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Abstract: In warm agricultural areas across the globe, maize, groundnut, and other crops become
frequently contaminated with aflatoxins produced primarily by the fungus Aspergillus flavus.
Crop contamination with those highly toxic and carcinogenic compounds impacts both human
and animal health, as well as the income of farmers and trade. In Nigeria, poultry productivity is
hindered by high prevalence of aflatoxins in feeds. A practical solution to decrease crop aflatoxin
content is to use aflatoxin biocontrol products based on non-toxin-producing strains of A. flavus.
The biocontrol product Aflasafe® was registered in 2014 for use in maize and groundnut grown in
Nigeria. Its use allows the production of aflatoxin-safe maize and groundnut. A portion of the maize
treated with Aflasafe in Nigeria is being used to manufacture feeds used by the poultry industry, and
productivity is improving. One of the conditions to register Aflasafe with the national regulator was
to demonstrate both the safety of Aflasafe-treated maize to avian species and the impact of Aflasafe as
a public good. Results presented here demonstrate that the use of maize colonized by an atoxigenic
strain of Aflasafe resulted in superior (p < 0.05) broiler performance in all evaluated parameters in
comparison to broilers fed with toxigenic maize. Use of an aflatoxin-sequestering agent (ASA) was
not sufficient to counteract the harmful effects of aflatoxins. Both the safety and public good value of
Aflasafe were demonstrated during our study. In Nigeria, the availability of aflatoxin-safe crops as a
result of using Aflasafe allows poultry producers to improve their productivity, their income, and the
health of consumers of poultry products.

Keywords: biocontrol; aflatoxin; poultry; maize; toxin binders

Key Contribution: This paper reports evidence that the biocontrol product Aflasafe contributes to
the public good because the atoxigenic strains composing Aflasafe are not harmful to poultry. Using
crops treated with Aflasafe as major components of poultry feeds substantially improves poultry
health and their productivity compared to the use of contaminated maize and a toxin binder.
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1. Introduction

Aflatoxins are highly toxic and carcinogenic compounds produced by Aspergillus flavus and closely
related fungi in several crops [1]. Maize (Zea mays L.) and groundnut (Arachis hypogea L.) are amongst
the most susceptible crops. Crop contamination with these potent compounds negatively affects
both human and animal health, the income of farmers, and trade opportunities [2–4]. In the case of
animals, when feeds are prepared with aflatoxin-contaminated crops, their productivity decreases
drastically [5,6]. Poultry species are particularly sensitive even at low aflatoxin concentrations, with
negative effects ranging from poor and delayed growth, high feed conversion ratio (FCR), deficient
nutrient usage, immunosuppression, liver diseases, poor egg-shell quality, and high mortality, among
other constraints [7].

In order to satisfy the nutritional requirements of avian species, their feeds typically contain
>50% maize or groundnut [8]. Across sub-Saharan Africa (SSA), maize and groundnut are frequently
contaminated with aflatoxins [2,9,10], making procurement of aflatoxin-safe crops/feeds a major
challenge for poultry industries. In Nigeria, where poultry economy is growing rapidly [11], the
proportion of feeds containing unsafe aflatoxin concentrations is high [12,13]. Few poultry producers
can import aflatoxin-safe crops to manufacture safe feeds. Poultry producers may choose to use
soybean as a substitute for groundnut, although this results in an elevated cost and requires additional
processing to remove antinutritional compounds found in soybean [14]. Other producers incorporate
aflatoxin-sequestering agents (ASAs) into feeds to attempt to limit both the availability of the toxins
and their effects [15].

ASAs can be largely subdivided into three types: mineral, organic, and biological. The subdivision
within each type, their mode of action, and their efficacy were recently reviewed [16]. The efficiency of
ASAs differs considerably depending mainly on the chemical structure of the adsorbent [17]. Some
ASAs were reported to significantly reduce aflatoxin effects in poultry species [18,19]. However, a main
limitation of some ASAs is that their use generally results in higher FCR, and poultry species need to
receive higher feed rations [16]. This incurs substantial additional cost to producers. Furthermore,
accumulation of antibiotics at dangerous concentrations was detected in tissues of birds that consumed
feeds amended with an ASA [20]. Although several ASAs are available and commonly used across
the globe, only a few are approved by regulatory authorities. In Europe, bentonite is the sole ASA
recommended by the European Commission as a mycotoxin binder for use in poultry, ruminants, and
pigs [16]. In the United States (US), eight ASAs are registered for use in the state of Texas [21].

Substantial efforts were dedicated to make ASAs available to livestock producers. However,
the most effective way to reduce livestock exposure to unsafe aflatoxin levels is to prevent aflatoxin
contamination of the crops that will be processed into feeds. Aflatoxin-safe crops can become
available using a suite of technologies that prevent aflatoxin formation before, during, and after
harvest [22,23]. Among these technologies, a simple, safe, and cost-effective one employs atoxigenic
(i.e., non-toxin-producing) strains of A. flavus as biocontrol agents to displace aflatoxin-producing
strains [24]. Atoxigenic A. flavus strains contain natural deletions, insertions, or defects in one or
more of the genes responsible for aflatoxin formation and, therefore, cannot produce the toxins [25,26].
In 11 SSA nations, several biocontrol products have been developed under the trade name Aflasafe
through intensive collaboration among the International Institute of Tropical Agriculture (IITA), United
States Department of Agriculture – Agricultural Research Service (USDA-ARS), and local national
institutions [27,28]. The Aflasafe product developed for Nigeria was the first aflatoxin biocontrol
product developed for an African nation and is the third one worldwide after two products developed
for use in commercial crops in the US [27,29–31]. Aflasafe products are composed of sterile sorghum
grains coated with spores of four atoxigenic strains of A. flavus native to nations where the product is
intended to be used. Sorghum grains serve as both the carrier and nutritious source for the biocontrol
strains [27]. When applied in the field before crop flowering, the biocontrol strains reproduce on the
sorghum grains before reaching to the target crop. Once associated with the crop, the atoxigenic strains
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displace most of the toxigenic fungi residing in the treated field, resulting in little to no aflatoxins in
the treated crop [27,29,30,32].

Maize and groundnut from Aflasafe-treated fields typically contain 70–99% less aflatoxins than
crops from untreated fields [33]. Thus, incorporating crops from treated fields into feeds may offer an
alternate option to ASAs. On the other hand, there is a potential concern that free-ranging poultry
and other birds may be harmed when they forage on the formulated product after it is broadcasted
in the field. The research reported in the current study was conducted when registration of the
Aflasafe product for Nigeria was being pursued (2009–2013). The regulatory agency responsible for
registering biopesticides in Nigeria, the National Agency for Food and Drug Administration and
Control (NAFDAC), required information on ASA and the potential impact of biocontrol strains on
poultry. The objective of the current study was to determine the performance of broilers fed with
diets containing maize colonized by either toxigenic or atoxigenic (i.e., an Aflasafe strain) A. flavus
strains, supplemented with various concentrations of an ASA. Results from this investigation were
submitted to NAFDAC to provide evidence that the use of maize from Aflasafe-treated fields had a
greater positive effect on broiler performance in comparison to the performance of broilers fed with
aflatoxin-contaminated maize supplemented with various concentrations of an ASA. The ASA used in
this study was Sim®Wall, constituted with beta-glucan, a zeolite, and organic acids. Results strongly
indicate that the use of maize treated with atoxigenic strains of Aflasafe has positive effects on the
health and productivity of broilers and that ASA does not offer an advantage if aflatoxin-safe crops are
available to manufacture feeds.

2. Results

There were significant differences in the nutrient composition of diets among and within maize
type diets in the starter phase (Table 1). Due to the presence of zeolite, higher (p < 0.05) ash content
was detected in diets with the highest Sim®Wall concentration, regardless of maize type (i.e., control,
atoxigenic, or toxigenic maize). Higher contents of both ether extract and crude protein were detected
in control maize diets, while the lowest contents occurred in diets prepared with toxigenic maize.
There was no trend in which higher values of metabolizable energy were associated with either maize
type or Sim®Wall. Similar values and trends were detected in diets evaluated at the finisher phase (FP)
(Table 2).

Table 1. Nutrient composition of diets fed to broilers at starter phase A.

Parameter
Control Maize Atoxigenic Maize Toxigenic Maize

Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7 Diet 8 Diet 9

Sim®Wall (ppm) 0 1000 2000 0 1000 2000 0 1000 2000
Determined analysis

Ash (g/kg) 93.8 b 94.5 b 98.3 a 92.1 c 93.6 b 97.3 a 82.5 e 88.0 d 97.3 a
Crude fiber (g/kg) 38.1 a 38.3 a 37.5 b 36.9 c 37.4 b 37.4 b 35.0 d 37.5 b 37.4 b

Ether extract (g/kg) 35.9 b 35.8 c 36.5 a 35.0 e 34.5 f 35.5 d 33.0 i 33.9 g 33.3 h
Crude protein (g/kg) 22.3 b 23.0 a 22.0 c 21.2 d 20.4 f 20.8 e 17.9 i 19.7 h 19.8 g

ME B (MJ/kg) 10.8 f 11.6 b 11.7 a 11.3 d 11.4 c 11.4 c 11.7 a 11.1 e 11.6 b
A Means with the same lowercase letter (i.e., a to i) in the same row are not significantly different based on a
Student–Newman–Keuls test (α = 0.05). Control maize: untreated maize with no detectable aflatoxin levels;
atoxigenic maize: maize treated with an atoxigenic Aspergillus flavus strain of the biocontrol product Aflasafe;
toxigenic maize: maize treated with an aflatoxin-producing A. flavus strain, containing 500 ppb aflatoxin B1. B ME:
metabolizable energy.
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Table 2. Nutrient composition of diets fed to broilers at finisher phase A.

Parameter
Control Maize Atoxigenic Maize Toxigenic Maize

Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7 Diet 8 Diet 9

Sim®Wall (ppm) 0 1000 2000 0 1000 2000 0 1000 2000
Determined analysis

Ash (g/kg) 9.3 de 9.0 f 10.2 a 8.6 g 9.2 e 9.5 c 8.8 g 9.4 cd 9.8 b
Crude fiber (g/kg) 4.8 b 4.9 a 4.9 a 4.7 c 4.7 c 4.7 c 4.3 f 4.5 d 4.4 e

Ether extract (g/kg) 3.7 a 3.5 c 3.6 b 3.6 b 3.6 b 3.5 c 3.4 d 3.4 d 3.4 d
Crude protein (g/kg) 21.4 a 20.8 e 21.2 c 20.9 d 20.8 e 21.3 b 17.9 h 18.4 g 18.8 f

ME B (MJ/kg) 11.9 d 12.1 c 12.3 b 11.6 c 11.6 e 11.9 d 10.9 g 11.1 f 12.9 a
A Means with the same lowercase letter (i.e., a to h) in the same row are not significantly different based on
a Student–Newman–Keuls test (α = 0.05). Control maize: untreated maize with no detectable aflatoxin levels;
atoxigenic maize: maize treated with an atoxigenic Aspergillus flavus strain of the biocontrol product Aflasafe;
toxigenic maize: maize treated with an aflatoxin-producing A. flavus strain, containing 500 ppb aflatoxin B1. B ME:
metabolizable energy.

When diets were pooled by maize type, birds fed on diets containing control maize or atoxigenic
maize had significantly higher final weight than birds fed with toxigenic maize (Table 3). On the other
hand, pooling diets by Sim®Wall concentration revealed no differences in final weight (Table 3). Feed
intake was not influenced by maize type, but higher weight gain occurred in birds fed with control
maize or atoxigenic maize compared to toxigenic maize (Table 3). Higher (p < 0.05) FCR occurred in
birds fed with toxigenic maize. Mortality in birds fed with toxigenic maize was significantly higher (p
< 0.05) than the other two maize feed treatments. There were no significant differences in bird mortality
among control maize (3.3%) and atoxigenic maize (1.1%) treatments. Overall, the supplementation of
Sim®Wall (Table 3) in the diets had no effect on final weight, feed intake, weight gain, FCR, or mortality.

Table 3. Performance of broiler chickens fed with feed containing various maize types and concentrations
of the aflatoxin-sequestering agent Sim®Wall A.

Parameters
Maize type Sim®Wall

Control Atoxigenic Toxigenic 0 ppm 1000 ppm 2000 ppm

Initial weight (g) 39.2 a 38.9 a 37.6 b 38.7 ab 37.9 b 39.2 a
Final weight (g) 1785 a 1831 a 1118 b 1577 a 1512 a 1645 a
Feed intake (g) 142.7 a 139.6 a 147.0 a 146.1 a 138.7 a 144.5 a

Daily weight gain (g) 43.0 a 43.7 a 26.7 b 37.2 a 35.9 a 40.2 a
FCR B 3.3 b 3.1 b 5.4 a 4.0 a 4.1 a 3.8 a

Mortality (%) 3.3 b 1.1 b 11.2 a 5.7 a 3.3 a 6.7 a
A Means with the same lowercase letter (i.e., a to b) in the same row are not significantly different based on a
Student–Newman–Keuls test (α = 0.05). Analyses were done separately by maize type and Sim®Wall. Control maize:
untreated maize with no detectable aflatoxin levels; atoxigenic maize: maize treated with an atoxigenic Aspergillus
flavus strain of the biocontrol product Aflasafe; toxigenic maize: maize treated with an aflatoxin-producing A. flavus
strain, containing 500 ppb aflatoxin B1. B FCR: feed conversion ratio.

Analysis of diets by maize type revealed significant differences in feed intake and FCR (Table 4).
Higher feed intake (p < 0.05) occurred by birds fed on control maize with 2000 ppm Sim®Wall,
atoxigenic maize with 0 ppm Sim®Wall, and toxigenic maize with 0 ppm and 2000 ppm Sim®Wall
(Table 4). FCR was lower (p < 0.05) at 0 ppm and 2000 ppm Sim®Wall in control maize, at 2000 ppm in
atoxigenic maize, and at 1000 ppm in toxigenic maize (Table 4).
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Table 4. Performance of broiler chickens fed with three maize types, each containing various
concentrations of an aflatoxin-sequestering agent A, B.

Parameter
Control Maize Atoxigenic Maize Toxigenic Maize

Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7 Diet 8 Diet 9

Final weight (g) 1783 a 1683 a 1890 a 1829 a 1765 a 1900 a 1119 b 1088 b 1145 b
Feed intake (g) 94.2 c

∫
96.5 c

∫
100.2 b* 96.5 c* 93.9 c# 94.2 c

∫
100.7 b* 94.1 c

∫
103.6 a*

Daily weight
gain (g) 42.2 a 39.9 a 46.7 a 43.3 a 41.8 a 45.9 a 26.1 b 25.8 b 28.0 b

FCR C 2.9 d
∫

3.2 c* 2.9 d
∫

2.9 d
∫

2.9 d* 2.7 e# 5.0 a* 4.8 b
∫

5.1 a*
Mortality (%) 0.0 a 3.3 a 6.7 a 3.3 a 0.0 a 0.0 a 13.7 a 6.7 a 13.3 a

A Means with the same lowercase letter (i.e., a to e) in the same row are not significantly different based on a
Student–Newman–Keuls test (α = 0.05). Means within respective maize types with different symbols (*,

∫
, #) differ

statistically (* >
∫

> #) from one another (α = 0.05); absence of those symbols indicates that diets within maize types
are not significantly different. Control maize: untreated maize with no detectable aflatoxin levels; atoxigenic maize:
maize treated with an atoxigenic Aspergillus flavus strain of the biocontrol product Aflasafe; toxigenic maize: maize
treated with an aflatoxin-producing A. flavus strain, containing 500 ppb aflatoxin B1. B Diets 1, 4, 7 = no Sim®Wall;
diets 2, 5, 8 = with 1000 ppm Sim®Wall; diets 3, 6, 9 = with 2000 ppm Sim®Wall. C FCR: feed conversion ratio.

The apparent nutrient digestibility of crude protein, crude fiber, ether extract, dry matter, and ash
of excreta of birds fed with control maize or atoxigenic maize was significantly different from those
fed on toxigenic maize (Table 5). Sim®Wall concentration had no influence (p > 0.05) on any nutrient
digestibility parameters (Table 5). Within maize types, significant differences were detected only in ash
content of birds fed on atoxigenic maize (the highest at 1000 ppm Sim®Wall) and in both crude fiber
and ether extract of birds fed on toxigenic maize (the highest at 1000 ppm and 2000 ppm Sim®Wall;
Table 6).

Table 5. Apparent nutrient digestibility observed in excreta of birds fed with different maize types and
at different aflatoxin-sequestering agent concentrations examined separately A.

Parameters (%)
Maize type Sim®Wall

Control Atoxigenic Toxigenic 0 ppm 1000 ppm 2000 ppm

Dry matter 78.8 a 79.3 a 60.4 b 72.4 a 73.0 a 73.1 a
Crude protein 70.8 a 70.6 a 53.8 b 65.1 a 64.7 a 65.4 a

Crude fiber 67.3 a 66.4 a 56.6 b 62.8 a 63.8 a 63.8 a
Ether extract 70.9 a 70.5 a 58.6 b 65.9 a 66.7 a 67.3 a

Ash 63.1 a 62.1 a 54.8 b 58.4 a 60.5 a 61.1 a
A Means with the same lowercase letter in the same row (i.e., a to b) are not significantly different based on a
Student–Newman–Keuls test (α = 0.05). Analyses were done separately by maize type and Sim®Wall. Control maize:
untreated maize with no detectable aflatoxin levels; atoxigenic maize: maize treated with an atoxigenic Aspergillus
flavus strain of the biocontrol product Aflasafe; toxigenic maize: maize treated with an aflatoxin-producing A. flavus
strain, containing 500 ppb aflatoxin B1.

Most of the carcass characteristics and relative organ weight of birds were significantly higher
(p < 0.05) in birds fed on control maize or atoxigenic maize (Table 7). However, birds fed on toxigenic
maize had significantly higher (p < 0.05) weight of liver, spleen, and kidney (Table 7). Sim®Wall
concentration had no influence (p > 0.05) on carcass characteristics or organ weight (Table 7). Within and
among maize types at different Sim®Wall concentrations, there were differences in several parameters
(Table 8). Within control maize diets, dressed and breast weights were higher at 0 ppm Sim®Wall, while
liver and spleen weights were higher at 2000 ppm Sim®Wall (Table 8). Within atoxigenic maize diets,
breast and drumstick weights were higher at both 0 ppm and 2000 ppm Sim®Wall, thigh weight was
higher at 0 ppm Sim®Wall, and kidney weight was higher at both 1000 ppm and 2000 ppm Sim®Wall
(Table 8). Within toxigenic maize diets, drumstick weight was higher at 2000 ppm Sim®Wall, thigh
weight was higher at both 1000 ppm and 2000 ppm Sim®Wall, and breast and spleen weights were
higher at both 0 ppm and 1000 ppm Sim®Wall (Table 8).
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Table 6. Apparent nutrient digestibility observed in birds fed with feed containing various maize types,
each containing different concentrations of an aflatoxin-sequestering agent A, B.

Parameter (%)
Control Maize Atoxigenic Maize Toxigenic Maize

Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7 Diet 8 Diet 9

Ash 62.61 a 61.31 a 65.50 a 60.81 a
∫

64.09 a* 61.43 a
∫

51.73 c 56.05 b 56.51 b
Crude fiber 66.94 a 67.43 a 67.60 a 66.67 a 66.41 a 66.01 a 54.71 c

∫
57.52 b* 57.64 b*

Ether extract 71.77 a 70.59 a 70.26 a 70.65 a 70.11 a 70.66 a 55.43 c
∫

59.31 b*
∫

60.97 b*
Crude protein 70.73 a 71.18 a 70.63 a 70.73 a 70.31 a 70.72 a 53.74 b 52.68 b 54.83 b

Dry matter 78.28 a 78.48 a 79.60 a 78.62 a 79.58 a 79.58 a 60.21 b 61.07 b 59.99 b
A Means with the same lowercase letter in the same row (i.e., a to c) are not significantly different based on a
Student–Newman–Keuls test (α = 0.05). Means within respective maize types with different symbols (*,

∫
) differ

statistically (* >
∫

) from one another (α = 0.05); absence of those symbols indicates that diets within maize types are
not significantly different. Control maize: untreated maize with no detectable aflatoxin levels; atoxigenic maize:
maize treated with an atoxigenic Aspergillus flavus strain of the biocontrol product Aflasafe; toxigenic maize: maize
treated with an aflatoxin-producing A. flavus strain, containing 500 ppb aflatoxin B1. B Diets 1, 4, 7 = no Sim®Wall;
diets 2, 5, 8 = with 1000 ppm Sim®Wall; diets 3, 6, 9 = with 2000 ppm Sim®Wall.

Table 7. Carcass characteristics and relative organ weight of broiler chickens fed with feed containing
various maize types and concentrations of an aflatoxin-sequestering agent A.

Parameters (%)
Maize type Sim®Wall

Control Atoxigenic Toxigenic 0 ppm 1000 ppm 2000 ppm

Dressed weight 68.79 a 70.16 a 58.34 b 66.36 a 65.68 a 65.23 a
Breast 20.02 a 21.09 a 14.58 b 19.58 a 18.61 a 17.52 a

Drumstick 9.37 a 10.26 a 8.31 b 8.88 a 9.51 a 9.54 a
Thigh 9.85 a 10.12 a 8.28 b 9.01 a 9.71 a 9.54 a

Abdominal fat 0.83 a 0.94 a 0.00 b 0.62 a 0.65 a 0.51 a
Liver 1.76 b 1.76 b 3.39 a 2.28 a 2.38 a 2.24 a

Spleen 0.16 b 0.14 b 0.21 a 0.16 a 0.17 a 0.17 a
Kidney 0.53 b 0.61 b 0.81 a 0.63 a 0.66 a 0.66 a

A Means with the same lowercase letter in the same row (i.e., a to b) are not significantly different based on a
Student–Newman–Keuls test (α = 0.05). Analyses were done separately by maize type and Sim®Wall. Control maize:
untreated maize with no detectable aflatoxin levels; atoxigenic maize: maize treated with an atoxigenic Aspergillus
flavus strain of the biocontrol product Aflasafe; toxigenic maize: maize treated with an aflatoxin-producing A. flavus
strain, containing 500 ppb aflatoxin B1.

Table 8. Characteristics and relative organ weight of broiler chickens fed with feed containing various
maize types, each containing different concentrations of an aflatoxin-sequestering agent A, B.

Parameter (%)
Control Maize Atoxigenic Maize Toxigenic Maize

Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7 Diet 8 Diet 9

Dressed weight 69.66 ab* 69.21 ab
∫

67.50 b# 69.93 ab 68.25 b 72.29 a 59.50 c 59.59 c 55.92 d
Breast 22.15 a* 19.89 b

∫
18.04 c# 21.05 ab*

∫
20.49 ab

∫
21.74 a* 15.53 d* 15.45 d* 12.77 e

∫
Drumstick 9.88 ab 9.67 abc 8.55 c 10.41 a* 9.93 ab

∫
10.45 a* 6.37 d# 8.93 bc

∫
9.62 abc*

Thigh 10.56 a 10.53 a 8.47 a 10.00 a* 9.78 a
∫

10.60 a
∫

6.46 b
∫

8.81 a* 9.56 a*
Abdominal fat 1.19 a 0.79 abc 0.50 c 0.66 bc 1.16 a 1.02 ab 0.00 d 0.00 d 0.00 d

Liver 1.50 b# 1.81 b
∫

1.96 b* 1.68 b 1.86 b 1.73 b 3.65 a 3.47 a 3.04 a
Spleen 0.13 b

∫
0.14 b

∫
0.20 a* 0.14 b 0.13 b 0.13 b 0.22 a* 0.23 a* 0.17 b

∫
Kidney 0.57 a 0.53 a 0.49 a 0.47 a

∫
0.73 a* 0.64 a* 0.85 a 0.71 a 0.86 a

A Means with the same lowercase letter (e.g., a to e) in the same row are not significantly different based on a
Student–Newman–Keuls test (α = 0.05). Means within respective maize types with different symbols (*,

∫
, #) differ

statistically (* >
∫

> #) from one another (α = 0.05); absence of those symbols indicates that diets within maize types
are not significantly different. Control maize: untreated maize with no detectable aflatoxin levels; atoxigenic maize:
maize treated with an atoxigenic Aspergillus flavus strain of the biocontrol product Aflasafe; toxigenic maize: maize
treated with an aflatoxin-producing A. flavus strain, containing 500 ppb aflatoxin B1. B Diets 1, 4, 7 = no Sim®Wall;
diets 2, 5, 8 = with 1000 ppm Sim®Wall; diets 3, 6, 9 = with 2000 ppm Sim®Wall.

3. Discussion

The current study describes the performance of broilers fed with maize treated with two strains of
the fungus A. flavus and supplemented with different concentrations (0, 1000, or 2000 ppm) of the ASA
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Sim®Wall; maize contained either 0 ppb or 500 ppb aflatoxin B1. Nigeria’s biopesticide regulatory
agency NAFDAC considered results documented here to register Aflasafe, a biocontrol product for
aflatoxin mitigation in maize and groundnut [27]. The active ingredients of Aflasafe are four atoxigenic
A. flavus strains native to Nigeria. One of the conditions to register the product was to demonstrate
both the safety of the product to poultry and its benefit to the poultry industry. Our results strongly
indicate that (i) inclusion of maize artificially colonized with atoxigenic A. flavus strains (atoxigenic
maize) in poultry feeds has positive effects on bird performance in comparison to feeds prepared with
maize containing high aflatoxin levels produced by a highly toxigenic A. flavus strain (toxigenic maize),
and that (ii) poultry performance is similar when fed with either atoxigenic maize or aflatoxin-safe
untreated maize (control maize). Almost all evaluated parameters of birds fed with atoxigenic maize
or control maize were consistently similar. Also, this is the first report that compares the use of maize
treated with an atoxigenic A. flavus strain to using an ASA to reduce broiler exposure to aflatoxins. We
found that, even when supplementing the ASA at the highest concentration, performance of birds fed
on toxigenic maize was inferior to that of birds fed on atoxigenic maize or control maize.

Poultry feeds manufactured in Nigeria contain a high proportion of maize, and its aflatoxin content
is typically high [12,13]. High aflatoxin concentrations in feeds, as those found in Nigeria, have several
adverse effects on birds, ranging from low productivity to increased mortality [7]. Approximately
two million metric tons of maize were used to manufacture feeds in Nigeria during 2013/2014. With
Nigeria’s projected population growth, the requirement of maize for feed is expected to increase
considerably as a result of higher demand for poultry products [11]. Since maize produced in Nigeria
is at risk of aflatoxin contamination [34–37], coupled with the fact that most farmers and processors
typically do not implement aflatoxin management strategies, poultry productivity in Nigeria is highly
likely hindered by aflatoxins. If poultry industries had access to feeds manufactured with aflatoxin-safe
crops, poultry performance would improve, leading to higher profits.

Aflatoxin in feed is an important determinant of poultry performance [5]. Overall, birds fed on
either atoxigenic maize or control maize had higher weight, lower FCR, and lower mortality than birds
fed on toxigenic maize (Tables 3 and 4). This was reflected by the poor quality of excreta of birds fed
on toxigenic maize (Tables 5 and 6). As expected, birds fed on toxigenic maize had lower weight of
most organs and increased weight of liver and kidney (Tables 7 and 8). Monson et al. reviewed the
effects of aflatoxins in tissues of different avian species, including Gallus gallus domesticus [7]. Such
negative effects include formation of DNA and RNA adducts inducing DNA mutations, hepatoxicity,
immunotoxicity, and intestinal toxicity, among others. These effects are assumed to have affected the
birds evaluated in the current study.

The ASA used in this study would be of little or no use to improve overall poultry performance
(Tables 3, 4, 7 and 8). The weight of the evaluated organs was not influenced by Sim®Wall concentration
(Table 7). In some cases, the relative weight of certain organs was higher either in the absence of ASA
or at 1000 ppm, while other organs had higher weight either at 1000 ppm and/or 2000 ppm. On the
other hand, higher organ weight was detected in the absence of ASA in both atoxigenic maize and
control maize. Clearly, using aflatoxin-safe maize had more significant positive impacts on poultry
performance than using the evaluated ASA. As discussed in two recent review articles [16,38], using
aflatoxin-safe crops is a better management option than using an ASA because of their limitations
such as higher FCR, higher feed rations, accumulation of antibiotics in tissues, and interactions with
nutrients, among others. Several of those limitations were found in the current study. If poultry
producers had no access to aflatoxin-safe maize and the evaluated ASA was the sole option to reduce
poultry aflatoxin exposure, the benefits would have been marginal or absent. However, more effective
but costlier ASAs are also available in the market.

Incorporation of atoxigenic maize, which was previously treated with one of the atoxigenic
A. flavus strains composing the biocontrol product, into diets had no negative effects on growth
performance of birds in comparison to birds fed on diets containing control maize. The maize used to
prepare the control maize diets did not contain aflatoxins but was associated with aflatoxin-producing
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fungi (data not shown). Maize produced in the tropics and subtropics is virtually always associated
with aflatoxin-producing fungi because the genus Aspergillus is ubiquitous in those environments [39].
The aflatoxin content in maize is dictated by several factors that include poor pre- and post-harvest
management practices, high prevalence of highly toxigenic aflatoxin-producing fungi, and conducive
environmental conditions, among others [40]. The maize grain used in the current study was produced
under appropriate, optimal agricultural practices in the IITA-Ibadan research farm. Those conditions are
typically not found across Nigeria, and a reflection of this is that feeds in this nation are associated with
aflatoxin-producing fungi at high densities and frequently contain high aflatoxin concentrations [12,13].

Treatment with the biological control product Aflasafe in the field to produce aflatoxin-safe maize
grains subsequently used for manufacturing feeds offers a practical solution to the burden caused
by aflatoxins to poultry producers. According to recent reviews [16,38], it seems that there is a long
path before ASA consistently and effectively counteracts the toxic effects of aflatoxins to livestock,
including poultry. In Nigeria, many poultry producers are procuring maize treated with Aflasafe
because, after testing the aflatoxin-safe maize in their farms, they realized that it provides greater
benefits than using non-treated maize or any of the ASAs available in the market [27,28]. Certain
classes of feed manufacturers and poultry producers were willing to pay average premiums of 4.9%
to 30.9% for maize with <10 ppb aflatoxin content, and even larger premium for maize with <4 ppb
aflatoxin content, relative to maize with <20 ppb aflatoxin content [41].

4. Conclusions

Findings from the current study were part of a dossier submitted to NAFDAC for registration of
the biocontrol product Aflasafe. These findings demonstrated that biocontrol contributes to the public
good because the atoxigenic A. flavus strains composing the product are not harmful to poultry, and
using crops treated with Aflasafe as major components of poultry feeds substantially improves poultry
health and productivity in comparison to using an ASA. Biocontrol is being used on a large scale across
Nigeria by tens of thousands of farmers (www.agresults.org). A large portion of the maize produced
in treated fields and tested for aflatoxin standard compliance is processed into feeds used by poultry
producers [27,28]. It is expected that the maize area treated with biocontrol will enhance considerably
due to increased private sector participation in the manufacturing and distribution of Aflasafe. This
will result in more poultry businesses having access to aflatoxin-compliant crops and higher profits as
a result of improved poultry performance. Finally, consumers will have access to safe and nutritious
poultry products as a result of the increased availability of aflatoxin-safe crops.

5. Materials and Methods

5.1. Broiler Management

A total of 270 unsexed one-day-old broilers (G. gallus domesticus; Marshall strain) were purchased
from a hatchery in Abeokuta, Ogun State, Nigeria. Each broiler was randomly assigned to one of
27 pens on a deep litter system at the Poultry Unit of the Teaching and Research Farm of the Federal
University of Agriculture, Abeokuta. Ten broilers were assigned to each pen, which had a floor area of
2.4 m2. Prior to assignment of broilers to pens, pens were thoroughly washed and disinfected with 1%
Morigad Lysol (Morison Industries, Lagos, Nigeria), a broad-spectrum disinfectant for veterinary use,
and they were left to dry for three days. Pens were then fumigated with 40% formalin amended with
potassium permanganate crystals. For brooding, heat sources were provided from both charcoal and
electric bulbs. Wood shavings were spread on floors of the pens for bedding and insulation. Routine
vaccination (New Castle disease and Gumboro vaccines, National Veterinary Research Institute, VOM,
Plateau State, Nigeria), medication (Coccidiostat; Totralvet 2.5%), and vitamins (Lytavite Plus Dextrose)
were administered at prophylactic levels as described by Oluyemi and Roberts [42].

www.agresults.org
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5.2. Maize Used to Prepare Diets

Grains from the mid-maturing maize variety ACCR-9931-SR-Y, grown by IITA-Ibadan Maize
Breeding Unit, were used as the maize component of all evaluated diets. Aflatoxin content of maize
grains was determined by extracting aflatoxins and using thin-layer chromatography as previously
described [32], and no aflatoxins were detected (limit of detection (LOD) = 0.1 ppb total aflatoxins).

Three types of maize were used in the study: (1) non-treated maize, (2) maize colonized by
atoxigenic A. flavus strain La3279, and (3) maize colonized by toxigenic A. flavus strain La3228; in
this study, the maize types are referred to as control maize, atoxigenic maize, and toxigenic maize,
respectively (Tables 1 and 2). To prepare 350 kg of atoxigenic maize, 2-kg maize batches were
surface-sterilized by immersion in hot water (40 s, 80 ◦C), blotted free of moisture in a safety cabinet,
and inoculated with the atoxigenic strain. The same procedure was used to prepare 350 kg of toxigenic
maize, but inoculation was conducted with the toxigenic strain. All inoculated grains were incubated
for seven days (38 ◦C). Spores from colonized grains were washed off, and grains were dried to circa 8%
moisture content at 48 ◦C in an oven. For both sets of grains, aflatoxin content was quantified as above.
Aflatoxins were not detected in the atoxigenic maize while, on an average, 947 ppb aflatoxin B1 and 74
ppb aflatoxin B2 were detected in toxigenic maize. Both sets of maize were independently blended
with a laboratory mill (Waring Commercial, Torrington, CT, US) for incorporation in the different diets
(see below). Toxigenic maize was combined with aflatoxin-free maize to reach 500 ppb aflatoxin B1.

5.3. Aflatoxin-Sequestering Agent

The ASA used was Sim®Wall, a feed additive containing beta-glucan of yeast origin, purified
and activated clinoptilolite (a zeolite), and organic acids (formic and acetic acids, and propionate).
Sim®Wall (Simbiyotek Biological Products International, Istanbul, Turkey) was incorporated into the
tested diets at one of the following concentrations: 0, 1000, or 2000 ppm.

5.4. Tested Diets

Nine diets were prepared for evaluation at the starter phase (SP; week 1–4) using one of the
three maize types amended with various concentrations of Sim®Wall in a 3 × 3 factorial experimental
design. Diets 1, 2, and 3 contained control maize supplemented with 0, 1000, and 2000 ppm Sim®Wall,
respectively. Diets 4, 5, and 6 contained atoxigenic maize with 0, 1000, and 2000 ppm Sim®Wall,
respectively. Diets 7, 8, and 9 contained toxigenic maize supplemented with 0, 1000, and 2000 ppm
Sim®Wall, respectively.

Per kilogram, all nine diets evaluated at SP contained 500 g of the corresponding maize type,
wheat offal (112 g), soybean meal (340 g), bone meal (30 g), oyster shell (10 g), vitamin (Vit)/mineral
premix (2 g (Vit A: 12,000 IU, Vit D3: 2,500 IU, Vit E: 30 mg, Vit K3: 2 mg, Vit B1: 2.25 mg, Vit B2: 6 mg,
Vit B6: 4.5 mg, Vit B12: 0.015 mcg, niacin: 40 mg, pantothenic acid: 15 mg, folic acid: 1.5 mg, biotin:
0.05 mcg, manganese: 80 mg, iron: 20 mg, zinc: 50 mg, copper: 5 mg, cobalt: 0.5 mg, iodine: 1 mg,
selenium: 0.2 mg, choline chloride: 300 mg, and antioxidants: 125 mg)), salt (2.5 g), methionine (1 g),
and lysine (2 g).

For the finisher phase (FP; week 5–8), nine diets were prepared with maize type and Sim®Wall
concentrations as above. Per kilogram, diets contained 540 g of the corresponding maize type, wheat
offal (152 g), soybean meal (260 g), bone meal (30 g), oyster shell (10 g), vitamin/mineral premix (2 g;
see above), salt (2.5 g), methionine (1 g), and lysine (2 g).

In both SP and FP, there were three replicates per tested diet, and each replicate was composed of
10 broilers. The birds were maintained on the assigned diet throughout the experiment. All diets were
formulated to meet the nutritional requirements stated by the National Research Council of the US [8].
Neither antibiotics nor growth promoters were administered to broilers. The birds were continuously
exposed to light during the three-week brooding period. Feed and water were provided ad libitum
throughout the eight-week rearing period.
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5.5. Data Collection

Birds were weighed individually on a weekly basis. Feed intake was measured weekly. Those
values were used to calculate the FCR and weight gain/feed intake (Tables 3 and 4). Mortality was
recorded throughout the experiment (Tables 3 and 4).

At the end of the FP, six broilers per diet (two per replicate) were randomly selected and placed
in clean, disinfected, and specially designed metabolic steel cages for six days to conduct nutrient
digestibility trials. Broilers were given three days of acclimatization and were fed with a regular supply
(about 140 g) of their assigned diet. For example, broilers on diet 1 were also fed on diet 1 while in the
metabolic cage. Excreta samples from each bird were collected daily at 5:00 p.m., weighed, and dried
in a drying cabinet (LEEC Drying Cabinet, model FCX1, Nottingham, UK) at 60 ◦C for 72 h. Caution
was taken to ensure that the excreta were not contaminated with feathers. The cumulative samples
were pooled together and finely ground for laboratory analysis. The feed and excreta samples were
analyzed for proximate composition, dry matter, metabolizable energy, crude protein, crude fiber, ether
extract, and ash according to the Official Methods of Analysis recommended by the Association of
Official Analytical Chemists [43]. The values obtained were used to calculate the percentage apparent
digestibility of nutrients.

For carcass analyses at the end of FP, a bird per replicate was randomly selected and sacrificed by
cervical dislocation, plucked, and eviscerated. The live weight, plucked weight, eviscerated weight,
dressed weight, weight of cut parts, and offal weight were measured using a sensitive scale balance
(A&D GF6000 series, San Jose, CA, US). Weights of cut parts and offal were expressed as percentage of
live weight of birds.

5.6. Safety Measures

The farm personnel adhered to strict safety measures that included wearing a 3M™ Particulate
Respirator 8210, N95 (3M, Saint Paul, MN, US), latex or leather gloves, safety apparel, and boots during
both preparation of diets and daily routine management of birds. The Poultry Unit Management of the
Teaching and Research Farm of the Federal University of Agriculture gave ethical approval to carry
out the study. Birds fed on toxigenic diets were sacrificed and buried at the expiration of the trial as
required by the Poultry Management Unit.

5.7. Statistical Analyses

Data collected were analyzed by analysis of covariance (ANCOVA) and by analysis of variance
(ANOVA) using SAS statistical package (version 9.4, SAS Institute Inc, Cary, NC, USA). ANCOVA
was performed for treatment influence on performance and carcass characteristics of broilers, to
account for variation in the initial starting weight of the birds. ANOVA was performed for data
from nutrient composition and digestibility studies. Treatment means were separated using the
Student–Newman–Keuls test (α = 0.05).
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