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Identified enzymatic components in the asilid venom that were only present in the proteome of 
one species 

Peptidase S1 digests proteins by cleaving their peptide bonds [1]. Proteins of the PS1 family are 
known to be recruited into venoms convergently multiple times in reptiles, hymenopterans, 
cephalopods, bats and hematophagouse arthropods [2]. Considering the mode of feeding of asilids 
it is likely that PS1 are necessary for liquefying the prey, however, we recover peptidase in the 
proteome only for M. arthriticus. 

The venom acidic phosphatase secreted in the thoracic glands of M. arthriticus is known to be 
one of the major allergens in the venom of Apis melifera [3–6], but is also known from the venom of 
other hymenopterans like bumblebees or paper wasps [4,6]. The function needs to be evaluated in 
flies, however, it might be speculated given its broad occurrence in defensive hymenopteran venom 
that it is deployed also in robber flies as a defensive toxin. 

This interpretation would be supported by another enzyme present in M. arthriticus, a 
Natterin-like protein. Two sequences with a Natterin-like domain known from the venom of the 
toad fish Thalassophryne nattereri are secreted in the thoracic glands of M. arthriticus, (see Table2, 
Figure S9). Similar sequences were also identified in the transriptome of E. rufibarbis but are absent 
in the proteome. Natterin was first described in the venom of Thalassophryne nattereri, later it was 
also identified in the skin secreting of oriental catfishs (Plotosus lineatus) [7–9] being rather used for 
defensive purpose. Yet, Natterin-like toxins show a lethal activity in mice and arthropods, whereas 
arthropods (freshwater crabs) are much more sensitive. This high sensitivity of arthropods to 
natterin like toxins could imply that assilids may use this primary defensive toxin in an offensive 
manner to overpower their prey. Currently no study exists that tests differences in offensive and 
defensive venom compositions of asilids, or if asilids generally use defensive stings. 

Phospholipase catalyzes the hydrolysis of phospholipids into fatty acids and other lipophilic 
substances. One secreted Pospholipase A2 was identified for M.arthriticus, Pla2 proteins are known 
venom components of cepahlopods, scorpions, ticks, spiders, several insects and reptiles [2]. They 
are known for several toxic activities, like cytotoxicity, myotoxicity, neurotoxicity or antiplatelet 
activity [10,11]. We can only speculate about a possible function in robber flies eventually it acts as a 
neurotoxic component or spreading factor for the third fraction of putative asilid venom which 
shows neurotoxicity. 
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Figure S1. Habitus and habitat of the two studied robber flies. (top left) Eutolmus rufibarbis; (top 
right) Machimus arthriticus; (bottom) Heathland habitat where these two species were collected. 
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Figure S2. SDS-PAGE gel of crude venom of Machimus arthriticus and Eutolmus rufibarbis stained 
with Coomassie blue. 
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Figure S3. Neighbor network of the asilidin1 sequences identified in M. athriticus and E. rufibarbis 
and known cysteine inhibitor knot toxins from cone snails, spiders, scorpions, assassin bugs and 
xiphosurans. Robber fly sequences that were confirmed in the proteome are marked with a white P 
in a green circle. The sequence for which activity was tested is marked with a white A in a red circle. 
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Figure S4. Neighbor network of Asilidin 2, new named protein hits are highlighted. 
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Figure S5. Neighbor network of Asilidin 3, new named protein hits are highlighted. 
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Figure S6. Neighbor network of Asilidin 8, new named protein hits are highlighted. 
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Figure S7. Neighbor network of Asilidin 9, new named protein hits are highlighted. 
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Figure S8. Neighbor network of Asilidin 10, new named protein hits are highlighted. 
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Figure S9. Alignment of CO1 barcode sequences of specimens from E. rufibarbis and M. arthritcus 
used for our analyses. 
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Figure S10. Overall strategy for asilidin1 peptide synthesis. 
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Figure S11. UV chromatogram of linear toxin (dashed line indicates acetonitriles gradient). 
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Figure S12. UV chromatogram of folded toxin and MALDI analysis (dashed line indicates 
acetonitrile gradient). 
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