was
2.4-fold higher than that of the low Ca group. Furthermore, in 1% Ca group, the expression level
of Wnt3a, RUNX2 and osteocalcin significantly increased by 1.5-, 2.0- and 2.2-fold compared to that
of the low Ca group, respectively (Figure 4A). As shown in Figure 4B, in the 1% Ca group protein
expression of BMP-2, Wnt3a, RUNX2, SMAD1/5/8 and COL-1 was enhanced compared to that in
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the low Ca group. Although the mRNA expression of BMP-2 showed a low rising level, in the 1% Ca
group, the protein expression of BMP-2 was dramatically enhanced by 5.6-fold. Moreover, Wnt3a,
RUNX2, SMAD1/5/8 and COL-1 levels in the 1% Ca group were enhanced 1.8-, 1.6-, 1.2- and 4.5-fold
compared to those in the low Ca group, respectively (Figure 4). These results suggested that, in vivo,
1% Ca supplement promoted the expression of genes involved in osteoblastogenesis.
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Figure 4. The expression of mRNA and protein levels of molecules involved in bone metabolism in
sham, low Ca, normal diet, and 1% Ca groups. (A) The mRNA expression of bone morphogenetic
protein-2 (BMP-2), Wnt3a, runt-related transcription factor 2 (RUNX2), osteocalcin and collagenase-1
(COL-1) in sham, low Ca, normal diet and 1% Ca groups; (B) The protein expression of BMP-2, Wnt3a,
RUNX2, small mothers against decapentaplegic (SMAD)1/5/8, and COL-1 in sham, low Ca, normal diet
and 1% Ca groups. Results are expressed as the means ± standard deviation (SD). Values not sharing a
common superscript (a, b, c, and d) differed significantly (Duncan’s multiple range test).

In order to assess the development of osteoporosis, we performed H&E and immunohistochemical
staining. The bone trabeculae of rats in the low Ca group were arranged sparsely in a disorderly
manner and indicated apparent signs of resorption. In contrast, the trabecular bone arrangement in the
1% Ca group was more regular (Figure 5). In addition, all osteogenesis-related proteins (BMP-2, Wnt3a,
RUNX2, osteocalcin and COL-1) showed decreased expression and mild staining pattern in the low Ca
group, while the sham, normal diet and 1% Ca groups showed more intense staining. These findings
suggest that 1% Ca supplementation upregulated specific genes involved in osteoblastogenesis, such as
BMP-2, Wnt3a, RUNX2, SMAD1/5/8, osteocalcin and COL-1.
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Figure 5. Hematoxylin and eosin (H&E) and immunohistochemical staining image of bone
morphogenetic protein-2 (BMP-2), Wnt3a, runt-related transcription factor 2 (RUNX2), osteocalcin and
collagenase-1 (COL-1) in sham, low Ca, normal diet, and 1% Ca groups (scale bar: 40 µm).

3.6. Effects of Ca on the Expression of Osteoclast Specific Gene Markers

To assess osteoclast development, we performed TRAP staining. Multinucleated TRAP-positive
osteoclasts were detected in the subchondral bone marrow space of the tibia at eight weeks after
surgery (Figure 6). However, in the low Ca group, TRAP-positive osteoclasts were primarily detected
in the tibial subchondral bone marrow space, in contrast to other groups (Figure 6). We observed a
highly significant decrease in TRAP expression in the 1% Ca group compared to in the low Ca and
normal diet groups. We observed a highly significant decrease in TRAP expression in the 1% Ca
group compared to that in low Ca and normal diet groups. The expression level of cathepsin K in
the 1% Ca group was 6.85- and 3.05-fold lower than that observed in low Ca and normal diet groups,
respectively. In addition, the RANK expression level in the 1% Ca group was 1.84-fold lower than that
observed in the low Ca group, but was not significantly different from the normal diet group (Figure 6).
These results suggested that, in vivo, 1% Ca supplement suppressed the relative mRNA expression of
genes involved in osteoclastogenesis.
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Figure 6. Tartrate-resistant acid phosphatase (TRAP) staining (scale bar: 40 µm) and mRNA expression
of TRAP, cathepsin K and receptor activator of nuclear factor kappa B (RANK) in sham, low Ca,
normal diet and 1% Ca groups. Results are expressed as the means ± standard deviation (SD). Values
not sharing a common superscript (a, b, c, and d) differed significantly (Duncan’s multiple range test).

3.7. Effects of 1% Ca Supplement on Phosphorylation of AKT, ERK and p38 MAPKs

Several studies [23–25] have indicated that the MAPK/ERK pathway is essential for the regulation
of osteoblast differentiation and maturation. Therefore, we examined the effects of 1% Ca supplement
on the activation of phosphorylated AKT, p38, ERK and JNK proteins in tibia. As shown in Figure 7,
the activation level of p-ERK and p-JNK significantly increased in the 1% Ca group and significantly
decreased in the low Ca group. In particular, the activation level of p-JNK in the 1% Ca group increased
2.18-fold compared to that of the low Ca group. However, p-p-38 and p-AKT showed no significant
difference (Figure 7). These data suggested that p-ERK and p-AKT signaling pathways were activated
in cells treated with 1% Ca. Thus, these results suggested that 1% Ca supplement activated ERK and
JNK signaling pathways, leading to osteoblast differentiation and maturation.
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Figure 7. The expression level of phosphorylated p38, c-Jun N-terminal kinase (JNK), extracellular
signal-regulated kinase (ERK) and serine/threonine kinase (AKT) in sham, low Ca, normal diet and
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common superscript (a, b, c and d) differed significantly (Duncan’s multiple range test).

4. Discussion

Previous studies showed that the water extract from GD promotes osteoblast differentiation
and inhibits osteoclast differentiation [20]. In the present study, we investigated the effects of Ca
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supplementation derived from GD on breaking force, bone microarchitecture and bone metabolism
genes using a Ca-deficient OVX rat model. Based on our experiments, the Ca supplement derived
from GD may be an effective supplement for bone health and osteoporosis prevention. Our study is
the first report on regulatory effects of Ca supplement derived from GD that upregulates osteogenesis
and inhibits osteoclastogenesis through ERK and JNK pathway activation.

Moreover, we showed that OVX surgery caused bone loss. Furthermore, the low Ca diet was
administered, and Ca content and bone strength of rat tibia were dramatically reduced. In contrast,
the Ca content and breaking force of tibias in the 1% Ca group were 34.8% and 32.3% higher than those
in the low Ca group, respectively. We observed a similar pattern to that reported in previous studies
where nano-calcium-supplemented milk increased the bone stiffness and Ca content in OVX rats [13].
Ingestion of hake fish bone may be helpful to increase bone Ca content, as well as the breaking force of
rat bones. Therefore, intake of 1% Ca supplement derived from GD may improve tibial Ca content and
breaking force.

Traditionally, bone microarchitectural analyses have been conducted using histological sections
(two-dimensional measurements) [26,27]. However, micro-CT has the advantage of providing higher
resolution and is a non-destructive, easy and rapid method [28]. The recent improvements in spatial
resolution and throughput of 3D imaging led to identifying and measuring bone parameters associated
with osteoporosis. High-resolution micro-CT analyses revealed that the tibia from the low Ca group
contained lesser trabecular bone in the marrow area compared to that from the other groups. In some
sections, there was no bone and a large space in the trabecular structure. In addition, the low Ca group
displayed loss of BV/TV, Tb.Th, Tb.N and Ct.th and an increase in BSA/BV and Tb.Sp, indicating the
development of osteopenia (Figures 3 and 4). However, in the same sections in sham, normal diet and
1% Ca groups, the bone marrow space was more occupied by the trabecular bone structure, which was
distributed in a relatively uniform manner to form a well-connected network (Figure 3). We also
observed that 1% Ca supplement improved the BV/TV of the distal femur. It has been shown that
salmon bone powder improved the BV/TV of OVX rats [29,30]. The observed increases in BV/TV,
Tb.Th, Tb.N and Ct.Th, and the decrease in BSA/BV and Tb.Sp indicated an improved overall bone
strength and tibial trabecular bone density. Micro-CT analyses indicated that 1% Ca supplement was
able to attenuate OVX-induced osteoporosis and prevent the detrimental effects of a low Ca diet.

In osteoblast differentiation [31,32], the genes for BMP-2, COL-1 and osteocalcin are involved
in the formation, metabolism and regeneration of bone [33]. BMP-2, an important growth
factor, modulates osteoblast differentiation by stimulating osteoblast-related transcriptional factors,
including RUNX2 [34]. In addition, SMAD1 and the closely related SMAD5 and eight specifically
mediate BMP-2 responses, such as osteoblastic differentiation of precursor cell lines [35]. Especially,
osteocalcin has the ability to bind hydroxyapatite and Ca and is highly expressed in growing skeletal
tissue. It plays an important role in the mineralization or bone turnover process or both [36].
The present study demonstrated that the 1% Ca-supplemented diet upregulated the expression of genes,
such as BMP-2, Wnt3a, SMAD1/5/8, RUNX2, osteocalcin and COL-1 compared to the low Ca group.
These results were in agreement with those of previous studies showing that Ca-treated cells and
elevated concentrations of extracellular Ca induced an increase in osteocalcin mRNA expression [37,38].
In addition, Ca sources such as coral sand increased RUNX2 and COL-1 mRNA expression [39].
Moreover, Sr-Ca co-administration upregulated RUNX2 mRNA expression [40]. These results provide
important insights into how the downstream components of the BMP-2 signaling pathways, which we
have identified as RUNX2 and receptor-activated SMADs and induce osteoblast differentiation in
OVX rat (Figure 8). Thus, 1% Ca supplement promoted osteoblast differentiation and induced the
BMP/SMADs/RUNX2 signaling pathway.

TRAP is an iron-binding protein that is highly expressed in osteoclasts and induced in
differentiation of osteoclasts [41]. Cathepsin K is a recently identified lysosomal cysteine proteinase.
It is abundant in osteoclasts, where it plays a pivotal role in the remodeling and resorption of bone [42].
Monocytes differentiate into osteoclasts through stimulation of RANK. Many downstream effectors
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of RANK play a positive role in osteoclastogenesis [43]. Decreases in TRAP, cathepsin K and RANK
activity have been used as valuable indicators of an osteoclast. The present study demonstrated that
the 1% Ca-supplemented diet decreased TRAP, cathepsin K and RANK mRNA expression compared
to the low Ca group. These results were in agreement with those of previous studies showing that the
presence of high extracellular concentrations of Ca and 1,25-dihydroxyvitamin D3 decreased mRNA
expression of cathepsin K [44]. Based on these findings, it is suggested that 1% Ca supplement may
not only have inhibited effect on the expression of RANK at early stage, but also could repress TRAP
and cathepsin K osteoclastogenesis at a late stage (Figure 8).

It is well known that MAPK signaling pathways including ERK, P38 and JNK signaling pathways
are crucial for the regulation of cell proliferation, osteoblast differentiation and skeletal development.
Previous studies have shown that the ERK signaling pathway plays a pivotal role in mediating the
collagen or collagen-related peptide-induced osteogenic differentiation of osteoblast precursors or
mesenchymal stem cells [45–48]. The present study demonstrated that the 1% Ca-supplemented
diet promoted the activation of p-ERK and p-JNK signaling. Previous reports demonstrated that
Ca is important in determining the specificity of the ERK cascade [49]. Another study reported
that Ca-containing crystals enhanced the phosphorylation level of ERK, but did not change the
phosphorylation levels of AKT and JNK [50]. In addition, Ca-, Mg- and Si-containing akermanite
bioceramics (Ca2MgSi2O7) may activate p38, ERK and AKT signaling pathways [51]. However,
another study reported that akermanite bioceramics stimulated osteogenic differentiation via activation
of the ERK pathway, while there was no detectable activation of the p38 signaling pathway [52,53].
Consistent with these observations, the present study found that the 1% Ca group showed a significant
increase in the ratio of phosphorylated ERK and JNK protein expression. However, our study showed
that osteoblast differentiation was stimulated by activation of ERK and JNK, but not by activation of p38.
Based on these findings, BMP-2 can activate ERK and JNK in OVX rats and provide evidence that these
MAP kinases have distinct roles in regulating RUNX2, osteocalcin and COL-1 (Figure 8). In osteoclast
differentiation, RANKL binds to RANK in osteoclast precursor and differentiating osteoclasts cells,
resulting in activation of various intracellular signaling pathways involving ERK and JNK [39]. Thus,
our study demonstrated that 1% Ca supplement was able to promote osteoblast differentiation and
via ERK and JNK activation and hence bring about the upregulation of BMP-2, SMAD1/5/8, RUNX2,
osteocalcin and COL-1. Furthermore, it inhibited osteoclast differentiation genes (RANK, TRAP and
cathepsin K) via ERK and JNK activation.
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5. Conclusions

For the first time, the present study demonstrated that 1% Ca supplement derived from
GD enhanced breaking force, microarchitecture and expression of genes related with osteoblast
differentiation. Furthermore, these Ca extracts increased the expression levels of BMP-2, Wnt3a,
SMAD5, RUNX2, osteocalcin and COL-1 in an in vivo model of osteoporosis, while they decreased
TRAP, cathepsin K and RANK expression levels. TRAP, cathepsin K and RANK also stimulated the
ERK and JNK signaling pathways. These changes were associated with significant increases in BMD
and trabecular bone volume, which play an important role in overall skeletal strength. These findings
provide proof that 1% Ca supplement derived from GD may help to delineate the potential of collagen
for the treatment of bone metabolism disorders.
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