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Abstract: Aspergillus flavus is a renowned plant, animal and human pathogen. areA is a global nitrogen
regulatory gene of the GATA transcription factor family, shown to be the major nitrogen regulator.
In this study, we identified areA in A. flavus and studied its function. The AreA protein contained a
signatory zinc finger domain, which is extremely conserved across fungal species. Gene deletion
(∆areA) and over-expression (OE::areA) strains were constructed by homologous recombination to
elucidate the role of areA in A. flavus. The ∆areA strain was unable to efficiently utilize secondary
nitrogen sources for growth of A. flavus, and it had poorly developed conidiophores, when observed
on complete medium, resulting in the production of significantly less conidia than the wild-type
strain (WT). Aflatoxin B1 (AFB1) production was reduced in ∆areA compared with the WT strain
in most conditions tested, and ∆areA had impaired virulence in peanut seeds. areA also played
important roles in the sensitivity of A. flavus to osmotic, cell wall and oxidative stresses. Hence,
areA was found to be important for the growth, aflatoxin production and pathogenicity of A. flavus.
This work sheds light on the function of areA in the regulation of the nitrogen metabolism of A. flavus,
and consequently aims at providing new ways for controlling the crossover pathogen, A. flavus.

Keywords: Aspergillus flavus; aflatoxins; nitrogen metabolism; glutamine; AreA

Key Contribution: The GATA transcription factor and major nitrogen regulator AreA, was shown to
regulate nitrogen metabolism and aflatoxin B1 production in A. flavus.

1. Introduction

Aspergillus flavus is a pathogenic soil-borne saprophyte and filamentous fungus which is widely
known for its colonization and infection of many important agricultural crops such as cereal grains,
tree nuts and legumes in the field, as well as during storage and/or transport [1–5]. A. flavus can
exploit a wide range of naturally derived nutrient sources, ranging from economic crops and bodies
of dead animals to humans and animals with compromised immune systems [5–9], and it produces
various secondary metabolites such as the toxic compounds called mycotoxins. The consumption
of these compounds is toxic to mammals, with effects ranging from immunosuppression to death in
humans [10].
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Fungi have the ability to utilize diverse compounds as nitrogen sources. The expression of
genes encoding the enzymes and permeases required for nitrogen utilization is regulated by a
general mechanism known as nitrogen metabolite repression, which makes them highly expressed
in nitrogen-limited and starvation conditions. This allows the preferred use of nitrogen sources that
can easily be incorporated as nutrients, such as ammonium and glutamine [11]. Han and colleagues
previously reported that glutamine is a preferred nitrogen source in the aflatoxin production of A. flavus,
with 4 mM limiting threshold concentration [12]. AreA, a highly conserved GATA transcription factor,
is the major nitrogen regulatory protein, known for its function of furnishing organisms with the ability
to exploit various secondary nitrogen sources. The function of this protein and its homologues have
been widely studied in various fungi [13–18]. AreA contains a zinc finger domain, with a central loop
which plays an important role in the affinity of DNA binding. The L7 (Leucine) residue in the central
loop of AreA is reported to be involved in the distinction of recognition elements present in gene
promoters [19]. Glutamine and ammonia have been found to inhibit the activity of AreA and NIT2 in
Aspergillus nidulans and Neurospora crassa, respectively, and the presence of excess or free glutamine in
the cell triggers NmrA, another protein in the nitrogen metabolism pathway to form a complex with
AreA, thereby inhibiting its DNA-binding activity [20–22]. In A. flavus, the lack of nmrA induced a
higher transcript level of areA in comparison with the wild-type strain [23]. Gln3p, a global regulator
in Saccharomyces cerevisiae, participating in the expression of diverse genes associated with nitrogen
metabolism, was shown to be rapidly dephosphorylated and accumulated in the nucleus as a result of
nitrogen starvation and rapamycin addition [24,25]. AreA, its homolog in A. nidulans, however, was
accumulated in the nucleus only in the absence of preferable nitrogen sources [26,27].

AreA is not only involved in the regulation of nitrogen metabolism, but it also plays certain roles
in the secondary metabolite biosynthesis and virulence of pathogens. In Acremonium chrysogenum,
the deletion of AcareA resulted in the loss of the derepression of nitrogen metabolism and decreased the
production of cephalosporin [28]. Studies on Fusarium graminearum showed that the vegetative growth,
nitrogen metabolism, pathogenicity and deoxynivalenol production of the AreA/NIT2 ortholog mutant
were significantly affected [29]. NRE, the AreA/NIT2 ortholog in Penicillium chrysogenum plays a role in
its nitrogen metabolism, and may also regulate penicillin biosynthesis [15,30]. In Fusarium verticillioides,
fumonisin production is controlled by AREA [31]. Likewise, gibberellin biosynthesis in Fusarium
fujikuroi is strictly mediated by AREA [14,18,32,33]. The deletion of areA in Colletotrichum gloeospoiodes
results in a significant decrease in vegetative growth and pathogenicity, but increased sporulation [34].
Generally, the major nitrogen regulator, AreA/NIT2, is associated with nitrogen metabolism in a lot of
plant pathogenic fungi, but it functions differently and in complicated manners in the pathogenicity
of various species. Hence, the need for the investigation of the role of AreA in the plant, animal,
and human pathogen A. flavus.

In this study, we identified the major nitrogen regulatory gene areA in A. flavus, encoding a
transcription factor made up of 866 amino acids. Although areA homologues have been widely studied
in fungi, nothing is known of its effect on the morphology, secondary metabolite biosynthesis and
virulence of A. flavus.

2. Results

2.1. Identification of AreA from A. flavus

The AreA protein was identified in A. flavus from the FungiDB website, with the sequence ID:
AFLA_049870. The amino acid sequences of AreA from A. flavus and 12 other fungal species including
Aspergillus oryzae, Aspergillus nidulans, Aspergillus niger, Aspergillus parasiticus, Aspergillus clavatus,
Aspergillus terreus, Aspergillus nomius, Aspergillus fumigatus, Neosartorya fischeri, Talaromyces marneffei,
Acremonium chrysogenum and Penicillium digitatum were obtained from UniProt. The open reading
frame (ORF) of the A. flavus areA gene consists of 2668 bp, coding for AreA, a transcription factor made
up of 866 aa, with a weight of approximately 92.8 KDa. The sequence alignment of the aforementioned



Toxins 2019, 11, 718 3 of 18

organisms revealed that the GATA zinc finger domain and C-terminal of the AreA protein were highly
conserved in the aforementioned organisms (Figure 1A). The phylogenetic tree analysis displayed a
close evolution between the AreA protein from A. flavus, A. oryzae, A. parasiticus, and A. nomius, while
the relationship was quite far from the AreA protein of A. nidulans (Figure 1B). The protein sequence
contains two domains, the Nitrogen Regulatory AreA N-terminal (1–88 aa), and the GATA zinc finger
(658–711 aa) (Figure 1C).
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chrysogenum, showing the conserved domains. (B) Phylogenetic tree of the AreA protein from 
organisms described in panel A. (C) Domain prediction of the AreA protein in the aforementioned 
organisms visualized by DOG 2.0 software. 

2.2. Construction of areA Deletion (ΔareA) and Over-Expression (OE::areA) Mutant Strains 

In order to elucidate the role of areA in the morphology, secondary metabolite production and 
pathogenicity of A. flavus, the areA gene was deleted and over-expressed in A. flavus using the 
homologous recombination method. The obtained transformants were subjected to diagnostic PCR, 
RT-PCR and qRT-PCR to verify successful gene manipulations. The diagnostic PCR showed the 
presence of the ORF in the wild-type strain (WT), and the absence of AP (containing part of the 5′ 
UTR and pyrG) and BP (containing part of the 3′ UTR and pyrG) fragments , while the ΔareA mutant, 
from which the ORF could not be amplified, displayed the AP and BP amplicons as expected. The 
diagnostic PCR confirmed the successful deletion of the areA gene (Figure 2A). RT-PCR and qRT-
PCR analyses showed an undetectable areA transcript in ΔareA, and a higher areA transcript level in 
OE::areA when compared with the WT strain (Figure 2B,C). These results further confirmed the 
successful construction of the ΔareA and OE::areA strains. 

 

Figure 1. Bioinformatics analysis of major nitrogen regulator AreA. (A) Sequence alignment of the AreA
protein amino acid sequence from Aspergillus flavus, Aspergillus oryzae, Aspergillus nidulans, Aspergillus
niger, Aspergillus parasiticus, Aspergillus clavatus, Aspergillus terreus, Aspergillus nomius, Aspergillus
fumigatus, Neosartorya fischeri, Talaromyces marneffei, Penicillium digitatum and Acremonium chrysogenum,
showing the conserved domains. (B) Phylogenetic tree of the AreA protein from organisms described
in panel A. (C) Domain prediction of the AreA protein in the aforementioned organisms visualized by
DOG 2.0 software.

2.2. Construction of areA Deletion (∆areA) and Over-Expression (OE::areA) Mutant Strains

In order to elucidate the role of areA in the morphology, secondary metabolite production and
pathogenicity of A. flavus, the areA gene was deleted and over-expressed in A. flavus using the
homologous recombination method. The obtained transformants were subjected to diagnostic PCR,
RT-PCR and qRT-PCR to verify successful gene manipulations. The diagnostic PCR showed the
presence of the ORF in the wild-type strain (WT), and the absence of AP (containing part of the 5′ UTR
and pyrG) and BP (containing part of the 3′ UTR and pyrG) fragments, while the ∆areA mutant, from
which the ORF could not be amplified, displayed the AP and BP amplicons as expected. The diagnostic
PCR confirmed the successful deletion of the areA gene (Figure 2A). RT-PCR and qRT-PCR analyses
showed an undetectable areA transcript in ∆areA, and a higher areA transcript level in OE::areA when
compared with the WT strain (Figure 2B,C). These results further confirmed the successful construction
of the ∆areA and OE::areA strains.
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nitrogen sources, with a high severity in Ala and Pro (Figure 3A). The growth assay revealed a slower 
growth rate of ΔareA on glucose minimal media supplemented with Ala and Pro (Figure 3B). The 
lowest growth rate was observed in GMM + Ala, as the ΔareA mutant could barely grow. It was 
observed that the growth defect of the ΔareA mutant could be completely restored on the media 
supplemented with Gln. Intriguingly, the over-expression strain of areA (OE::areA) grew poorly on 
the media supplemented with Ala and Pro compared to the wild type (Figure 3A), which indicated 
that Ala and Pro may induce the expression of areA more largely in the WT strain than in the OE::areA 
strain. Further observation under a microscope revealed that ΔareA produced mycelia with a lower 
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Figure 2. Construction and verification of ∆areA and OE::areA strains. (A) Schematic diagram of the
gene manipulation strategy for the construction of ∆areA and OE::areA strains. (B) Diagnostic PCR
for the verification of ∆areA and OE::areA strains. (C) RT-PCR verification of WT, ∆areA and OE::areA
strains. (D) qRT-PCR verification of WT, ∆areA and OE::areA strains. Strains were grown on yeast
extract–sucrose (YES) medium for 48 h at 37 ◦C. *** p < 0.001. Error bars represent the SE (standard
error) from three independent experiments with three replicates.

2.3. areA is Important for Nitrogen Utilization and Growth of A. flavus

The growth of A. flavus on solid media was affected by the deletion of areA, and aerial hyphae
development was inhibited in ∆areA on glucose minimal medium (GMM) supplemented with nitrogen
sources, with a high severity in Ala and Pro (Figure 3A). The growth assay revealed a slower growth
rate of ∆areA on glucose minimal media supplemented with Ala and Pro (Figure 3B). The lowest
growth rate was observed in GMM + Ala, as the ∆areA mutant could barely grow. It was observed that
the growth defect of the ∆areA mutant could be completely restored on the media supplemented with
Gln. Intriguingly, the over-expression strain of areA (OE::areA) grew poorly on the media supplemented
with Ala and Pro compared to the wild type (Figure 3A), which indicated that Ala and Pro may induce
the expression of areA more largely in the WT strain than in the OE::areA strain. Further observation
under a microscope revealed that ∆areA produced mycelia with a lower density, and fewer branches,
in comparison with WT and OE::areA strains (Figure 3C). The septa morphology of A. flavus strains were
also observed, and we discovered that ∆areA had significantly fewer septa than the WT and OE::areA
strains (Figure 3D). These results showed that areA is important for the utilization of non-preferred
nitrogen sources and growth in A. flavus.
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observed that the ΔareA mutant was severely impaired in the formation of conidiophores and failed 
to form visible conidia due to the undeveloped phialides (Figure 4A). Further, the amount of conidia 
produced by ΔareA on yeast extract–sucrose (YES) medium was significantly lower than those of the 
WT and OE::areA strains (Figure 4B). To further understand the results obtained, the transcript levels 
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Figure 3. Phenotype, growth rate and mycelial branching of A. flavus strains. (A) Colony morphology
of WT, ∆areA and OE::areA grown on potato dextrose agar (PDA) and glucose minimal medium (GMM)
supplemented with 50 mM Glutamine, alanine, proline, or ammonium tartrate dibasic at 37 ◦C for
4 d. (B) Growth rate analysis of WT, ∆areA and OE::areA as panel A. (C) Mycelial branching of WT,
∆areA and OE::areA on PDA at 37 ◦C after 2 d. Bars = 100 µm. (D) Septa morphology of WT, ∆areA and
OE::areA grown in PDB at 37 ◦C overnight. Bars = 20 µm * p < 0.05, ** p < 0.01, and *** p < 0.001. Error
bars represent the SE from three independent experiments with three replicates.

2.4. areA Influences Conidia Production of A. flavus

The conidiophore morphology of the A. flavus strains was observed using a microscope, and we
observed that the ∆areA mutant was severely impaired in the formation of conidiophores and failed to
form visible conidia due to the undeveloped phialides (Figure 4A). Further, the amount of conidia
produced by ∆areA on yeast extract–sucrose (YES) medium was significantly lower than those of the
WT and OE::areA strains (Figure 4B). To further understand the results obtained, the transcript levels
of the conidia-related genes, abaA and brlA, were assessed, and we discovered that the transcript level
of brlA was significantly reduced in ∆areA compared to WT and OE::areA strains (Figure 4C). These
results indicated that areA is required for the full conidiation of A. flavus.
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OE::areA strains of A. flavus grown on YES medium at 37 ◦C for 4 d. Bars = 200 µm. (B) Amounts of
conidia produced by WT, ∆areA and OE::areA strains grown on YES medium at 37 ◦C for 4 d. (C) The
relative expression levels of the conidiation-related genes abaA and brlA in the WT, ∆areA and OE::areA
strains of A. flavus. ** p < 0.01 and *** p < 0.001. Error bars represent the SE from three independent
experiments with three replicates.

2.5. areA Impedes Sclerotia Formation in A. flavus

The amount of sclerotia produced by the A. flavus strains was assessed by growing the strains on
GMM supplemented with 2% sorbitol, with Gln as the sole nitrogen source. It was discovered that
more sclerotia were produced by ∆areA in comparison with the WT and OE::areA strains (Figure 5A,B).
To shed more light on the result obtained, the transcript levels of sclerotia-related genes, nsdC, nsdD
and sclR, were examined, and we found that the transcript levels of nsdC and nsdD genes were similar
in all the three test strains, while sclR was significantly increased in ∆areA compared to the WT and
OE::areA strains (Figure 5C). These results suggested that areA, being a nutrition gene, was important
for the assimilation of nutrients by A. flavus.
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culturing the strains on potato dextrose agar (PDA), supplemented with NaCl and KCl (Figure 6A), 
and we observed that osmotic stress enhanced the growth of A. flavus (Figure 6B). In the oxidative 
stress assay, both the ΔareA and OE::areA strains displayed significant growth inhibition in the 
presence of H2O2 compared to the wild type (Figure 6). Cell wall stress was induced by two stress 
agents, Congo Red (CR) and calcofluor white (CFW) (Figure 6A), and the result showed that the 
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Figure 5. Sclerotia production of A. flavus strains. (A) Sclerotia production (before and after washing
off the conidia) of the WT, ∆areA and OE::areA strains on glucose minimal medium (GMM) at 37 ◦C.
(B) Statistical analysis of the sclerotia production. (C) The expression levels of nsdC, nsdD and sclR
genes involved in sclerotia production by qRT-PCR assay. * p < 0.05 and *** p < 0.001. Error bars
represent the SE from three independent experiments with three replicates.

2.6. areA Influences the Stress Responses of A. flavus

The effect of areA deletion on the response of A. flavus to osmotic stress was examined by culturing
the strains on potato dextrose agar (PDA), supplemented with NaCl and KCl (Figure 6A), and we
observed that osmotic stress enhanced the growth of A. flavus (Figure 6B). In the oxidative stress assay,
both the ∆areA and OE::areA strains displayed significant growth inhibition in the presence of H2O2

compared to the wild type (Figure 6). Cell wall stress was induced by two stress agents, Congo Red
(CR) and calcofluor white (CFW) (Figure 6A), and the result showed that the relative growth rate
of the ∆areA and OE::areA strains were significantly inhibited in comparison to the wild-type strain
(Figure 6B). These results suggested that areA may play a role in the sensitivity of A. flavus to osmotic,
oxidative and cell wall stresses.
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strain in the presence of glutamine or ammonium, the wild-type strain produced detectable AFB1
(Figure 7A,B). We investigated the expression levels of some genes in the aflatoxin biosynthesis gene
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assay of AFB1 produced by WT, ∆areA and OE::areA strains grown on YES medium, PDB and GMM
supplemented with 50 mM Gln, Pro, Ala or NH4 at 29 ◦C for 6 d. (SD indicates standard AFB1.)
(B) Quantification assay of AFB1 produced in panel A. (C) The expression levels of aflC, aflD, aflK, aflM,
aflO, aflP, aflQ, aflR, and aflS genes involved in aflatoxin biosynthesis by qRT-PCR assay. Error bars
represent the SE from three independent experiments with three replicates. * p < 0.05, ** p < 0.01 and
*** p < 0.001.

2.8. areA is Necessary for the Pathogenicity of A. flavus

A. flavus is known to readily colonize oil-rich crop seeds. Hence, we investigated the effect of
areA deletion on the colonization of peanut seeds. The assay revealed that the loss of areA caused a
significant impairment in the pathogenicity of the strain on peanut seeds (Figure 8A). The pathogenicity
of the strains was assessed based on the mycelia and conidia produced on the surface of the infected
seeds. The result showed that the ∆areA mutant grew less vigorously on peanut seeds (Figure 8A).
Further, the conidia quantification assay revealed that ∆areA was significantly impaired in conidiation
compared to the WT and OE::areA strains (Figure 8B). Further quantification of AFB1 production from
the infected plant seeds showed a significant decrease in ∆areA in comparison with the WT strain
(Figure 8C,D). These results suggested that areA is necessary for the pathogenicity of A. flavus.Toxins 2019, 11, x FOR PEER REVIEW 9 of 19 
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on peanut seeds after 6 d of inoculation. (B) Conidia production of strains in panel A. (C) TLC analysis
of AFB1 extracted from panel A. (SD indicates standard AFB1.) (D) Quantification of TLC result in
panel C. * p<0.05 and *** p<0.001. Error bars represent the SE from three independent experiments with
three replicates.

2.9. Subcellular Localization of AreA in A. flavus

The subcellular localization of AreA was investigated by culturing A. flavus strains expressing
areA tagged with RFP (red fluorescence protein) in GMM supplemented with different nitrogen
sources. The samples were stained with 4,6-diamidino-2-phenylindole (DAPI) to enable a clear view
of the nucleus. AreA was seen to be localized both in the nucleus and in the cytoplasm, under a
nitrogen-limited condition (presence of alanine and proline), mainly in the cytoplasm in the presence
of ammonium, while the signal could barely be seen under a nitrogen-repressed condition (presence of
glutamine) (Figure 9). This result confirms the transcription activity of AreA and its involvement in
nitrogen metabolism.
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3. Discussion

The ability of A. flavus to utilize a wide range of nutrients with different qualities and quantities is
essential for its pathogenicity, as it has previously been shown that the expression of virulence-related
genes is induced by nitrogen starvation [18,20]. Fungi are able to utilize several nitrogen sources, subject
to the regulatory mechanism NMR, which allows the use of a preferred nitrogen source like glutamine
and ammonium over secondary nitrogen sources [32,35]. In this study, we characterized the function
of the major nitrogen regulatory gene areA in A. flavus. Its deletion resulted in a defective utilization of
secondary nitrogen sources, and a slightly ineffective use of ammonium, which is a preferred source of
nitrogen in A. nidulans [36]. In consonance with our findings, the ineffective use of ammonium has been
recorded in the deletion of an areA ortholog in A. oryzae [37] and F. graminearum [35]. Here, we found
that the absence of areA was only compensated for, by the presence of glutamine, in the utilization of
nutrients for proper growth, suggesting that glutamine is a preferred source of nitrogen for A. flavus.
This is in contrast with the study of areA in A. nidulans, where glutamine is a non-preferred source [36].
A study performed by Min and colleagues also showed that neither glutamine nor ammonium is a
preferred nitrogen source in Fusarium zeae, but rather urea [38].

areA, being the major regulator of nitrogen metabolism, is expected to affect the vegetative
development of A. flavus, as nitrogen is among the most essential nutrients for the growth and
differentiation of organisms [39]. Hence, we investigated this by examining the colony diameter of
A. flavus strains on different culture media, and also by viewing the mycelial branching and septa
morphology of A. flavus strains grown in complete medium. The degree of branching of fungal mycelial
is essential for the assimilation of nutrients by the fungus, and the presence of septa indicates the
growth and maturation of new cells. We discovered that areA deletion led the formation of less dense
mycelial branches and few septa, indicating that areA positively regulates the growth and development
of A. flavus.

The regulation of conidiation in filamentous fungi involves certain regulators such as VeA/Ve1, VelB,
WetA, brlA and abaA [40]. In the fruit postharvest pathogen Colletotrichum gloeosporioides, the deletion
of CgareA up-regulated Ve1, resulting in an increased conidia production [34]. Here, we found that
areA influenced the conidiation of A. flavus, as its deletion resulted in a significantly decreased the
amount of conidia when grown on both complete and minimal media containing different nitrogen
sources. Further, we found that the conidiophore produced by the ∆areA mutant was poorly formed,
which is consistent with the down-regulated the expression level of brlA observed in the areA deletion
strain. These data suggested that the absence of areA, not the quality of nitrogen source, was the cause
of the reduction of conidia production in A. flavus.



Toxins 2019, 11, 718 10 of 18

The production of secondary metabolites in fungi is influenced by the available nitrogen sources
and nitrogen regulators [39,41,42]. GATA transcription factors are known to influence the utilization
of nutrients, morphology or growth of Aspergillus, and their disruption may also cause a significant
down-regulation of the AF biosynthesis genes expression, but not a total lack [43]. AreA is a positive
regulator of the expression of genes related to the production of several secondary metabolites like GA,
fumonisin, DON, zearalenone, fusarielin H, beauvericin and cephalosporin [43]. AreA, as a GATA
transcription factor, has binding sites in the promoters of key genes in the AF biosynthesis cluster [44],
suggesting that AreA may have a direct influence on the expression of these genes. The aflJ-aflR (aflJ,
now called aflS) intergenic region also has approximately five AreA binding sites [43]. Additionally,
certain aflatoxigenic strains of A. flavus, A. sojae, and A. oryzae reported to have full transcription of
aflR, but had no expression of aflO, produced no aflatoxin. This implies that although aflR may induce
the transcription of AF biosynthesis pathway genes, other factors may affect the expression levels of
the genes [45]. We investigated the expression levels of some genes in the AF BGC in A. flavus when
cultured on YES medium, including the cluster activator, aflR, the cluster expression enhancer, aflS,
and some other genes responsible for the production of the AF pathway intermediates (aflC, aflD, aflK,
aflM, aflO, aflP, and aflQ). We discovered that the expression levels of aflR and aflS were not significantly
down-regulated in ∆areA in comparison with the WT strain, however, the expression levels of aflK,
aflO, aflP and aflQ were significantly up-regulated in the ∆areA strain. Our results in conjunction with
previous findings suggested that in A. flavus, although aflR is responsible for the activation of the
transcription of the AF BGC, additional factors may affect the expression levels of the pathway genes.
It has been previously reported that, the nitrogen sources available to A. flavus affected its biosynthesis
of AFB1, and glutamine was reported by a previous study in our lab as the optimal nitrogen source for
the production of AFB1 [12]. However, in this study, we discovered that the WT strain produced more
AFB1 in GMM supplemented with proline as the nitrogen source than in the presence of glutamine,
while the highest amount of AFB1 was produced by OE::areA when grown in GMM supplemented
with glutamine. The gene deletion mutant grows better than the WT strain on glutamine. This suggests
that as much as glutamine inhibits the function of areA, the presence of areA does not give room for
the complete utilization of glutamine as a nitrogen source. However, in the case of proline, the gene
deletion mutant grew poorly, which indicated that the utilization of proline needs areA. This implied
that the WT strain may be able to utilize proline better than glutamine, and this was evident in the
slightly increased colony size and AFB1 quantity in the proline-containing medium. On the other hand,
despite the ability of proline to be utilized as both nitrogen and carbon source, it could not rescue the
lack of the function of areA in AFB1 production, and this may be due to carbon catabolite repression
induced by glucose [46]. It has been previously shown in A. nidulans that AreA is not sufficient for the
utilization of proline, and the presence of CreA hinders the action of the element required for its full
utilization [47]. The loss of areA and the presence of creA therefore poses a double-fold hindrance to
the utilization of proline, and this could be the cause of the inability of the areA deletion mutant of
A. flavus to utilize proline both for growth and AFB1 production.

The system responsible for the regulation of osmotic stress in fungi has previously been shown
to be connected to fungal development, and previous studies show that in A. flavus, osmotic stress
induced by high concentrations of NaCl, sorbitol, and KCl has positive effects on vegetative growth,
leading to increased conidiation [48]. In this study, we observed that osmotic stress induced by NaCl
and KCl not only improved the growth of the wild-type strain of A. flavus, but that of the ∆areA mutant
was also significantly increased. This may be as a result of the optimal utilization of the materials and
energy dispensed by the fungus for development in a bid to provide favorable survival conditions,
in response to osmotic stress [48], by the ∆areA mutant. Due to the ability of the ∆areA mutant to
conveniently utilize whichever nutrient source available to it, as it does not have to strive for the
utilization of non-preferred nitrogen sources, according to the function of the areA gene.

During the colonization of hosts by pathogenic fungi, the ability to surmount diverse detrimental
environmental conditions, especially an oxidative surge which may lead to an accumulation of
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extremely harmful reactive oxygen species (ROS), is a requirement for fungal pathogens. Plants have
been shown to produce harmful ROS, as a form of defense to counter pathogens [49,50]. Because of
the relative stability of H2O2 and its ability to easily diffuse through membranes, it acts as a means of
communication for cells to initiate defense response [51]. H2O2 is also synthesized in large amounts in a
mechanism known as a hypersensitive reaction (HR), employed by plant cells to counter the invasion of
pathogens [52,53]. Here, we observed that the growth of the ∆areA mutant was significantly inhibited
by oxidative stress, which implied that the gene areA may play a role in reducing the susceptibility of
A. flavus to oxidative stress, which further implies that areA may help shield A. flavus from the counter
attacks of the host plant during infection.

Snoeijers and colleagues showed that the accessibility of nitrogen is important for colonization
and pathogenicity [54]. The virulence of A. flavus has been said to be dependent on several factors, one
of which is not aflatoxin [6]—unlike in F. zeae wheat head blight, where trichothecenes are virulence
factors [55]. It has been reported that a shortage in the nitrogen supply of plant pathogens at the start of
the infection process gives a signal for the commencement of infection [25,56]. In this study, the ability
of A. flavus to effectively colonize hosts was impaired by the deletion of areA, and the conidiation and
AFB1 production of the ∆areA mutant were found significantly reduced on hosts. These results were in
consonance with the AreA studies in F. verticillioides [31], Ustilago maydis [56], and C. gloeosporioides [34],
but different from that of Magnaporthe grisea [16].

Transcription factors are localized to the nucleus under conditions in which they carry out their
transcription activity [57]. Hence, it is expected that AreA would be localized in the nucleus under
nitrogen starvation conditions, as it effects the expression of genes related to the exploitation of less
preferred nitrogen sources. We discovered that AreA was localized in the nucleus and also in the
cytoplasm under nitrogen starvation conditions, while it was mainly localized in the cytoplasm in the
presence of ammonium.

In conclusion, AreA, as a global transcription factor, is involved in many pathways and mechanisms
in A. flavus other than nitrogen metabolism. Further, the gene is important for both the primary and
secondary metabolism of A. flavus, irrespective of the nitrogen source present. However, further studies
need to be carried out to elucidate the mechanism through which areA plays its roles in A. flavus.

4. Materials and Methods

4.1. Strains and Culture Conditions

The fungal strains and plasmids used in this study are listed in Table 1. In this study, the culture
media used include, glucose minimal medium (GMM, 10 g/L glucose, 6 g/L NaNO3, 1.52 g/L KH2PO4,
0.52 g/L KCl, 0.52 g/L Mg2SO4·7H2O, and 1 mL trace elements), yeast extract–sucrose (YES, 20 g/L yeast
extract, 150 g/L sucrose, 1 g/L Mg2SO4·7H2O), yeast extract–glucose agar (YGT, 5 g/L yeast extract,
20 g/L glucose, 1 mL trace elements) with or without uracil and uridine, potato dextrose agar (PDA, BD
Difco™, Franklin, NJ, USA), potato dextrose broth (PDB, BD Difco™, Franklin, NJ, USA) and Czapek
agar (CA, BD Difco™, Franklin, NJ, USA, 1 M sucrose, 10 mM ammonium tartrate dibasic). 15 g/L
agar was added for solid media. All strains were cultured at 37 ◦C for growth, and 29 ◦C for aflatoxin
analysis [23,58,59]. All experiments were carried out in triplicate, with each strain having four plates.

Table 1. Strains used in this study.

Strain Characterization Source

A. flavus SRRC1709 (CA14PTS) ∆ku70, ∆pyrG, and ∆niaD, Used for gene deletion [60]
WT ∆ku70, ∆pyrG
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4.2. Bioinformatics Analysis of AreA Sequence

The AreA protein sequences of A. flavus (AFLA_049870) were obtained from FungiDB, and A. oryzae
(O13415), A. nidulans (P17429), A. fumigatus (A0A0J5PGE9), A. parasiticus (Q9Y7E8), A. clavatus (A1CMX8),
A. niger (O13412), A. nomius (A0A0L1IRC7), A. terreus (Q0CGC8), Neosartorya fischeri (A1DL08), Penicillium
digitatum (K9G1P2), Talaromyces marneffei (A0A093VHJ1), and Acremonium chrysogenum (S5YAT5) were
obtained from UniProt (www.uniprot.org). The phylogenetic tree was constructed with the downloaded
sequences, using MEGA 5.1 software [61]. Domain prediction of the AreA protein in the aforementioned
organisms was visualized by DOG 2.0 software (Lab of Cell Dynamics, and Lab of Nanobiology, University
of Science & Technology of China, Hefei, Anhui, China, 2014).

4.3. Targeted Deletion and Over-Expression of the A. flavus areA Gene

We created the areA gene deletion mutant (∆areA) using the method of homologous recombination,
in which the ORF of A. flavus areA was replaced by A. fumigatus pyrG. We constructed a vector A-pyrG-B,
containing 1000 bp of the sequences flanking the areA gene, both upstream and downstream, and pyrG.
These three fragments were fused by overlap PCR. A and B were amplified from the genomic DNA
of A. flavus using the primer pairs areA-AF/areA-AR and areA-BF/areA-BR, respectively, and AfpyrG
gene was amplified with the primers pyrG-F/pyrG-R. The overlap PCR was carried out using a pair of
nested primers areA-NF/areA-NR. The resulting construct was then transformed into the protoplasts
of A. flavus SRRC1709 [62]. The over-expression strain (OE::areA) was constructed by replacing the
native promoter of A. flavus areA with another promoter from A. nidulans, gpdA(p). This was also
carried out by homologous recombination, and the vector A-pyrG-gpdA(p)-areA, containing A and
pyrG as in the deletion mutant, was constructed. The gpdA(p) fragment was amplified from the gDNA
of A. nidulans with the primer pair gpdA(p)-F/gpdA(p)-R, and areA was amplified by the primer pair
A-gpdA-F/A-gpdA-R. The fragments were fused together by overlap PCR with the primers A-gpdA-NF
and A-gpdA-NR. The resulting construct was then transformed into the A. flavus SRRC1709 strain.
Gene-specific primers are shown in Table 2.

Table 2. Primers used in this study.

Primer Name Sequence 5′ to 3’ Application

areA-F ATTCGTAATACCTGCGTTCC areA gene cloning
areA-R GGGTGAAGAGCATTGTTTGAGGCCAGTCTACCCGCCCTAAA

areA-AF ATTCGTAATACCTGCGTTCC 5′ UTR fragment amplification
areA-AR GGGTGAAGAGCATTGTTTGAGGCCAGTCTACCCGCCCTAAA
areA-BF GCATCAGTGCCTCCTCTCAGACGAGGTGCAATGCGTTGGT 3′ UTR fragment amplification
areA-BR CTGGCCTGAAAGTGGGTG
pyrG-F GCCTCAAACAATGCTCTTCACCC pyrG amplification
pyrG-R GTCTGAGAGGAGGCACTGATGC
areA-OF CCCAGTTGCCCAACCAGGAG

areA ORF verificationareA-OR GGTCGAGTAATTGGTGGCGTTC
areA-NF GTTTGACCGTCGCCTCAGTA

Fusion PCRareA-NR GGGTGGGTTGTTCGTGTTAG
A-gpdA-F CTTTCCCACTTCATCGCAGCTTGATGTCCGGGTTAACCCTCGG areA ORF amplification for

over-expressionA-gpdA-R GGGCGTCCAAGGCATAATCG
gpdA-F GATCCCGTAATCAATTGCCCCATCCGGATGTCGAAGGCTT gpdA(p) amplification
gpdA-R GTGATGTCTGCTCAAGCGGGG
P801-R CAGGAGTTCTCGGGTTGTCG AP fragment verification
P1020-F ATCGGCAATACCGTCCAGAAGC BP fragment verification
abaA-F TCTTCGGTTGATGGATGATTTC qRT-PCR

qRT-PCRabaA-R CCGTTGGGAGGCTGGGT
brlA-F GCCTCCAGCGTCAACCTTC qRT-PCR

qRT-PCRbrlA-R TCTCTTCAAATGCTCTTGCCTC
sclR-F CAATGAGCCTATGGGAGTGG qRT-PCR

qRT-PCRsclR-R ATCTTCGCCCGAGTGGTT
nsdC-F GCCAGACTTGCCAATCAC qRT-PCR

qRT-PCRnsdC-R CATCCACCTTGCCCTTTA

www.uniprot.org
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Table 2. Cont.

Primer Name Sequence 5′ to 3’ Application

nsdD-F GGACTTGCGGGTCGTGCTA qRT-PCR
qRT-PCRnsdD-R AGAACGCTGGGTCTGGTGC

areA-F GAAACGGACGAGGCTAACAA qRT-PCR
qRT-PCRareA-R ATACTATGGTTCGCCGGATTG

aflO-F GATTGGGATGTGGTCATGCGATT qRT-PCR
aflO-R GCCTGGGTCCGAAGAATGC
aflQ-F GTCGCATATGCCCCGGTCGG qRT-PCR
aflQ-R GGCAACCAGTCGGGTTCCGG
aflC-F GTGGTGGTTGCCAATGCG qRT-PCR
aflC-R CTGAAACAGTAGGACGGGAGC
aflD-F GTGGTGGTTGCCAATGCG qRT-PCR
aflD-R CTGAAACAGTAGGACGGGAGC
aflM-F ATGTCCGACAACCACCGTTTAGATGGCA qRT-PCR
aflM-R CAATGATCTTTCCACTTACCCATTCGGCTG
aflK-F GAGCGACAGGAGTAACCGTAAG qRT-PCR
aflK-R CCGATTCCAGACACCATTAGCA
aflP-F ACGAAGCCACTGGTAGAGGAGATG qRT-PCR
aflP-R GTGAATGACGGCAGGCAGGT
aflR-F AAAGCACCCTGTCTTCCCTAAC qRT-PCR
aflR-R GAAGAGGTGGGTCAGTGTTTGTAG
actin-F ACGGTGTCGTCACAAACTGG qRT-PCR

qRT-PCRactin-R CGGTTGGACTTAGGGTTGATAG

4.4. Growth, Conidia and Sclerotia Production Analysis

PDA and GMM supplemented with 50 mM nitrogen source (glutamine, Gln; alanine, Ala; proline,
Pro; or ammonium tartrate dibasic, NH4) agar media were used for analysis of growth rate. A total
amount of 106 conidia of each strain (WT, ∆areA, and OE::areA) were point-inoculated onto plates
containing the aforementioned media. Each medium had 4 replicates. The plates were incubated at
37 ◦C for 4 d in the dark, with a daily measurement of the colony diameter of each strain on every
plate. Mycelial branching of A. flavus strains was observed by point inoculating the strains on a glass
slide covered with a thin layer of PDA medium and culturing at 37 ◦C for 2 d. Septa morphology was
observed from an overnight culture of A. flavus strains at 37 ◦C, and the culture was stained with CFW
to enable a clear view of the diaphragm.

A. flavus strains were cultured on YES medium at 37 ◦C for 4 d. Three plugs were taken along
a radius of each plate into new tubes after 4 d, then conidia were homogenized and diluted with
5 mL distilled water and counted using a hemocytometer under a microscope. Conidiophores were
observed from 2-day-old cultures of A. flavus strains on YES medium, cultured at 37 ◦C for 2 d in the
dark. After 2 d, the plates were collected, and the spores and hyphae were scraped off the surface
of the medium, making the mycelia visible. Mycelia were cut into short strips and placed on glass
slides, which were in plates lined with moistened filter paper. The plates were then incubated at
37 ◦C for 12 h under light conditions. The mycelia strips were viewed under a microscope to observe
conidiophore formed. Sclerotia production was analyzed using a method previously described with
a slight modification [4,59]. Concisely, 106 spores of each strain were point-inoculated on GMM
supplemented with 2% sorbitol and 10 mM Gln as the nitrogen source and cultured at 37 ◦C for 8 d
in dark conditions. After 8 d, the plates were sprayed with 75% ethanol to wash away conidia and
expose sclerotia. The sclerotia produced on each plate were then counted.

4.5. AF extraction and Analysis

AF extraction was carried out from A. flavus liquid cultures in YES, PDB, and GMM supplemented
with 50 mM nitrogen sources, and analyzed using a previously described TLC (thin layer chromatography)
method [63].
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4.6. Stress Assay

PDA was supplemented with different stress agents, NaCl (0.5 M) and KCl (0.5 M) for osmotic stress,
H2O2 (3 mM) for oxidative stress, Congo Red (CR, 0.3 mg/mL), calcofluor white (CFW, 0.1 mg/mL) and
SDS (0.1 mg/mL) for cell wall stress. 106 conidia of A. flavus was point-inoculated onto the various media
and incubated at 37 ◦C for 4 d in dark condition. Each strain had three repeats for every type of stress,
and the experiments were repeated at least thrice [58].

4.7. Pathogenicity Assay

Peanut seeds were used to analyze the pathogenicity of the A. flavus strains by previously described
methods [4,64,65]. The amount of conidia and aflatoxin production were analyzed using the same
methods described above.

4.8. Subcellular Localization

The localization strain AreA::RFP, in which areA was tagged with RFP, was constructed using the
homologous recombination method. The RFP gene was tagged to the end of the areA gene, just before
its stop codon, so that RFP would be expressed alongside areA. A vector containing the areA coding
region, RFP, pyrG, and the 3′ flanking sequence of areA was constructed and transformed into SRRC1709
protoplasts. The fragments were amplified using the following primer pairs: AR-F/AR-R, RFP-F/RFP-R,
pyrG-F/pyrG-R, and areA-BF/areA-BR for areA coding region, RFP, pyrG, and the 3′ flanking sequence of
areA, respectively. The AreA::RFP strain was cultured in 1.5 mL EP tubes containing 500 µL GMM,
supplemented with different nitrogen sources, 50 mM (Gln, Ala, Pro, and NH4), at 37 ◦C for 16 h,
in a shaker. The medium was discarded from the tubes, and hyphae were crushed and washed with
phosphate buffer saline (PBS) at least 3 times. Then, 1 mg/mL 4,6-diamidino-2-phenylindole (DAPI)
was added to the tubes now containing PBS, and incubated on ice for 15 min, away from light. Hyphae
were picked onto glass slides and viewed under a confocal microscope.

4.9. Quantitative Reverse Transcription Polymerase Chain Reaction

Mycelia were harvested at 72 h post-inoculation on YES medium from all strains. Total RNA
was extracted using TRIzol reagent (Biomarker Technologies, Beijing, China), and the first strand
cDNA was synthesized using TransScript® One-Step gDNA Removal and cDNA Synthesis SuperMix
(Transgen Biotech, Beijing, China). qRT-PCR was performed using the Pikoreal 96 Real-time PCR
System (ThermoFisher Scientific, Waltham, MA, USA), with Pikoreal™ 2.2 software (ThermoFisher
Scientific, Waltham, MA, USA) and SYBR Green supermix (Takara, Beijing, China). The qRT-PCR
conditions were as follows: 95 ◦C for 7 min, 40 cycles of 95 ◦C for 5 s, and 60 ◦C for 30 s. The 2−∆∆CT

method was used to calculate relative expression of transcripts [66]. The Ct values for actin and areA
were obtained from all A. flavus strains, with WT as the control. The Ct values of actin obtained
from the A. flavus strains were then subtracted from the Ct values of areA in the respective strains.
The value of ∆∆CT was calculated from the resulting differences, and 2−∆∆CT was then used to obtain
the expression fold change. Actin was used as an internal control for the normalization of the expression
data. All qRT-PCR primers were listed in Table 2.

4.10. Statistical Analysis

Data are presented as the mean ± standard deviation (SD) of three biological replicate samples.
Statistical and significance analysis were carried out using GraphPad Prism 5, and significance was
recognized if p-values were <0.05. All results from the assays were differentiated by comparing the
mutant strains (∆areA and OE::areA) to the wild-type strain (WT) using one-way analysis of variance.
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