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Abstract: Antimicrobial peptides (AMPs) are crucial effectors of the innate immune system.
They provide the first line of defense against a variety of pathogens. AMPs display synergistic effects
with conventional antibiotics, and thus present the potential for combined therapies. Insects are
extremely resistant to bacterial infections. Insect AMPs are cationic and comprise less than 100 amino
acids. These insect peptides exhibit an antimicrobial effect by disrupting the microbial membrane
and do not easily allow microbes to develop drug resistance. Currently, membrane mechanisms
underlying the antimicrobial effects of AMPs are proposed by different modes: the barrel-stave mode,
toroidal-pore, carpet, and disordered toroidal-pore are the typical modes. Positive charge quantity,
hydrophobic property and the secondary structure of the peptide are important for the antibacterial
activity of AMPs. At present, several structural families of AMPs from insects are known (defensins,
cecropins, drosocins, attacins, diptericins, ponericins, metchnikowins, and melittin), but new AMPs
are frequently discovered. We reviewed the biological effects of the major insect AMPs. This review
will provide further information that facilitates the study of insect AMPs and shed some light on
novel microbicides.

Keywords: antimicrobial peptides; AMP; Structure-activity relationship; modification; mechanism
of action

Key Contribution: The biological effects, especially the antibacterial activity of the major insect
antimicrobial peptides (AMPs) are reviewed.

1. Introduction

Antimicrobial peptides (AMPs) are multifunctional components of the innate immune defense
systems in prokaryotic and eukaryotic organisms [1]. Based on amino acid substitutions, AMPs are
divided into several subgroups. They generally consist of between 12 and 50 amino acids and are
divided into subgroups by their amino acid composition and structure. Some AMPs can be as short
as 7 to 100 amino acids [2]. The hydrophobic part of their molecule generally takes up more than
50% of amino acids residues. The secondary structure of AMPs follows four themes: (1) α-helical
due to the presence of coiled conformation; (2) β-stranded; (3) β-hairpin or loop; and (4) extended
conformation [3].

AMPs have a range of antibacterial, antifungal, and antiviral activities. They have a promising
capacity in the therapeutic and prophylactic applications [4,5]. Moreover, AMP-derived drugs are
administered as topical formulations to treat skin and wound infections [6]. Some AMPs also show
anticancer effects or have anticancer properties [7]. Aurein, for example, is highly effective against
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around 50 different cancer cell lines and displays little toxicity [8]. Bacteria do not develop resistance
to AMPS as easily as to traditional antibiotics. These peptides can physically disrupt microbial cellular
membranes and therefore kill a broad spectrum of pathogenic microorganisms. Thus, the microbial
membrane is usually considered the primary target of AMPs [9,10]. Moreover, their outstanding
membrane disruptive activity makes these peptides ideal candidates for combined therapies with
conventional antibiotics [11]. AMPs can facilitate more antibiotic molecules entering the microorganism
cytoplasm, where they can interact with their target (Figure 1).
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Figure 1. Combined effects of antimicrobial peptides (AMPs) and antibiotics on bacteria. (A) AMPs can
disrupt the bacterial membrane to cause the leakage of the cell content into the extracellular medium
and kill the bacteria. The AMPs can facilitate more antibiotics to enter the cytoplasm of bacteria and
finally interact with their target. However, the leakage of the antibiotics from the cytoplasm should not
be ignored; (B) in bacterial cells, antibiotics are pumped out of the cells by the multidrug efflux pumps,
which is how bacteria exert their resistance properties (adapted from [11]).

AMPs kill bacteria via a variety of mechanisms including membrane disruption, interference
with bacterial metabolism, and targeting of cytoplasmic components [5,6,10,12–14]. The primary
contact between an AMP and the target bacterium occurs via an electrostatic or hydrophobic
interaction, which is strongly dependent on the lipid composition of the bacterial membrane [15,16].
AMPs are capable of interacting with the surface of the cell membrane to alter the permeability of the
membrane [10]. After AMPs interact with the cell membrane, the formed transmembrane potential
affects the osmotic pressure balance [6]. In short, the interaction between the AMPs and the membrane
is directly related to the antibacterial activity of the AMPs. At present, there are at least four modes of
action commonly used to describe the membrane activity of AMPs: Barrel-stave, carpet, toroidal-pore,
and disordered toroidal-pore [10,12]. For all these modes, a threshold concentration is required to
conduct the antibacterial effect [10]. AMPs can also disrupt intracellular enzymes and DNA when
they translocate into the pathogens [5]. The detailed explanation of these modes can be read in our
recent review [6] as well other publications [5,10,12,13]. Regarding the membrane activity of AMPs,
some issues need to be considered. For example, whether there is a specific membrane receptor,
and whether there are other factors synergistically working in this context. The mechanism of action
of different AMPs may be variable, and further research is needed.
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AMPs can be classified into many types, based on their secondary structures in liquid
media [17,18]. The β-sheet peptides contain a disulfide bond that stabilizes the structure, and helps
the AMPs to cross the cell membrane. In addition to the β-sheet structure, AMPs also form an
α-helical structure, and contain a cysteine in the peptide to form an intramolecular disulfide
bridge [19,20]. Due to the presence of hydrophobic groups, the peptide chain forms a polymer by
hydrophobic interaction to increase the affinity for cell membranes [6,21–23]. The optimum antibacterial
activity appears to be a balance between charge density, hydrophobic character, and polymer chain
length [24–26]. Increasing the number of positively charged amino acids or changing their position
in the peptide chain can affect the secondary structure of the AMPs, thereby further affecting their
antibacterial activity. Thus, the combination of charge, hydrophobicity, and length of the peptide is
important for the antimicrobial activity of AMPs [27–29].

It is well known that insects are extremely resistant to bacterial infections. They can produce a wide
range of proteins and peptides as a first line of defense against pathogen infection [14]. Insects activate
immune systems, or directly target bacteria and viruses, to combat pathogens. We have previously
reviewed the chemical and biological properties of marine AMPs [6]. In this review, we present
characteristic and potential medical applications of insect origin peptides with antimicrobial activity.
We especially focus on a large group of AMPs that are present both in ancient and recent insects:
Defensins, cecropins, attacins, lebocins, dipterins, ponericins, jelleines, and others. By so doing, we will
provide a new perspective on the function and biological effects of insect AMPs as well as their use
in medicine.

2. Insect Antimicrobial Peptides

Insect AMPs are divided into three groups based on their amino acid sequence and structures:
(a) Cecropins, the linear peptides with α-helix but lack cysteine residues; (b) Defensins with 6–8
conserved cysteine residues, have a stabilizing array of 3 or 4 disulfide bridges and 3 domains consisting
in a flexible amino-terminal loop; and (c) peptides with an overrepresentation of Proline and/or
Glycine residues [30]. The most explored insect AMPs are cecropins, drosocin, attacins, diptericins,
defensins, ponericins, drosomycin and metchnikowin. However, more new peptides can still be
discovered [31,32]. Most glycine-rich and proline-rich peptides are active against Gram-negative
strains of bacteria [33]. Defensins can selectively kill Gram-positive bacteria, whereas cecropins are
active against both types [12]. Iinsect AMPs are very potent since their IC50 ranges in the submicromolar
or low micromolar range. Currently, there are still no insect-derived AMPs on the market yet. However,
we have no doubt that insect AMPs can be exploited as an alternative to antibiotics [12].

2.1. Defensins

Defensins are a family of small, variable cationic arginine-rich peptides [34]. They are not specific
to insects, and more than 300 defensins have been identified so far. Defensin peptides are ancient
natural antibiotics with strong antimicrobial activity against a range of microorganisms [35,36].
They consist of 18–45 amino acids with 6–8 conserved cysteine residues [36]. Classic defensins
(α-defensins) contain 29–35 amino acids, and the insect defensins contain 29–34 amino acids.
The molecule of defensin is usually stabilized by three disulfide bonds and, a β-hairpin is their
major structural feature [37]. Defensins bind to the cell membrane or form pore-like membrane defects
to efflux of essential ions and nutrients [38,39].

Insect defensins are inducible antibacterial peptides with activity against both Gram-positive
and Gram-negative bacteria [40]. They are highly effective against Gram-positive bacteria [41],
including human pathogenic bacteria such as Staphylococcus aureus. However, these peptides are
less effective against Gram-negative bacteria [42]. Insect defensins are isolated from insect orders
such as Diptera, Hymenoptera, Coleoptera, Trichoptera, Hemiptera, and Odonata [1,40]. All types
of AMPs are reported in lepidopteran insects, except for the insect defensins [43]. Defensin from
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rabbit neutrophils exerts potent bactericidal activity against the multi-drug-resistant (MDR) strains of
Pseudomonas aeruginosa [44].

Royalisin is isolated from the royal jelly of Apis mellifera. It consists of 51 amino acids
(VTCDLLSFKQVNDSACAANCLSLGKAGGHCEKGVCICRKTSFKDLWDKYF-NH2), in which six
cysteine residues form three disulfide bonds to make the molecule a compact globular structure [45].
Royalisin is an amphipathic protein, and its C-terminal is rich in charged amino acids. This peptide
inhibits the Gram-positive bacteria and fungi. It is particularly effective against the larvae of the bee
pathogen Paenibacillus larvae, which causes American foulbrood [46].

2.2. Cecropins

Cecropins were first isolated from the hemolymph of the giant silk moth Hyalophora cecropia
(cecropia moth), whence the term cecropin was derived [47]. These peptides are mainly structured by
a large number of antibacterial and toxic peptides isolated from various lepidopteran and dipteran
species, which constitute a major part of the cell-free immunity of insects. Cecropins are small
proteins (around 35 amino acid residues) with activity against both Gram-positive and ram-negative
bacteria. The principle insect cecropins (A, B and D) consist of 35–37 residues without cysteine [48,49].
Cecropins can lyse bacterial cellular membranes and can also inhibit proline uptake as well as cause
leaky membranes [50,51]. Insect cecropins also have other names including bactericidin, lepidopteran,
sarcotoxin, etc. [52]. These structurally related peptides are shown in Table 1.

Table 1. The amino acid sequences of cecropins.

Name Amino Acid Sequence Reference

Cecropin A GGLKKLGKKLEGVGKRVFKASEKALPVAVGIKALG-NH2 [47]
Cecropin B KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKAL-NH2 [47]

Cecropin B1 KWKVFKKIEKMGRNIRNGIVKAGPKWKVFKKIEK-NH2 [53]
Cecropin B3 AIAVLGEAKALMGRNIRNGIVKAGPAIAVLGEAKAL-NH2 [53]
Cecropin C GWLKKLGKRIERIGQHTRDATIQGLGIAQQAANVAATAR-NH2 [48]
Cecropin D WNPFKELEKVGQRVRDAVISAGPAVATVAQATALAK-NH2 [48]
Cecropin P1 SWLSKTAKKLENSAKKRISEGIAIAIQGGPR-NH2 [54]

Cecropin A is an AMP with a stabilized α-helical structure [55]. The precise antibacterial
mechanism of cecropin A is unclear, but there is primary evidence showing that the cell membrane is
the target [15]. Based on recent results, Yun and Lee [56] confirmed that an ion imbalance regulates
cecropin A-induced apoptotic activity. Cecropin A can significantly reduce NADPH and glutathione
levels to further induce oxidative stress by forming reactive oxygen species (ROS) [56,57]. Initially,
cecropin peptides are arranged as antiparallel dimers with conserved residues of adjacent monomers
in contact. The dimers may bind to the membrane with the NH2-terminal helices sunken into the
head-group layer [57]. Cecropin A has promising activity against the fungus Beauveria bassiana in
silkworm larvae [58].

Cecropin B is a naturally occurring linear cationic peptide consisting of 35 amino acids [59]. It is
the member of the cecropin family with the highest antibacterial activity [59]. In a rat mode of septic
shock, cecropin B significantly reduced the lethality of Escherichia coli load and plasma endotoxin
levels [60]. Cecropin B attenuates the motility of the adult female nematode worm Brugia pahangi in
adult females of Aedes aegypti and causes a significant decrease in the number of developing larvae [61].
Cecropin B also shows an antifungal capacity against Candida albicans [62]. Cecropin B, as well as other
AMPs from the silkworm Bombyx mori including moricin (42 amino acids) [63,64], have a broad activity
against porcine bacterial pathogens and is quite crucial in the porcine industry [65].

Cecropin C is present in very low quantities in the hemolymph of H. cecropia. Currently,
the antibacterial activity of cecropin C is rarely reported. Compared with cecropin A, no C-terminal
blocking group is present in cecropin C. Cecropin C is considered a precursor or degradation product
of cecropin A [48].
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Cecropin D is isolated from H. Cecropia and shows homology to cecropin A and cecropin B [48].
After bacterial infection, cecropin D appears in the hemolymph later than cecropin A or cecropin B [66].
A recombinant cecropin D has been successfully expressed in Pichia pastoris and showed antibacterial
activity for both Gram-positive and Gram-negative bacteria [67]. The C-terminal lysine residue of
cecropin D could increase antibacterial activity due to activated phosphorylation [68]. Cecropin D
also inhibits porcine reproductive and respiratory syndrome virus (PRRSV) infection and replication
in vitro [69].

Cecropin P1 is an antibacterial peptide from Ascaris suum, a parasitic nematode that resides in
pig intestine [54]. Cecropin P1 could effectively inhibit the growth of enterotoxigenic E. coli with the
minimal inhibitory concentration (MIC) of 1 mg/mL [70]. A tertiary structure study shows that cecropin
P1 can form α-helical structures with the C-terminal region (Lys15–Gly29) in lipopolysaccharide (LPS)
of the outer membrane of Gram-negative bacteria [71]. The concentration-dependent killing of E. coli by
cecropin P1 can be driven through the extent of the immediate permeabilizing action of the peptide [72].
Cysteine-terminus modified cecropin P1 (CP1C) shows less antimicrobial activity, since the presence
of polyethylene glycol (PEG) linker prevents CP1C from interacting with the bilayer [73]. Cecropin
P1 also shows a significant inhibitory effect on human fungal pathogen C. albicans [74]. Cecropin P1
inhibits PRRSV by blocking attachment [75]. Cecropin P1 inhibits viral particle release and attenuates
virus-induced apoptosis [75]. Currently, biosensors using cecropin P1 have been developed, and the
peptide has been immobilized through different termini results in different functions and activities [76].

Lucilin, a 36-residue cecropin, is identified as a partial genetic sequence in Lucilia sericata
maggots [77]. The fusion protein, GWLK-Lucilin-CPD-His8, shows a potential activity against
multidrug resistant (MDR) bacteria E. coli [77]. Musca domestica cecropin is also a potential bactericidal
agent against clinical isolates of E. coli [78].

2.3. Attacins

Attacins are glycine-rich proteins, belonging to the AMP group. Attacins were first discovered
in Hyalophora cecropia [79]. They are effective against Gram-negative bacteria [80]. Attacins A–F are
closely related antibacterial proteins, which are isolated from the hemolymph of immunized pupae
of the cecropia moth (Hyalophora cecropia) [79]. They are a rather heterogeneous group of proteins,
varying in size but rich in glycine residues (10–22%). Attacins A–F can be divided into two groups
based on their amino acid composition: Attacins A–D constitute a basic group; and attacins E and F,
which have acidic residues. Within each group, the forms are very similar (Figure 2).
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Attacins act by blocking the synthesis of the major outer membrane proteins in dividing
Gram-negative bacteria, thus disturbing the integrity of the cell wall and causing the bacteria to
grow in long chains [81]. Attacins constitute an antibacterial active form of inducible immune
protein P5. Attacins can effectively kill E. coli and other Gram-negative bacteria. In addition to
cecropin and lysozyme, attacins are the third antibacterial protein in the humoral immune system
of H. cecropia [82]. Some attacin and attacin-related proteins are isolated from Bombyx mori, Glossina
morsitans (tse-tse fly), Heliothis virescens, Trichoplusia ni, Samia cynthia ricini (wild silkmoth) and Musca
domestica (housefly) [83,84].
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2.4. Lebocins

Lebocins are antibacterial peptides consisting of 32 amino acids, which were identified by
Hara and Yamakawa [63] in the hemolymph of the silkworm Bombyx mori, immunized with
E. coli [63]. Lebocin is a proline-rich and O-glycosylated peptide [85]. In total, 41% of the
amino acid sequence of lebocin is identical with abaecin, a major 34 amino acid antibacterial
peptide (YVPLPNVPQPGRRPFPTFPGQGPFNPKIKWPQGY-NH2) in the honeybee Apis mellifera [86].
The amino acid sequence in lebocin 1 is DLRFLYPRGKLPVPTPPPFNPKPIYIDMGNRY-NH2.
The primary sequence of lebocins 1 and 2 differ only in their sugar moiety. Lebocin 3 has the same
structure as lebocin 2, except that residue 16 is leucine instead of proline [87].

2.5. Drosocin

Drosocin is a peptide produced by Drosophila melanogaster [88]. This peptide contains 19 amino
acids (GKPRPYSPRPTSHPRPIRV-NH2). The peptide is O-glycosylated, and this modification is
required for maximum biological activity [89]. Glycosylation is an important post-translational
modification for some proline-riched AMPs class [90]. In addition to the Gram-positive bacterium
M. luteus, Drosocin is primarily resistant to Gram-negative bacteria. Deletion of the first five N-terminal
residues completely abolishes the activity of drosocin [88,91]. Glycosylated drosocin is active against
E. coli and fungi [92].

Apidaecin IB and drosocin show significant sequence homology and interaction mechanism
but lack any pore-forming activity [93]. Apidaecins are the major components of the honeybee
humoral defence against microbial invasion [93]. N-terminal mutation of apidaecins not only reinforces
the interaction with unidentified intracellular target(s), but also promotes the cell-penetration
efficiency [94]. Structure N-terminal Ile-Orn- and Trp-Orn-motif repeats increases the antimicrobial
activity against Pseudomonas aeruginosa [95].

2.6. Diptericins

Diptericins constitute a family of related glycine-rich antibacterial peptides (about 8 kD)
from Dipteran hemolymph proteins of about 82 amino acids [96]. Diptericins A–C have
been isolated from immunized larvae of the dipteran Phormia terranovae [97]. Diptericin is
also expressed in D. melanogaster [98], Sarcophaga peregrina (flesh fly) [99], and Mayetiola
destructor (Hessian fly). The predominant member of this family of peptides is diptericin A
(DDMTMKPTPPPQYPLNLQGGGGGQSGDGFGFAVQGHQKVWTSDNGRHEIGLNGGYGQHLGGPY
GNSEPSWKVGSTYTYRFPNF-NH2). This peptide is active only against a limited number of
Gram-negative bacteria (E. coli K12, Erwinia hericola T, and Erwinia carotovora 113). Diptericin A mainly
acts on the cytoplasmic membrane of growing bacteria [100].

Prolixicin is a novel AMP from the family of diptericins. This peptide has been isolated from
the hemipteran insect Rhodnius prolixus. Prolixicin is a peptide with 21 amino acids [101]. It has also
two putative phosphorylation sites, but no glycosylation sites have been identified. Sequence analysis
reveals that one region of prolixicin is related to the diptericin/attacin family of AMPs. This peptide
can be produced by midgut tissues after the bacterial infection of the hemolymph [101].

2.7. Metchnikowin

In 1995, Russian scientists identified a novel 26-residue proline-rich immune-inducible linear
peptide (HRHEGPIFNTRPSPFNPNEPRPGPIY-NH2) from D. melanogaster, which was remarkable in
its unusual antimicrobial activity against Gram-positive bacteria and fungi. However, this peptide has
no effect against Gram-negative bacteria [102]. This peptide was named Metchnikowin in honour of E.
Metchnikow who initiated this field of research. There are two isoforms of Metchnikowin in the Oregon
Drosophila strain, which differ by one residue (His compared to Arg) [103]. The target of Metchnikowin
has been studied. Metchnikowin interacts with the fungal enzyme β(1,3)-glucanosyltransferase Gel1
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(FgBGT), an important enzyme that is involved in fungal cell wall synthesis [104]. Metchnikowin
also targets the iron-sulfur subunit (SdhB) of succinate-coenzyme Q reductase (SQR). In the study
of Moghaddam et al. [104], Metchnikowin inhibited the SDH activity of Fusarium graminearum
mitochondrial SQR by up to 52%.

2.8. Ponericins

Ponericins are peptides isolated from the venom of the predatory ant Pachycondyla goeldii.
Members of the subfamily Ponerinae were isolated and their amino acid sequences were characterized
by Orivel and coworkers [105]. Ponericins can be classified into three families based on their primary
structure similarities: Ponericins G, W, and L (Table 2). Ponericins have high sequence similarities for
the known peptides: Ponericin G has similarity with cecropin-like peptides; ponericin W is similar
with gaegurins and melittin; and ponericin L is similar with dermaseptins. Ponericins also show
hemolytic activities, as well as insecticidal activities against cricket larvae. Ponericins have α-helical
structures in cell membranes [106].

Table 2. The amino acid sequences of ponericins, which are antibacterial insect peptides (According
to [106]).

Name Amino Acid Sequence

Ponericin G1 GWKDWAKKAGGWLKKKGPGMAKAALKAAMQ-NH2
Ponericin G2 GWKDWLKKGKEWLKAKGPGIVKAALQAATQ-NH2
Ponericin G3 GWKDWLNKGKEWLKKKGPGIMKAALKAATQ-NH2
Ponericin G4 DFKDWMKTAGEWLKKKGPGILKAAMAAAT-NH2
Ponericin G5 GLKDWVKIAGGWLKKGPGILKAAMAAATQ-NH2
Ponericin G6 GLVDVLGKVGGLIKKLLP-NH2
Ponericin G7 GLVDVLGKVG GLIKKLLPG-NH2
Ponericin W1 WLGSALKIGAKLLPSVVGLFKKKKQ-NH2
Ponericin W2 WLGSALKIGAKLLPSVVGLFQKKKK-NH2
Ponericin W3 GIWGTLAKIGIKAVPRVISMLKKKKQ-NH2
Ponericin W4 GIWGTALKWGVKLLPKLVGMAQTKKQ-NH2
Ponericin W5 FWGALIKGAAKLIPSVVGLFKKKQ-NH2
Ponericin W6 FIGTALGIASAIPAIVKLFK-NH2
Ponericin L1 LLKELWTKMKGAGKAVLGKI-NH2
Ponericin L2 LLKELWTKIKGAGKAVLGKIKGLL-NH2

2.9. Jelleines

Jelleines are a family of peptides isolated from Apis mellifera royal jelly [107]. They are composed
of 8–9 amino acids and bear a +2 charge at the C-terminus [107]. Four AMPs were purified from
royal jelly of honeybees: Jelleine-I (PFKLSLHL-NH2), jelleine-II (TPFKLSLHL-NH2), jelleine-III
(EPFKLSLHL-NH2) and jelleine-IV (TPFKLSLH-NH2) [108]. Jelleines-I–III presented antimicrobial
activities against yeast, fungi, Gram-positive and Gram-negative bacteria [108,109]. These peptides
have no similarities with other AMPs from honeybees. Molecules of jelleines are still in the
characterization phase [110].

2.10. Apisimin

Apisimin is a peptide consisting of 54 amino acids with a primary sequence of
KTSISVKGESNVDVVSQINSLVSSIVSGANVSAVLLAQTLVNILQILIDANVFA-NH2, and is found
in honeybee royal jelly [111], which stimulates the proliferation of human monocytes [112]. Apisimin
is rich in valine and serine, and contains only one aromatic amino acid, phenylalanine [108]. Apisimin
is a small peptide in royal jelly. High levels of small mRNA expression of apisimin are observed
in the heads of nurse and foraging honeybees. Therefore, they may play a physiological role in
honeybee colonies [111]. The study of Gannabathula et al. [113] provides evidence that apisimin and
arabinogalactan proteins are present in honey and contribute to their immune active properties.
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2.11. Pyrrhocoricin

Pyrrhocoricin, a proline-rich inducible AMP, was isolated from the hemolymph of the
sap-sucking bug Pyrrhocoris apterus by Cociancich et al. [114]. This 20 amino acid peptide
(VDKGSYLPRPTPPRPIYNRN-NH2) interacts with the heat shock protein DnaK, which is correlated
with the antimicrobial activity [115]. Pyrrhocoricin can bind to and promote the ATPase activity
of the molecular chaperone DnaK [116,117]. Boxell et al. [118] showed that pyrrhocoricin could
act as a delivery vehicle in transducing peptides across the cell membrane of the parasite
Cryptosporidium parvum. The successful transduction facilitates target validation. It will also help
to deliver peptide-based drugs to this important human pathogen. Cyclization of pyrrhocoricin
structural elements is important for the antimicrobial activity of the native peptide [119].

2.12. Persulcatusin

Persulcatusin has been identified in the midgut of Ixodes persulcatus. Its amino acid sequence
is GFGCPFNQGACHRHCRSIGRRGGYCAGLFKQTCTCYSR-NH2 [120]. The complete structure
of persulcatusin has not been identified yet. Its similarity with other known tick AMPs is from
71% to 88% [121,122]. The structural integrity of persulcatusin is maintained by three S-S bonds,
which are energetically important for the stability and the formation of the structure of α-helix and
β-sheet [123,124]. This peptide can inhibit the growth of methicillin-sensitive S. aureus (MSSA) and
methicillin-resistant S. aureus (MRSA) with the MIC of 0.156–1.25 µg/mL and 0.625–2.5 µg/mL,
respectively [31]. Very recently, persulcatusin exhibits strong antibacterial activity against MDR S.
aureus strains, including VRSA [123]. The antimicrobial activity of persulcatusin against MRSA was
stronger than that of other AMPs [124].

2.13. Melittin

Melittin is a peptide toxin found in bee venom and is effective against bacteria [125,126]. This
peptide has a linear structure with 26 amino acid residues (GIGAVLKVLTTGLPALISWIKRKRQQ-
NH2) [125,127]. Melittin has a strong antibacterial effect against a variety of bacteria including
Borrelia burgdorferi [128], Listeria monocytogenes [129], S. aureus, and P. aeruginosa [130,131]. Melittin
has antibacterial activity against Xanthomonas oryzae pv. oryzae, a destructive bacterial disease of
rice, indicating that this peptide may have potential applications in plant protection [132]. RV-23,
a melittin-related peptide, shows strong antibacterial activity against E. coli and S. aureus [133]. A new
synthetic peptide, MelP5, is a gain-of-function variant of melittin [134]. Moreover, this peptide
facilitates the passage of macromolecules across bilayers.

Melittin binds to membrane surfaces with a negative charge to disturb the integrity of
phospholipid bilayers by forming pores, which subsequently induces the leakage of atomic ions
and molecules and ultimately leads to cell lysis [135]. Proline residue is important in the antimicrobial
activity of melittin [136]. Analogues lacking the poline residue and dimers decrease the cytotoxicity and
minimize the inhibitor concentrations. However, there are ongoing debates regarding the molecular
mechanism of melittin [137,138]. For decades, the equilibrium transmembrane pore mode has been
considered the major mechanism of the antibacterial activity of melittin. However, emerging evidence
shows that the transmembrane pore is not required in this context [139]. Notably, the mechanisms can
be markedly influenced by experimental design in different studies [137]. Lee and Lee [140] further
reported that melittin triggers apoptosis in C. albicans through the ROS-mediated mitochondria and
caspase pathway.

Very recently, Akbari et al. [141] showed that there are highly synergistic effects of melittin with
conventional antibiotics against MDR isolates of Acinetobacter baumannii and P. aeruginosa. In their
study, the geometric means of MIC for melittin and doripenem after combination were reduced to 61.5-
and 51.5-fold, respectively, against A. baumannii isolates. This working group [142] further showed that
the new melittin-derived peptides MDP1 and MDP2 exhibited efficient antibacterial activity against
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MDR S. aureus, E. coli, and P. aeruginosa. Melittin also exhibits very effective antibacterial activity
against MRSA strains [143]. MRSA-infected mice treated with melittin were successfully rescued from
bacteraemia. The clinical application of melittin still needs a lot of work in the future, since most
current work is in the preclinical phase [144].

3. Concluding Remarks

Insect AMPs are the main immune effector molecules. Therefore, there are large numbers of
AMP resources in the huge insect world. In recent years, fruit fly and mosquito have been used as
model organisms, and great progress has been made in the study of the natural immunity of insects.
There is growing evidence that the natural immune system of insects is much more complex than one
might expect. In the meantime, due to the conservation of biological evolution, certain molecules and
signaling pathways in the natural immune system of insects have certain similarities with vertebrates
(including humans). Studies of the natural immune system of insects helps to further understand
the complexity of the human immune system. Currently, more bacteria have developed multidrug
resistance due to the abuse of antibiotics, and some super antibiotic resistant bacteria have emerged,
which pose a great threat to human health [145]. Finding and developing new antimicrobial drugs has
become an urgent problem in the medical field.

AMPs not only have a broad-spectrum killing effect on bacteria and fungi, but also have a killing
effect on viruses, protozoa and cancer cells. Compared with traditional antibiotics, their mechanism of
action is unique, and it is not easy for AMPs to cause microbial resistance. Most of them do not damage
or destroy normal cells of higher animals. For example, very recently, clavaspirin peptide, a peptide
from tunicate Styela clava, exhibited the capacity to kill drug-resistant pathogens (S. aureus) without
detectable resistance [146]. The above advantages and rich resource content of insect AMPs make them
excellent templates for the development of new antimicrobial drugs. Indeed, some synergistic effects
of AMPs with conventional antibiotics are observed against bacteria [141]. However, quantitative
methods are rarely used to test this synergistic profile. Wu et al. [147] recently tested the synergistic
effect of AMP DP7 and antibiotics on MDRs (S. aureus, E. coli) using quantitative polymerase chain
reaction. Other researchers [148] also tested the synergistic antimicrobial activity of frog peptides
via oriented circular dichroism and quantitative solid-state F-19-NMR analysis. In the future, more
quantitative studies on the synergistic effects of AMPs with antibiotics should be encouraged. Currently,
the market for peptide drugs is increasing steadily, and some products such as Bacitracin, polymyxin
and Fuzeon are already on the market [5]. However, the clinical use of AMPs is still limited by some
shortcomings, such as low bioavailability, potential hemolysis, instability to proteases, and unknown
toxicity [10]. Investigations of natural peptides and nano-delivery systems from natural polymers are
a new research focus area for the future [149]. However, there is one issue that needs to be considered:
Despite intensive studies, we still do not fully understand the structure-activity relationship (SAR) and
mechanisms underlying AMP activity. Therefore, more SAR studies of AMPs are required. Moreover,
further investigations into the cellular and molecular mechanisms of AMP effects are warranted.
Finally, a library of insect AMPs should be established in order to optimize them further and improve
their antimicrobial activity and toxic properties.
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