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Abstract: In this work, we evaluate the effect of two peptides Sa12b (EDVDHVFLRF) and Sh5b
(DVDHVFLRF-NH2) on Acid-Sensing Ion Channels (ASIC). These peptides were purified from the
venom of solitary wasps Sphex argentatus argentatus and Isodontia harmandi, respectively. Voltage clamp
recordings of ASIC currents were performed in whole cell configuration in primary culture of dorsal
root ganglion (DRG) neurons from (P7-P10) CII Long-Evans rats. The peptides were applied by
preincubation for 25 s (20 s in pH 7.4 solution and 5 s in pH 6.1 solution) or by co-application (5 s in
pH 6.1 solution). Sa12b inhibits ASIC current with an IC50 of 81 nM, in a concentration-dependent
manner when preincubation application was used. While Sh5b did not show consistent results having
both excitatory and inhibitory effects on the maximum ASIC currents, its complex effect suggests
that it presents a selective action on some ASIC subunits. Despite the similarity in their sequences,
the action of these peptides differs significantly. Sa12b is the first discovered wasp peptide with
a significant ASIC inhibitory effect.

Keywords: venom peptides; FMRF-amide; insect neurotoxin; protons; pH regulation; acid-sensing
ion channels; acid-gated currents

Key Contribution: Sa12b, a FMRF-amide like peptide obtained from solitary wasp venom potently
inhibits acid-sensing ion channel currents in rat neurons with an IC50 of 81 nM.

1. Introduction

Acid-sensing ion channels (ASICs) are proton-gated Na+ channels of the ENaC/Degenerin
channel family characterized by their sodium permeability, sensitivity to amiloride, and voltage
insensitivity [1–4]. ASICs are widely distributed in the central and peripheral nervous systems, as well
as in sensory and non-neuronal tissue [5]. Most functions of these channels have been described using
inhibitors of ASIC channels combined with the use of knockout or knockdown animals [6]. The most
potent and selective modulators of ASICs described to date are animal venoms obtained from spiders,
snakes, and sea anemones [7–9].

FMRFa (Phe-Met-Arg-Phe amide) is an abundant tetrapeptide in invertebrate nervous systems,
where it acts as a neurotransmitter and neuromodulator. RFa-related peptides share with FMRFa the
characteristic C-terminus motive Arg-Phe-NH2 [10]. These neuropeptides are direct activators of two
ion channels of the ENaC/Deg superfamily: the invertebrate FMRFa-gated Na+ channel (FaNaC) and
the Hydra-RFa-gated Na+ channels (HyNaC) [11].
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While FaNaC and HyNaC channels are activated by neuropeptides and modulated by acidic
pH, ASICs are activated by pH and modulated by neuropeptides [12]. Several studies show that
RFa-related peptides reduce desensitization and increase the sustained current and peak amplitude
of ASIC currents [13–18]. These effects are pH-dependent, require the presence of the amide group,
and are competitive with Ca2+. Three possible binding sites to ASIC have been proposed: the acidic
pocket, the bottom of the thumb domain, and the central vestibule [19–23].

In this work, we studied the effects of two FMRFa related peptides (Sa12b and Sh5b [24,25]
extracted from the venom of solitary wasps Sphex argentatus argentatus and Isodontia harmandi) on ASIC
currents of rat dorsal root ganglion (DRG) neurons using the voltage clamp technique. We found that
Sa12b exerts a potent inhibitory action on ASIC currents in DRG neurons.

2. Results

Stable proton-gated currents were recorded from 123 DRG neurons obtained from 32 rats (about
30% of the cells registered expressed a stable proton-gated current). These neurons had a membrane
capacitance (Cm) of 46.8 ± 1.45 pF (Gaussian fit shows a normal distribution of Cm r2 > 0.95), a resting
membrane potential (Vm) of −55.3 ± 1.4 mV, a membrane resistance (Rm) of 137.5 ± 13.6 MΩ, an access
resistance (Ra) of 4 ± 0.3 MΩ and a membrane time constant (τ) of 131 ± 6.7 ms. Cell average diameter
was 38.6 ± 6.8 µm, estimated from Cm, which corresponds to medium-size DRG neurons according to
Petruska’s classification [26].

2.1. ASIC Current in DRG Neurons

ASIC currents from isolated DRG neurons showed diverse characteristics, which result from the
expression of ASIC heteromers and homomers of ASIC1–4 subunits in these neurons. The currents
range from transient and rapid currents with partial or complete desensitization to currents with
slow desensitization with a large sustained component (Figure 1). No clear groups could be formed
to categorize the currents considering all the parameters analyzed, although according to their
desensitization time constant (Tdes), we found that 61% of the registered currents showed Tdes < 300 ms,
29.5% Tdes > 300 and < 600 ms, while only the remaining 9.5% had slow kinetics with Tdes > 600 ms.

Under control conditions, the pH gated currents activated at pH 6.1 showed a maximal inward
peak current (Ipeak) of 4.5 ± 0.5 nA, a sustained component (ISS) of 0.09 ± 0.01 nA, a Tdes of 348 ± 22 ms,
and an integral of the current (Iint) of 2.03 ± 0.171 nC. Current density had an average magnitude
of 0.097 ± 0.009 nA/pF and a desensitization coefficient (ISS/Ipeak) of 0.04 ± 0.01 (mean ± ES, n = 95).
None of the parameters obtained from the records show any correlation with the Cm, which is an
indicator of cell size.
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Figure 1. Diversity of acid-gated currents in dorsal root ganglion (DRG) neurons. The currents were
elicited by a 5 s perfusion with a pH 6.1 solution. (A,D) depict currents with slow activation and slow
desensitization (n = 9). (B,E), currents with rapid activation and intermediate desensitization (n = 28.
C and F, currents with rapid activation and rapid desensitization (n = 58). (A–C) lack a sustained
component (ISS), whereas (D–F) present it.

2.2. Sa12b Action on ASIC Currents

The peptide was initially tested at 10 µM, this concentration was used because it is close to the
EC50 of FMRFa. With application of 10 µM Sa12b in preincubation form (20 s before and 5 s during acid
pulse), Sa12b inhibited ASIC currents 92.7 ± 7.3% (p < 0.05 paired Student’s t-test, n = 5) (Figure 2A).
In contrast, during co-application (toxin applied only during the 5 s of acid pulse) Sa12b produced
a non-significant inhibition of ASIC currents of 12.9 ± 4.9% (n = 4) (Figure 2B).

The inhibitory action of Sa12b in Ipeak was dose-dependent with preincubation application
(Figures 2A–C and 3), it was adjusted with a dose-response function with an IC50 = 81 ± 29.4 nM,
H = 1.8 and r2 = 0.97 (n = 34). All Sa12b effects were fully reversed after 1 min washout of the peptide.
Other parameters of ASIC current were not significantly modified by Sa12b perfusion except for the
Tdes, which increased 28% with 300 nM Sa12b (Table 1).

To determine whether or not the effect of Sa12b was selective for some type of ASIC current,
a correlation analysis between the current properties (Ipeak, Tdes, and ISS) and the effect of Sa12b was
performed. It was found that the inhibitory effect of Sa12b on ASIC currents does not depend on the
Cm, the Tdes, or the ISS/Ipeak of the control currents; regardless of the concentration tested either during
preincubation or co-application of the peptide.
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application (20 s before and 5s during acid pulse) and after one recovery of 1 min washout. Sa12b 
inhibits the Ipeak (98%) of ASIC current with 3% inhibition of ISS component. In (B), 10 μM Sa12b co-
application (peptide applied during 5 s along with acid pulse) inhibits Ipeak 10% and increases ISS by 
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were: 10, 30, 100, and 300 nM and 1 and 10 μM. The red circles represent the effect produced by 
preincubation, and the blue squares represent the effect during co-application of Sa12b (n = 34). 

The inhibitory action of Sa12b in Ipeak was dose-dependent with preincubation application 
(Figures 2A–C and 3), it was adjusted with a dose-response function with an IC50 = 81 ± 29.4 nM, H = 
1.8 and r2 = 0.97 (n = 34). All Sa12b effects were fully reversed after 1 min washout of the peptide. 

Figure 2. Effect of Sa12b on Acid-Sensing Ion Channels (ASIC) currents. In (A), recordings of ASIC
current in dorsal root ganglion (DRG) neurons in control current, after 10 µM Sa12b preincubation
application (20 s before and 5s during acid pulse) and after one recovery of 1 min washout. Sa12b inhibits
the Ipeak (98%) of ASIC current with 3% inhibition of ISS component. In (B), 10 µM Sa12b co-application
(peptide applied during 5 s along with acid pulse) inhibits Ipeak 10% and increases ISS by 18%. In (C),
concentration-response relationship of Sa12b on ASIC Ipeak. Sa12b concentrations used were: 10, 30,
100, and 300 nM and 1 and 10 µM. The red circles represent the effect produced by preincubation, and
the blue squares represent the effect during co-application of Sa12b (n = 34).
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Table 1. Effect of Sa12b on macroscopic Acid-Sensing Ion Channels (ASIC) currents in dorsal root 
ganglion (DRG) neurons. 

 [Sa12b] n % Ipeak % ISS % Ƭdes 

Co-application 
30 nM 5  4 ± 3  39 ± 24 

(p = 0.02)  4 ± 3 

100 nM 4  14 ± 5  21 ± 16  5 ± 1 

Figure 3. Typical traces of the effect of preincubation perfusion with Sa12b on the ASIC current at
the different tested concentrations. In (A), the use of 1 µM Sa12b produced a reversible nearly total
inhibition of the Ipeak with no effect on the small ISS component. In (B), 100 nM Sa12b caused an
inhibition of Ipeak and ISS of 66% and 7%. In (C), 30 nM Sa12b produced an inhibition of Ipeak and
ISS of 2% and 10%, respectively. The inhibitory effects of Sa12b were completely reversed after 1 min
washout of the toxin. The dotted lines indicate the zero current, and the horizontal bars show Sa12b
preincubation and pH 6.1 perfusion.
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Table 1. Effect of Sa12b on macroscopic Acid-Sensing Ion Channels (ASIC) currents in dorsal root
ganglion (DRG) neurons.

[Sa12b] n % Ipeak % ISS % Tdes

Co-application

30 nM 5 ↑ 4 ± 3 ↑ 39 ± 24
(p = 0.02) ↓ 4 ± 3

100 nM 4 ↓ 14 ± 5 ↓ 21 ± 16 ↑ 5 ± 1

300 nM 6 ↓ 5 ± 3 ↓30 ± 14 ↑ 3 ± 5

1 µM 5 ↑ 1 ± 9 ↑ 15 ± 14 ↑ 4 ± 4

10 µM 4 ↓ 13 ± 5 ↓ 29 ± 19 ↓ 2 ± 5

Preincubation
Application

30 nM 6 ↓ 0.2 ± 4 ↑ 19 ± 22 ↑ 0.03 ± 4

100 nM 5 ↓ 63 ± 4
(p = 0.003) ↑ 4 ± 21 ↑ 17 ± 18

300 nM 9 ↓ 76 ± 5
(p = 0.0002) ↑ 81 ± 51 ↑ 28 ± 12

(p = 0.048)

1 µM 5 ↓ 98 ± 1
(p = 0.03) ↓ 13 ± 27

10 µM 5 ↓ 92 ± 7
(p = 0.04) ↓ 31 ± 20

The effects that presented a significant difference are shown in red. The upward arrows indicate an increase and the
downward arrows indicate a decrease. Student´s t-test.

2.3. pH Activation Versus Sa12b Effect

To determine whether or not Sa12b action is pH-dependent, the effect of Sa12b 100 nM
(concentration close to IC50) was analyzed as a function of pH used to activate the current (pH from 4.0
to 6.5). As previously described, the current amplitude increased as a function of proton concentration
(Figure 4A,B). The pH which activated 50% of the ASIC current (pH50) was about 6.1 as previously
described for ASIC currents in DRG neurons [27]. The relationship between pH and proton-gated
current amplitude in the presence of 100 nM Sa12b showed no significant difference with that found
in control condition (Figure 4B). Analysis of percent inhibitory effect of 100 nM Sa12b as a function
of pH showed that pH gating of the current did not significantly modify the inhibitory action of
Sa12b (Figure 4C). These data indicate that Sa12b does not interact with the proton-gating mechanism
of ASICs.
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difference between pH sensitivity of the current in control (pH50 = 6.26 ± 0.1) and with Sa12b (pH50 
6.27 ± 0.06) was found. The pHs used to activate the current were: pH 6.5, n = 15; pH 6.0, n = 15; pH 
5.5, n = 16; pH 5.0, n = 17; pH 4.0, n = 14. In (C), plot of the percent Ipeak inhibition produced by 100 nM 
Sa12b against pH. The data were adjusted with a linear function showing that inhibition produced by 
Sa12b is independent of the pH used to activate the ASIC current. 
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3 μM, 10 μM, and 30 μM; for preincubation application, the concentrations were 100 nM, 1 and 10 
μM. 

In the co-application protocol, 100 nM Sh5b (n = 5) showed no consistent concentration-
dependent effects on the analyzed parameters. At 3 μM Sh5b (n = 12) decreased the Ƭdes by 7% (p = 
0.046) with highly variable non-significant increase of the ISS. Increasing Sh5b concentration to 10 μM 
produced an increase of the Ipeak in some cells and a decrease in other group, but overall change was 
non-significant (Table 2). Other parameter changes were also non-significant. At 30 μM Sh5b (n = 6) 
increased the ISS 78 ± 16% (p = 0.004) (Figure 5). However, the observed effects on ASIC current when 
using Sh5b in co-application were not dependent on concentration (Table 2). 
  

Figure 4. Effect of pH-gating the ASIC current on Sa12b action. In (A), recordings of ASIC current at
different gating pHs in control (black traces) and after preincubation with 100 nM Sa12b (red traces).
The inhibitory effect of Sa12b is similar regardless of the pH used to activate the current. All recordings
are from the same cell, which desensitize nearly completely and shows small ISS component. In (B),
relation between the pH used to activate the current and the normalized Ipeak in control (black) and
after 100 nM Sa12b. Data were adjusted with a sigmoidal function, no significant difference between
pH sensitivity of the current in control (pH50 = 6.26 ± 0.1) and with Sa12b (pH50 6.27 ± 0.06) was
found. The pHs used to activate the current were: pH 6.5, n = 15; pH 6.0, n = 15; pH 5.5, n = 16;
pH 5.0, n = 17; pH 4.0, n = 14. In (C), plot of the percent Ipeak inhibition produced by 100 nM Sa12b
against pH. The data were adjusted with a linear function showing that inhibition produced by Sa12b
is independent of the pH used to activate the ASIC current.

2.4. Effect of Sh5b

As with Sa12b peptide, the application of Sh5b peptide was carried out under co-application and
preincubation. The concentrations at which the peptide was tested were: for co-application 100 nM,
3 µM, 10 µM, and 30 µM; for preincubation application, the concentrations were 100 nM, 1 and 10 µM.

In the co-application protocol, 100 nM Sh5b (n = 5) showed no consistent concentration-dependent
effects on the analyzed parameters. At 3 µM Sh5b (n = 12) decreased the Tdes by 7% (p = 0.046) with
highly variable non-significant increase of the ISS. Increasing Sh5b concentration to 10 µM produced an
increase of the Ipeak in some cells and a decrease in other group, but overall change was non-significant
(Table 2). Other parameter changes were also non-significant. At 30 µM Sh5b (n = 6) increased the ISS

78 ± 16% (p = 0.004) (Figure 5). However, the observed effects on ASIC current when using Sh5b in
co-application were not dependent on concentration (Table 2).
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Table 2. Effect of Sh5b on macroscopic ASIC currents in DRG neurons.

[Sa12b] n % Ipeak % ISS % Tdes

Co-application

100 nM 5 ↓ 2 ± 4 ↑ 85 ± 74 ↓ 1 ± 2

3 µM 12 ↓6 ± 3 ↑ 116 ± 104 ↓ 7 ± 4

10 µM 9 ↑17 ± 15 ↑ 1 ± 11 ↓ 10 ± 5

30 µM 6 ↓1 ± 6 ↑ 78 ± 16 ↑ 9 ± 5

Preincubation
application

100 nM 9 ↓0.5 ± 6 ↑ 53 ± 38 ↑ 13 ± 15

1 µM 5 ↓9 ± 5 ↑ 14 ± 41 ↑ 3 ± 5

10 µM 12 ↓11 ± 4 ↓ 8 ± 15 ↓ 5 ± 4

The effects that presented a significant difference are shown in red. The upward arrows indicate an increase and the
downward arrows indicate a decrease. Student´s t-test.

The use of 100 nM Sh5b in preincubation (n = 9) produced no effect on the analyzed parameters.
Perfusion of 1 µM Sh5b (n = 5) produced a marginal decrease of the Ipeak (9 ± 5%), and an increase of
the ISS, both effects were non-significant. 10 µM Sh5b (n = 12) did not produced significant effects on
the studied parameters either (Figure 6, Table 2).
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Figure 5. Effect of Sh5b peptide on ASIC currents of DRG neurons. Graphs show ASIC current in
control, co-application, and after one minute of peptide washout. In (A), co-application of 3 µM Sh5b
reduced Ipeak of ASIC currents by 9.6%, while ISS was increased by 30%. In (B), co-application of
10 µM Sh5b, increased Ipeak by 44.6% and ISS 14.6%. In (C), the co-application of 30 µM Sh5b caused an
inhibition of 3.8% on Ipeak and an increase of 102% on ISS from 79 pA to 159 pA. Effects were reversed
by 1 min peptide washout.
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In (A), shows the effect of preincubation with 100 nM Sh5b, which produced a marginal increase of the
Ipeak and ISS of 1% and 3% respectively, with no change in Tdes. In (B), preincubation with 1 µM Sh5b
inhibits Ipeak and ISS by 1% and 5% respectivley. In (C), use of 10 µM Sh5b inhibits the Ipeak by 18%
and increased the ISS by 26%, with no change in Tdes. The effect was reversed by 1 min washout of
the peptide.

3. Discussion

3.1. Sa12b

Sa12b peptide, when applied by preincubation, reversibly inhibits the amplitude of the peak
of ASIC currents (IC50 ~ 81 nM) in rat DRG neurons in a concentration-dependent manner without
consistent action on the time course of desensitization or the sustained component of the current.
Currents activated by H+ in DRG neurons are heterogeneous due to the combination of two or
more ASIC subunits with coexistence of multiple populations of channels in the same cell [28–31].
The inhibitory effect of Sa12b was similar in all cells regardless of the kinetics of currents, which indicates
that Sa12b action is not specific to any particular ASIC subunit; however, this question requires further
exploration on channels expressed in a heterologous system.

We found no effect on the Ipeak during co-application of Sa12b and acidic pH. That the inhibitory
effect of Sa12b was observed only after preincubation application suggests that the peptide needs to
interact with the channel during its closed state; an alternative explanation would be that this effect is
due to a slow interaction of the peptide with ASIC or a slow conformational change of the channel
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induced by Sa12b [21]. RFa-related peptides also seem to produce their modulating effect only when
applied before acid gating of the channel [20].

The inhibitory potency of Sa12b (IC50 = 81 nM) on ASIC currents is comparable to the inhibition
caused by peptides of vegetable and animal origin, such as chlorogenic acid (CGA, polyphenol) and
the gastrodin (phenol) that inhibits ASIC currents in rat DRG neurons (IC50 ~ 230 nM and ~ 210 nM
respectively) [32,33]. APETx2 (from the sea anemone Anthopleura elegantissima) inhibits the homomeric
channels of rASIC3 (IC50 37–63 nM) and hASIC3 (IC50 ~ 175 nM) [34]; mambalgines (from the black
mamba and the green mamba) inhibit the homomers of ASIC1a and ASIC1b, and the heteromers
containing ASIC1a with an IC50 ranging from 11 to 250 nM [35,36]; or PhcrTx1 peptide extracted
from Phymanthus crucifer (IC50 ~ 100 nM) which inhibits ASIC currents � 40% [37]. The inhibitory
effect of Sa12b in ASIC currents is only surpassed in potency by two known ASIC1a inhibitors: PcTx1,
from tarantula venom Psalmopoeus cambridgei (IC50 = 1 nM) [38] and Hi1a, from the venom of the
Australian spider Hadronyches infensa (IC50 = 0.4–0.5 nM), however, PcTx1 behaves as an agonist
of ASIC1b (EC50 ~ 100 nM), while Hi1a produces an incomplete current inhibition at saturating
concentration (1 µM) [9]. It is worth note that Sa12b produces a close to 100% inhibition of Ipeak at
1 µM. Which suggests that Sa12b exerts an unspecific action among ASIC subunits, although the lack
of inhibition of ISS suggest some kind of selectivity among ASIC subunits. To define this, it will be
needed to perform experiments in a heterologous expression system studying the action of Sa12b on
specific homomers of ASIC subunits.

It is speculated that modulation of ASIC channels by RFa-related peptides is due to direct
interaction between the peptide and the extracellular domain of the channel having the lower region of
the palmar domain of the channel as a probable binding site, specifically the region occupied by the
central vestibule of the channel; furthermore, it has been suggested that RFa-related peptides bind to
the channel in the closed state and dissociate very slowly from the desensitized state [22]. Since Sa12b
has a very short amino acid sequence, binding in the central vestibule may plug the channel, decreasing
the conductance instead of slowing inactivation and desensitization of ASIC currents, which is what
RFa does.

Sa12b sequence (EDVDHVFLRF) suggests the presence of a hydrophobic patch provided by the
amino acids: Val3, Val6, Phe7, Leu8, and Phe10; the Phe15 residue in APETx2 is of great importance for
this toxin to inhibit the currents of ASIC3 [39]. Similarly, PcTx1 has a hydrophobic patch conferred by
Trp7 and Trp24 which interacts with the thumb domain of the ASIC channel, while the basic group
of PcTx1 (Arg26, Arg27, and Arg28) enters the acidic pocket to form strong hydrogen bonds [40].
Sa12b also possesses two residues with a positive charge (His5 and Arg9) that could be a binding site
with ASIC channels.

3.2. Sh5b

Sh5b did not produce consistent, reproducible, effects on ASIC currents, it shows various effects
on most of the analyzed parameters, including dual effects on the Ipeak and Tdes. The complex action
of Sh5b suggests that this peptide presents selective action on some subunits of ASICs. As already
mentioned, the macroscopic currents activated by H+ in the DRG neurons present a morphological
heterogeneity resulting from the combination of two or more ASIC subunits, so the inconsistent action
of Sh5b could be given by selectivity of the peptide for some ASIC subunits. Future studies using
heterologous expression of ASIC subunits could clarify whether Sh5b possesses any selectivity; if so,
Sh5b can become a pharmacological tool that allows studying specific ASIC subunits.

Application of Sh5b by preincubation showed a tendency to inhibit the current peak. The ISS

component increased slightly after application of Sh5b, and the ISS/Ipeak relationship also increased;
this last parameter was the one that had statistically significant effects in the greatest number of
the tested concentrations, which suggests a modification on the desensitization process of ASICs.
However, the Tdes and the integral of the current show no consistent changes, exhibiting dual effects.
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During co-application, the ISS/Ipeak relationship showed a tendency towards the increase, but the Tdes

did not show noticeable differences.
RFa-related peptides have an NH2 group which is positively charged at pH 5 to 8 [21]. The effects

of Sh5b could be due to the positive charge given by its amine group. Other inhibitors of ASICs, such as
the PhcrTx1 peptide, which at pH 7.4 has a net charge of +5.03, APETx2 (net charge = +2.00), and PcTx1
(net charge = +3) [37] also have that particularity. Aminoglycosides are also positively-charged ASICs
modulators [27].

Analysis of the structure of Sa12b (EDVDHVFLRF) and Sh5b (DVDHVFLRFa) showed that Sa12b
has an extra Glu in its N-terminal, while Sh5b has an amide residue in its C-terminal. Sa12b has three
negatively charged amino acids (Glu1, Asp2, and Asp4) and two positively charged ones (His5 and
Arg9), which gives the peptide a negative net charge, besides it has four polar amino acids (Glu1, Asp2,
Asp4, and Arg9) and six apolar ones (Val3, His5, Val6, Phe7, Leu8, Phe10). In contrast, Sh5b presents in
its sequence two negatively charged amino acids (Asp1 and Asp3) and two positively charged ones
(His4 and Arg8), which makes it a peptide with neutral charge. With respect to solubility, Sh5b consists
of three polar amino acids (Asp1, Asp3, and Arg8) and six apolar ones (Val2, His4, Val5, Phe6, Leu7,
Phe9). These structural differences, mainly the difference of net charges, could favor differences in the
folding of the tertiary structure, which could produce the differences in the interaction of Sa12b and
Sh5b with ASIC.

4. Conclusions

The results from this work show that the application of Sa12b exerts an inhibitory effect on ASIC
currents from DRG neurons, this effect was concentration-dependent and reversed after washout of
the peptide. Since the inhibition was close to 100% at 1 µM and all ASIC subunits are expressed in
DRGs, it suggests that Sa12b inhibits different ASIC subunits without an apparent selectivity. Sa12b is
the first discovered wasp peptide with a significant ASIC inhibitory action.

5. Material and Methods

5.1. Animals and Cell Culture

To study the effect of Sa12b and Sh5b on ASIC, DRG neurons were obtained from Long-Evans
CII / ZV rats of 7 to 10 days of postnatal age, of either sex. Animals were provided by the laboratory
animal facility ‘Claude Bernard’ of the Autonomous University of Puebla. The study was performed
in accordance with the recommendations in the Guiding Principles in the Care and Use of Vertebrate
Animals in Research and Training of the American Physiological Society, and with the regulations of
the NOM-062-ZOO-1999 of the Mexican Ministry of Agriculture, Stockbreeding, Rural Development,
Fishing and Food. The protocol was reviewed and approved by the Institutional Committee for
Animal Care and Use (IACUC) of the Autonomous University of Puebla (VIEP-BUAP) on 17 July
2017. The ethical approval code is SOEE-UALVIEP-17-1. All efforts were made to minimize animal
suffering and to reduce the number of animals used. DRG neurons were isolated and maintained
in primary culture according to the methodology described previously [41]. The dissection and cell
culture were performed within a level I biosafety laminar flow hood (Nuaire, Plymouth, MN, USA).
Rats were anesthetized with sevoflurane and sacrificed by decapitation. Subsequently, the rat was
placed in prone position to make a longitudinal incision through the vertebral bodies removing the
spinal cord. Dorsal root ganglia were isolated (approximately 12 to 18 per rat) using conventional
dissection under a stereoscopic microscope (American Optical, Southbridge, MA, USA). Once extracted,
DRG neurons were placed in a disposable sterile centrifuge tube (Corning, Corning, NY, USA), in which
they were incubated for 30 min at 37 ◦C in Leibovitz L15 medium (L15) (Invitrogen, Waltham, MA,
USA), added with 1.25 mg/mL of trypsin and 1.25 mg/mL of collagenase (both from Sigma-Aldrich, St.
Louis, MO, USA) for an enzymatic dissociation.
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After the enzymatic treatment, the ganglia were washed 3 times with 100% L15 medium; after
each wash, the cells were subjected to mechanical dissociation using glass three-gauge Pasteur pipettes;
between each wash, a cell pellet was formed using a centrifuge at 5000 rpm. After the third wash,
once the cell pellet was formed, the supernatant was discarded, and the cell suspension was placed
in a 35 mm culture dish (Corning) on 12 × 10 mm glass plates (Corning) previously treated with
poly-D-lysine (Sigma-Aldrich, St. Louis, MO, USA).

Dissociated neurons were incubated for a period of time ranging from 2 to 8 h in a humidified
atmosphere (95% O2, 5% CO2, at 37 ◦C) using a water-jacketed CO2 incubator (Nuaire, Plymouth, MN,
USA) allowing for settlement and adhesion of isolated cells to the glass plates. The cells were cultured
in modified L15 medium, supplemented with 10% fetal bovine serum (Gibco, Waltham, MA, USA),
100 IU penicillin (Lakeside, Hayward, CA USA), fungizone 2.5 µL/mL (Gibco), NaHCO3 15.7 mM (J.T.
Baker, Radnor DE, USA) and 15.8 mM HEPES (Sigma-Aldrich, St. Louis, MO, USA).

5.2. Recording of ASIC Currents in DRG Neurons

After an incubation period of 2 to 8 h, the recording of ASIC currents in DRG neurons was
performed. Cells were transferred to a recording chamber mounted in a phase-contrast inverted
microscope (TMS, Nikon Co. Tokyo, Japan). Neurons that were not attached to other cells, and that had
a round or ovoid shape (without dendritic or axonal extensions) with a delimited refringent membrane
were chosen for recording.

The recording chamber was constantly perfused with extracellular solution (Table 3).
Recordings were performed in whole-cell voltage-clamp mode using an Axopatch 1D amplifier
(Molecular Devices, Union City, CA, USA). Data collection and generation of commands for the
perfusion change were carried out by the pClamp 9.2 (Molecular Devices) software in a 16-bit
data acquisition system (Digidata 1320, Molecular Devices). Microelectrodes were made from
borosilicate glass capillaries (TW120-3; WPI, Sarasota, FL, USA) with a micropipette puller (80-PC;
Sutter Instruments Company, San Rafael, CA, USA), which once filled with the intracellular solution
(Table 3) had a resistance of 1.4 to 3.1 MΩ. The signals were digitized at 5 kHz. The series resistance
was electronically compensated at 80%. Throughout the recording, access resistance and seal quality
were monitored to ensure stable recording conditions. The records that showed a > 10% change in
access resistance compared to the initial conditions were excluded from data analysis.

Table 3. Solutions used for electrophysiological recording.

Extracellular [mM] Acid Solution [mM] Intracellular [mM]

NaCl 140 140 10
KCl 5.4 5.4 125

CaCl2 1.8 1.8 0.134
MgCl2 1.2 1.2 -
HEPES 10 - 5

MES - 10 -
D-glucose 10 10 -

EGTA - - 10
ATP- Mg - - 2
GTP-Na - - 1

adjusted to pH 7.4 with
NaOH

adjusted to desired pH
with NaOH

adjusted to pH 7.2 with
KOH

Proton-gated currents were obtained with a holding potential of −60 mV. Cells were subjected
to a test protocol with an acid solution of pH 6.1 for 5 s (Table 3). In all the experiments at least two
control recordings were made before performing some type of experimental manipulation in order
to guarantee that the cells expressed a stable proton-gated current; the margin of variation in the
amplitude of the current between one control recording and another should be less than 10%.
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5.3. Wasp Peptides

The peptides Sa12b (EDVDHVFLRF, molecular weight = 1276.4 g/mol) and Sh5b
(DVDHVFLRF-NH2, molecular weight = 1146.3 g/mol) were purified from the venom extracts
of solitary wasps Sphex argentatus argentatus and Isodontia harmandi, respectively, and the structure was
determined by MALDI-TOF/TOF MS analysis (manuscript in preparation). The synthetic specimens of
these peptides were used in this study.

5.4. Peptide Synthesis

The peptide was synthesized on an automated PSSM-8 peptide synthesizer (Shimadzu Corp.,
Kyoto, Japan) by a stepwise solid-phase method using N-9-fluorenylmethoxycarbonyl (Fmoc)
chemistry. All the resins and Fmoc-L-amino acids were purchased from HiPep Laboratories (Kyoto,
Japan). Cleavage of the peptide from the resin was achieved by treatment with a mixture of
TFA/H2O/triisopropylsilane (TIS) (95:2.5:2.5) at room temperature for 2 h. After removal of the resin by
filtration and washing twice with trifluoroacetic acid (TFA), the combined filtrate was added dropwise
to diethyl ether at 0 ◦C and then centrifuged at 3000 rpm for 10 min. Thus, obtained crude synthetic
peptide was purified by semipreparative reverse-phase HPLC using CAPCELL PAK C18, 10 × 250 mm
with isocratic elution of 20–25% CH3CN/H2O/0.1% TFA at a flow rate of 3 mL/min. The homogeneity
and the sequence were confirmed by MALDI-TOF MS and analytical HPLC.

5.5. Experimental Design and Data Analysis

ASIC currents were activated by micro-perfusion of the cell under recording with an acid solution
(pH 6.1) through a square tube using a rapid perfusion exchange system (SF-77B, Warner Inst., Hamden,
CT, USA). The pH-gated current was activated using a pH of 6.1 which coincides with the pH50

previously demonstrated for ASIC currents in DRG neurons [41]. Capsazepine 10 µM was added to
the extracellular solution at pH 6.1 in order to limit the activation of TRPV1 receptors, which are also
sensitive to acid and are expressed in DRG neurons [42]. To study the effect of Sa12b and Sh5b peptides
on ASIC currents of DRG neurons two application protocols were used [41]. Peptides were applied
by sustained application (preincubation) and by co-application. In the preincubation, the toxin was
applied through the pH 7.4 extracellular solution for 20 s before the acid pulse and during the 5 s that
the acid pulse lasted. In co-application, the compound was applied only during the 5-second acid
pulse. The effects observed during preincubation result from channel exposure to the peptide during
the closed, open, and desensitized states. During co-application the toxins interacts with the channel
in the open and desensitized states.

The passive properties of the neurons were recorded in each experiment, including the membrane
capacitance (Cm), cell-membrane voltage (Vm), membrane resistance (Rm), and access resistance (Ra).
Solutions were prepared at the time of experiment; the peptides were kept frozen at −20 ◦C in aliquots
at different concentrations in deionized water added with 1 mg/mL of albumin (Sigma-Aldrich) to
prevent the peptides from adhering to the walls of the perfusion tubes.

The proton-gated currents were processed offline using the software Clampfit 9.2 (Molecular
Devices), Microsoft Office Excel 2010 and SigmaPlot 12.0. For each experimental condition two
control recordings were obtained, one recording with the application of the peptide, and two washout
recordings. The problem currents were normalized with respect to the average of the control currents
in order to obtain the percentage of change in the parameters measured in the presence of the toxins.

For the analysis of the toxin actions, the concentration-response curves were adjusted with
a Hill equation:

Y = A2 + (A1 − A2)/(1 + (x/E50) H)

where: Y = Pharmacological effect, x = Concentration tested, A1 and A2 = Maximum and minimum
effect, E50 = Concentration in which 50% of the effect is obtained, H = Hill constant.
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To study the desensitization of the current, a simple exponential function was adjusted, obtaining
the decay constant of the current (Tdes).

To determine the statistical significance of the data, a paired Student’s t-test was used and p values
reported; the experimental data are presented as the mean ± E.S.
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