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Abstract: Due to its divergent chemical composition and good nutritional properties, pollen is not
only important as a potential food supplement but also as a good substrate for the development of
different microorganisms. Among such microorganisms, toxigenic fungi are extremely dangerous as
they can synthesize mycotoxins as a part of their metabolic pathways. Furthermore, favorable
conditions that enable the synthesis of mycotoxins (adequate temperature, relative humidity,
pH, and aw values) are found frequently during pollen collection and/or production process.
Internationally, several different mycotoxins have been identified in pollen samples, with a noted
predominance of aflatoxins, ochratoxins, fumonisins, zearalenone, deoxynivalenol, and T-2 toxin.
Mycotoxins are, generally speaking, extremely harmful for humans and other mammals. Current EU
legislation contains guidelines on the permissible content of this group of compounds, but without
information pertaining to the content of mycotoxins in pollen. Currently only aflatoxins have been
researched and discussed in the literature in regard to proposed limits. Therefore, the aim of this
review is to give information about the presence of different mycotoxins in pollen samples collected
all around the world, to propose possible aflatoxin contamination pathways, and to emphasize the
importance of a regular mycotoxicological analysis of pollen. Furthermore, a suggestion is made
regarding the legal regulation of pollen as a food supplement and the proposed tolerable limits for
other mycotoxins.

Keywords: pollen; fungi; mycotoxins; aflatoxins; ochratoxins; fumonisins; T-2 toxin; zearalenone;
deoxynivalenol

Key Contribution: This review gives an overview of scientific data about pollen contamination
with different mycotoxins and mycotoxin producing fungi. Also; importance of standard
mycotoxicological pollen analysis is emphasized. Inclusion of pollen in the legal regulation;
as potential food supplement; is suggested.

1. Introduction

Pollen grain, as a male gametophyte of flowering plants, is produced and released from
anthers during pollination [1]. Two of the most important pollinators are insects (in the case of
entomophilous plants it is, above all, the honey bee (Apis mellifera L.)) and, in the case of anemophilous
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plants, wind. Pollen is prime food for bees due to its amazing diversity of nutritionally important
constituents-proteins, lipids, carbohydrates, vitamins, and minerals [2,3]. For the same reasons, floral
or bee-collected pollen is potentially a good food supplement for human nutrition [4–8]. Because of
great its sensitivity, pollen grain contains a significant quantity of secondary plant metabolites, as part
of the plant’s defense mechanism, such as different phenolic compounds [9–16] or carotenoids [17,18]
and possesses substantial antioxidant properties, which is important for its application as a food
supplement [19,20]. Besides the nutritionally important and desirable components, pollen can contain
some contaminants such as toxic elements [2,21–23]. Due to optimal water (moisture) content,
water activity (aw), and pH-value, pollen often presents an ideal medium for the development of
different microorganisms—bacteria, mold, and yeast. As a result of the presence of mold and yeast,
the production of mycotoxins can occur. Mycotoxins are secondary metabolites of different fungi
species which are toxic to vertebrates and can lead to some disorders and diseases, or, at worst, death
in humans and other animals [24]. The scientific “history” of mycotoxins started in 1962 during a great
veterinary crisis when about 100,000 turkeys died in England due to being fed with contaminated
peanuts that contained secondary metabolites of Aspergillus flavus [24]. The occurrence of mycotoxins
in different types of feed and food has been recorded [25–31] and it was found to be strongly dependent
on several factors such as climatic conditions (including geographical position of growing region,
temperature, and relative humidity) before, during, or after feed/food production [32]. The European
Commission (EC Commission Regulation No 1881/2006) sets maximum tolerable levels for several
types of mycotoxins (aflatoxins B, G, and/or M, ochratoxin A (OTA), patulin, fumonisins B1 and B2,
deoxynivalenol, and zearalenone) in different types of foods (nuts, cereals, dried fruits, juices, milk,
etc.) [33] but without information pertaining to bee products such as honey, pollen, or bee bread.

The aim of this review is to make a cross-check of current data about contamination of pollen
with different types of mycotoxins as well as mycotoxin producing fungi. Also, the effort to emphasize
the importance of mycotoxin estimation of pollen samples as obligatory part of their microbiological
analysis will be made.

2. Mycotoxins in Pollen

More than a hundred mycotoxins are known, and most of them are produced by
some of the species belonging to one of three fungi genera: Aspergillus, Penicillium
and/or Fusarium [34]. According to the available literature [35–50] the presence of
the following mycotoxins in pollen has been investigated or proved with appropriate
analytical methods and analysis: Aflatoxins (AFs), ochratoxins (OTs), fumonisins (FBs),
zearalenone (ZEN), deoxynivalenol (DON), and its acetoxy derivative, T-2 toxin (T-2), HT-2
toxin, fusarenon-X, diacetoxyscirpenol, nivalenol, neosolaniol, roridin A, verrucarrin A,
α-β-dehydrocurvularin, phomalactone,6-(1-propenyl)-3,4,5,6-tetrahydro-5-hydroxy-4H-pyran-2-one,
5-[1-(1hydroxibut-2-enyl)]-dihydrofuran-2-one and 5-[1-(1-hydroxibut-2-enyl)]-furan-2-one.

2.1. Aflatoxins

Aflatoxins are the product of the metabolism of different fungi species which belong to Aspergillus
genus with A. flavus and A. parasiticus strains as the main producers [24]. They can be synthetized in
fungi’s spores and mycelium or secreted as exotoxins [25]. The most toxic and dangerous aflatoxins are
aflatoxin B1 and B2 (Figure 1) [34]. Both aflatoxin B1 and B2 are carcinogenic for humans and animals,
and are listed in Group 1 of carcinogenic substances according to International Agency for Research on
Cancer (IARC) [51]. The liver is the organ that suffers most from the effects of aflatoxins [52]. Ingestion
of these toxins can lead to aflatoxicosis, as an acute form of poisoning, or, in the case of long-term
exposure, to the development of liver cancer [52]. Hydroxylated AFB-forms presented in milk are
aflatoxin M1 and M2 [24] which are possibly carcinogenic for humans (IARC Group 2A of carcinogenic
substances) [34,51]. Furthermore, two other forms of AF exist: Aflatoxin G1 and G2 (Figure 1).
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2.1.1. Contamination of Pollen with Aflatoxins—Possible Ways

Pollen often presents a suitable substrate for the proliferation of various microorganisms due to
its favorable moisture content, water activity (aw), and pH-value. External conditions such as relative
humidity and temperature, different stages of pollen production, and storage conditions have been
shown to lead to microbiological contamination of pollen [35]. According to data found in the literature,
pH-value ranging between 4.0 and 6.5 have been shown to be suitable for the development of bacteria,
mold, and yeast while the minimal aw-values sufficient for the growth of Aspergillus and Penicillium spp.
have been shown to be 0.71 to 0.96 [53] i.e., 0.55 in the case of pollen [54]. Microbiological contamination
is strongly pH and temperature dependent and is also conditioned by the type of microorganism [53].
If proper conditions have been achieved in any phase of pollen production, the growth of microbes will
occur which can cause aflatoxin production and the contamination of pollen. In addition to production
process and human hygiene practices, which are the most important sources of aflatoxin contamination,
sometimes microbe growth can be triggered by infected flowering plants [25,48]. Namely, during the
flowering and the pollination process, Aspergillus spp. spores can germinate on female flower parts.
Following this, the toxigenic fungal spores placed in the pollen tubes will grow and further infect the
egg-cells [25]. If bees visit these flowers, the contaminated pollen grains will be transferred into the
hives. Since there is intensive contact between bees when in the hive (due to highly organized bee
societies) their “home” is the third possible source of aflatoxin pollen contamination [48]. As aflatoxins
show detrimental effects on bee health, the incidence of these compounds in hives is undesirable. It is
for this reason that the occurrence and production of propolis in hives is an effective way for bees
to deal with AFs toxicity [55,56] which could indicate that this source of pollen contamination with
aflatoxins is at least probable. In the past, aflatoxin occurrence in feed and food was a characteristic
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of tropic or sub-tropic regions due to favorable climatic conditions. Recently, with climatic changes,
which extensively influences weather conditions in temperate areas (such as the majority of Europe),
the presence of aflatoxins in these areas is becoming more frequent. The detection of aflatoxins in
samples of pollen from the most diverse parts of the world (Table 1) is in accordance with this fact
and is becoming a growing problem. Interestingly, in our previous investigation [48] the majority of
examined pollen samples were sterile but all were contaminated with AFB1. This situation confirms
three hypotheses:

- There are different ways of pollen contamination with aflatoxin(s).
- These toxins remain in samples with or without presence of appropriate fungi.
- It is extremely important to always perform mycotoxicological analysis together with

microbiological characterization of pollen.

Table 1. Toxigenic fungi and concentration level reported for aflatoxins in pollen samples from
different countries.

No. of Examined
Pollen Samples

Geographical
Origin Analytical Methods

Isolated
Mycotoxins
Producing

Fungi Species

AF Types and
Concentration Range(s) Reference

20 Spain ELISA test / Total AFs: below 5 µg/kg [35]

20 Spain
HPLC (with
fluorescent
detection)

/ AFB1 and AFB2: below limit
detection (BLD) [37]

87 + 3 Spain +
Argentina

HPLC (with
fluorescent
detection)

A. flavus
A. parasiticus

AFB1, AFB2, AFG1 and
AFG2: not determined. [38]

5 China Cyclic voltametry / AFB1: 0.00–0.52 µg/kg [39,42]

1
Epirus

(Western
Greece)

HPLC (with
fluorescent
detection)

not detected AFB1: not detected [40]

45 Slovakia ELISA test A. flavus,
A. parasiticus.

Total AFs: 13.60–16.20
µg/kg (in poppy pollen)
3.15–5.40 µg/kg (in rape

pollen) 1.20–3.40 µg/kg (in
sunflower pollen)

[41]

33 Serbia ELISA test A. flavus AFB1: 3.49–14.02 µg/kg [44]

20 China LC-MS/MS /
AFB1, AFB2, AFG1 and

AFG2: below limit detection
(BLD)

[45]

27 Brazil Qualitative analysis A. flavus AFB1 and AFB2:
not determined [47]

26 Serbia ELISA test A. flavus AFB1:
3.15–17.32 µg/kg [48]

30 Egypt Thin-layer
chromatography A. flavus AFB1 AFB2, AFG1 and

AFG2 were not determined. [49]

9 Portugal ELISA test Not detected Not detected AFB1 [50]

ELISA—enzyme linked immunosorbent assays; AFs—aflatoxins; AFB1—aflatoxin B1; AFB2—aflatoxin B2;
AFG1—aflatoxin G1; AFG2—aflatoxin G2.

2.1.2. Quantification of Aflatoxins in Pollen Samples

Results of different studies about the determination of aflatoxin content in pollen samples with
diverse palynological (botanical) and geographical origins are given in Table 1.

2.2. Ochratoxins

Ochratoxins (OTs) are a group of chemical compounds (Figure 2) derived from shikimic
acid metabolic pathway with ochratoxin A (OTA) as a major food contaminant [57]. The main
OTs-producers are different Aspergillus species with a special emphasis on Aspergillus niger strains



Toxins 2019, 11, 64 5 of 20

since they are industrially important due to their applications for enzyme and citric acid production.
Furthermore, one species (P. verrucosum) belonging to Penicillium genus can be the source of
ochratoxins [24]. OTA belongs to the IARC 2B group which means that it is a possible carcinogen for
humans [51]. The kidneys are the most vulnerable organs effected by OTA. OTA has been noted as
having a strong influence on the endemic disease ‘Balkan nephropathy’, as well as porcine nephropathy,
which has been documented in several Scandinavian countries [24].
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Ochratoxins in Pollen

Besides many types of food (nuts, meat products, barley, oats, rye, wheat, wine, dried fruits, coffee,
and coffee products) where the presence of OTA has been recorded [24,57], in some herbs, bottled
water [57], and pollen samples, this mycotoxin has also been observed. Xue et al. [45] conducted an
examination of 20 bee pollen samples from North China for the presence of OTA p by LC-MS/MS
analysis. The obtained results showed that none of the studied pollen samples were contaminated
with OTA. These results can be associated with the dry weather conditions during the collection
period. The same situation was observed in the case of 20 bee pollen samples that originated from
Spain [37]. However, HPLC analysis of 90 Spanish and Argentinian bee pollen samples in [38]
confirmed the presence of several Aspergillus (A. carbonarius, A. ochraceus and A. niger), and Penicillium
(P. verrucosum) species with the ability to produce OTA. Significant contamination of bee pollen was
determined in a case of Slovakian samples [41]. In total, 45 samples were divided in three groups
of 15 samples originating from poppy, rape, and sunflower plants. Determined OTA concentration
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ranges in poppy, rape, and sunflower pollen samples were 6.12 to 10.98 µg/kg, 3.24 to 9.87 µg/kg,
and 0.23 to 6.93 µg/kg, respectively. In Spain, by analyzing the toxigenic potential of A. ochraceus in
various substrates (bee pollen, maize, wheat, and rice) Medina et al. [36] found that OTA production
in bee pollen was statistically significantly higher than that found in the production of tested cereals,
regardless of the incubation time (7, 14, 21, 28 days). Likewise, positive correlations have been found
between the proportion of bee pollen added to the yeast extract sucrose broth inoculated with spores
of A. ochraceus and OTA level [36]. Based on all of the above, it can be assumed that bee pollen may
represent a significant risk factor for the occurrence of OTA in the food chain.

2.3. The Other Mycotoxins Examined in Pollen

2.3.1. Fumonisins

Fumonisins (FBs) are a group of mycotoxins predominantly connected with maize (grown as
endophyte in both vegetative or reproductive tissues) and maize products but can be found in many
cereals and products made from these plants [24,58]. Although maize is an anemophilic plant due to
its high pollen production [7] it is not a rare that bees collect its pollen during the pollen collection
season [4]. In that sense, it is possible to find pollen samples contaminated with FBs. The first
report about FB food contamination dates back to 1988. The main representative of this mycotoxin
group is fumonisin B1 (FB1) [24,58]. It is sorted in IARC 2B group of carcinogenic substances [51].
Moreover, fumonisins B2, B3, and B4 also exist (Figure 3) [57]. Fungi belonging to Fusarium genus are
the most important FBs producers, especially two species: F. proliferatum and F. verticillioides as well as
A. alternata from Alternaria spp. It is important to point out that the presence of these microbes does
not mean that FBs contamination is guaranteed [24]. In an investigation by Kačaniová et al. [41] the
presence of both, F. proliferatum and F. verticillioides was confirmed in thirty i.e., forty-five bee pollen
samples, respectively but FBs were quantified only in the samples originating from sunflower (fifteen
samples). This observation confirms the previously mentioned hypothesis, that despite the presence of
Fusarium spp. in some material, appropriate weather conditions or insect damage are necessary for
FBs production [24]. The range of FBs concentrations in these samples is given in Table 2.

Table 2. Concentration level reported for mycotoxins other than aflatoxins in pollen samples from
different countries.

No. of
Contaminated/

Examined
Pollen Samples

Geographical
Origin

Analytical
Methods

Isolated
Mycotoxin

Producing Fungi
Specie(s)

Mycotoxin Types and
Concentration Range(s) Reference

15/45 were
contaminated Slovakia ELISA test

F. proliferatum,
A. alternata

Keissl.
Total FBs: 6.30–12.60 µg/kg [41]

45 Slovakia ELISA test F. graminearum

ZEN: 311.00–361.30 µg/kg (in
poppy pollen) 137.10–181.60

µg/kg (in rape pollen)
115.60–147.40 µg/kg (in

sunflower pollen)

[41]

45 Slovakia ELISA test

F. graminearum,
F. oxysporum,

F. proliferatum,
F. sporotrichioides,

F. verticillioides

T-2 toxin: 113.90–299.60 µg/kg (in
poppy pollen) 197.10-265.70

µg/kg (in rape pollen)
173.60–364.90 µg/kg (in

sunflower pollen)

[41]

45 Slovakia ELISA test

F. graminearum,
F. oxysporum,

F. proliferatum,
F. sporotrichioides,

F. verticillioides

DON: 183.10–273.90 µg/kg (in
poppy pollen) 189.60–244.70

µg/kg (in rape pollen)
133.30–203.50 µg/kg (in

sunflower pollen)

[41]

2/15 Spain GC/MS / neosolaniol: 22 i.e., 30 µg/kg
nivalenol: 1 µg/kg [43]

ELISA—enzyme linked immunosorbent assays; FBs—fumonisins; ZEN—zearalenone; DON—deoxynivalenol.
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2.3.2. Zearalenone

Zearalenone (ZEN) (Figure 4) is mycoestrogen with limited toxicity that is produced by several
Fusarium species: F. graminearum, F. culmorum, F. crookwellense, and F. equiseti. It is regularly present
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in crops and crop products [24]. According to IARC this macrocyclic lactone is classified in group 3
which means that it is not classifiable as to its carcinogenicity to humans [51]. In the case of pollen,
the significant contamination with ZEN was recorded in Slovakian bee samples [41] (Table 2).
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2.3.3. Trichothecenes Group of Mycotoxins

In a study from Slovakia [41], the authors also reported the contamination of all examined
bee pollen samples with T-2 toxin and deoxynivalenol (Figure 4). Both toxins belong to
trichothecene compounds, the sesquiterpenoid metabolites obtained after microbiological activity
of several fungi from the following genera: Fusarium (primary source), Trichoderma, Myrothecium,
Phomopsis, etc., [24]. Together with ZEN, they were the most dominant quantified mycotoxins
in the pollen samples. Additionally, the presence of DON and T-2 toxin was checked in fifteen
pollen samples from Spain, but the content of these mycotoxins was below limit detection
of applied GC/MS method [43]. In the same study, the authors examined the presence
of several other Fusarium spp. producing mycotoxins: 3-acetyl-deoxynivalenol, fusarenon-X,
diacetoxiscirpenol, nivalenol, neosolaniol, and HT-2 toxin. All the above-mentioned compounds
belong to trichothecene terpenoid’s derivatives. It was determined that some of the samples
were contaminated with neosolaniol and nivalenol (Table 2), while all other examined toxins
were below limit detection. A report made by Cirigiliano et al. [46] should also be mentioned
as their study was the first to detect seven specific mycotoxins (roridin A, verrucarrin A,
α-β-dehydrocurvularin, phomalactone,6-(1-propenyl)-3-,4,5,6-tetrahydro-5-hydroxy-4H-pirane-2-one,
5-[1-(1-hydroxibut-2-enyl)]-dihydrofuran-2-one and 5-[1-(1-hydroxibut-2-enyl)]-furan-2-one) in
beehives from Argentina with pronounced antifungal effect. Roridin A, verrucarin A, and
α-β-dehydrocurvularin were isolated from strains of fungi Myrothecium verrucaria while other
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mycotoxins were obtained as result of Nigrospora sphaerica strains activity. Their structures were
confirmed by 1D and 2D-NMR spectroscopy.

3. Mycotoxin Producing Fungi in Pollen

The microbiological quality of pollen is equally important as its chemical composition due to its
safety use. Although the examination of mycotoxins in pollen began mostly in the last decade, the
determination of different microbes (bacteria, mold, and yeast) present in pollen samples started much
earlier—at the end of 1970s with studies by Gilliam [59,60]. Considering that a long period of time
usually passes between collection of pollen samples and its application as food supplement (or as
medicament), there is a great chance for the development of some toxigenic fungi [41]. Their presence
may indicate mycotoxin production in pollen with or without their quantification. In that sense,
this review also gives information on pollen investigations concerning the presence of mycotoxin
producing fungi [41] made without further mycotoxicological analysis. The results of a cross-check of
the available literature data, with appropriate comments and information, are given in Table 3.
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Table 3. Toxigenic fungi and yeast reported in pollen samples from different countries.

No. of Examined
Pollen Samples Geographical Origin Detected

Microbial Class
Microbial Species or/and Total

Microbial Microbial Count Observations Reference

Unknown number of
samples of floral and

bee-collected
almond pollen

unknown Mold

No. of fungal isolates: Mucor spp. was the dominant mold in floral
pollen but not identified in bee-collected

pollen. Aureobasidium pullulans,
P. corylophilum, P. crustosum and

Rhizopus nigricans were identified only in
bee-collected pollen.

[61]
Alternaria spp. 6

Cladosporium spp. 5

Penicillium spp. 5

Aspergillus spp. 3

Mucor spp. 19

90 samples of
bee pollen

Spain (87 samples)
Argentina (3 samples)

Mold Aspergillus section Nigri 1.4 × 10–2.3 × 102 cfu/g

The results show the occurrence of different
mold species in pollen samples. Penicillium,
Alternaria, and Aspergillus spp. were present

in 90%, 86.6%, and 80% of samples,
respectively. Predominant Aspergillus

species was A. niger. The species of the
genus Fusarium were isolated in 53.3%.

[38]

A.flavus +A. parasiticus 1.7 × 10–2.5 × 10 cfu/g

Other Aspergillus spp. 2 × 10 cfu/g

P. verrucosum 1.4 × 102 cfu/g

Other Penicillium spp. 1.3 × 102–4.3 × 103 cfu/g

Fusarium spp. 16–9.5 × 101 cfu/g

Cladosporium spp. 6 × 10–1.4 × 103 cfu/g

Alternaria spp. 6 × 10–5.2 × 102 cfu/g

Rhizopus spp. 2 × 10–9 × 10 cfu/g

Mucor spp. 8–2.2 × 102 cfu/g

Botrytis spp. 8–3 × 10 cfu/g

Epicoccum spp. 5–10 cfu/g

Yeast Not specified 3.6 × 102–7.3 × 103 cfu/g

42 samples of
dehydrated
bee pollen

Brazil Mold/Yeast Not specified Total mold and yeast count:
102–1.3 × 104 cfu/g

About 12% of pollen samples were
contaminated with mold and yeast above

the limit (1×104) for a total mold and yeast
proposed by Brazilian legislation.

[62]

30 samples of
bee pollen Slovakia Microscopic

fungi (mold)

Alternaria spp.
Cladosporium spp.
Penicillium spp.
Fusarium spp.

Aspergillus spp. (A. flavus, A. ochraceus)
Mucor spp.

Trichoderma spp.
Acremonium spp.

Scopulariopsis spp.
Rhizopus spp.
Botrytis spp.

Total mold and yeast count:
1.1 × 102–4.57 × 105 cfu/g

The dominant fungi isolated from pollen
samples were colonies of A. alternata,

Cladosporium cladosporoides,
and Penicillium spp. Also, the presence of

well-known mycotoxicogenic species such
as A. flavus and A. ochraceus were detected.

[63]



Toxins 2019, 11, 64 11 of 20

Table 3. Cont.

No. of Examined
Pollen Samples Geographical Origin Detected

Microbial Class
Microbial Species or/and Total

Microbial Microbial Count Observations Reference

19 samples of
bee pollen Mexico Fungi (mold)

A. flavus Incidence of mold genus (%):

Fungi contamination was generally low.
The highest contamination was in three

samples handled without packages.
[64]

Alternaria spp. 3.6%

Penicillium spp. 2.9%

Fusarium spp. 2.9%

Aspergillus spp. 3.6%

Mucor spp. 3.1%

Rhizopus spp. 0.7%

8 samples of
bee pollen Slovakia Mold

Alternaria spp.
Cladosporium spp.
Penicillium spp.
Aspergillus spp.

Mucor spp.
Aureobasidium spp.

Humicola spp.
Monodictys spp.

Paecilomyces spp.
Rhizopus spp.

Mortierella spp.
Trichosporiella spp.
Harpografium spp.

Mortierella spp.

Total mold and yeast count:
107–4688 cfu/g

The results show that in all analyzed
samples of pollen 21 fungal species of
13 genera of microscopic fungi were

detected. The dominant identified species,
over 62% of the isolates belonged to
following genera: Mucor, Rhizopus,

Aspergillus, Alternaria, and Paecilomyces.

[65]

28 samples (fresh and
dried bee pollen) Cuba Mold/Yeast Not specified Total mold and yeast count:

104–1.5 × 105 cfu/g

All samples had quantified number of mold
and yeast above proposed limits (104 cfu/g
for the fresh and 102 cfu/g for dried pollen).

Nevertheless, in the dry pollen, a smaller
number of high contaminated samples were

recorded. Drying could not be used as
reliable method for obtaining pollen with

acceptable microbiological quality.

[66]

8 samples of
commercial
bee pollen

Portugal (4 samples)
Spain (3 samples)
Unknown origin

(1 sample)

Mold
Yeast

Not specified
Individually identified yeast

Total mold and yeast count:
<10 to 9.4 × 102 cfu/g

All samples were contaminated with yeast
and mold. Further, yeast species were

identified, and results indicated the
presence of five different genus of yeast

which can influence the risk of food-borne
illness and spoilage or can serve as an

indicator of a lack of hygiene standards.

[67]
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Table 3. Cont.

No. of Examined
Pollen Samples Geographical Origin Detected

Microbial Class
Microbial Species or/and Total

Microbial Microbial Count Observations Reference

Unknown Portugal Mold/Yeast Not specified
Total mold and yeast count:

<104 cfu/g

Generally, yeast and mold were identified in
60% of all examined samples. pH and aw
values had a strong impact on the total

microbe number in pollen.

[54]

22 samples of organic
bee pollen Portugal Mold/Yeast Not specified Total mold and yeast count:

<10–3560 cfu/g

In all samples of organic bee pollen,
the presence of mold and yeast was

detected, but their individual species were
not identified.

[68]

3 samples of pollen Algeria Mold/Yeast Not specified Total mold and yeast count:
5 × 104–4 × 105 cfu/g / [69]

33 samples of
bee pollen Serbia Mold

Alternaria spp.
Mucor spp.

Rhizopus spp.
Cladosporium spp.

Epicoccum spp.
Acremonium spp.

Total mold count:
1 × 103–1 × 105 cfu/g See Table 1. [44]

27 samples of dried
bee pollen Brazil Mold

Total mold count:
1 × 102–5 × 102 cfu/g

Incidence of mold genus (%):

Total mold count depends on
growing media. [47]

Aspergillus spp. (A. flavus; A. fumigatus;
A. versicolor; A. ochraceus;

A. carbonarius; A. terreus; A. oryzae)
85%

Cladosporium spp. 63%

Penicillium spp. (P. citrinum;
P. citreonigrum; P. glabrum; P. oxalicum) 41%

Alternaria spp. 19%

Wallemia spp. and Eurotium spp. 11%

Mucor spp. 7%

Curvularia spp., Paecilomyces spp. and
Fusarium spp. (F. camptoceras) 4%

45 samples of
dehydrated
bee pollen

Brazil Mold
Yeast

Not specified
Identified different species

Total mold and yeast count:
<10–7.67 × 103 cfu/g / [70]

21 samples of bee
pollen (Melipona bees) Brazil Mold/Yeast Not specified / All samples were sterile without presence of

any mold or yeast species. [71]
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Table 3. Cont.

No. of Examined
Pollen Samples Geographical Origin Detected

Microbial Class
Microbial Species or/and Total

Microbial Microbial Count Observations Reference

40 samples of
bee pollen Italy Mold

Cladosporium spp.
Alternaria spp.
Humicola spp.

Mucoraceae
Acremonium spp.
Penicillium spp.

(P. chrysogenum; P. brevicompacticum)
Aspergillus spp.

(A. flavus; A. nidulans; A.miger;
A. terreus)

Total mold count: 4–568
cfu/g

In all pollen samples at least one fungal
isolate was detected. Cladosporium spp. was

the most frequently detected mold.
Aspergillus spp. and Penicillium spp., as a
potentially mycotoxicogenic mold, were

also identified in 8 i.e., 22 pollen samples.

[72]

Dehydrated (electric
oven, EO) or

lyophilized (L) bee
pollen samples

Brazil Mold/Yeast Not specified
Total mold and yeast count:

99–242 cfu/g (EO)
16–935 cfu/g (L)

Number of quantified mold and yeast
depended on time (April or September)

of collection.
[73]

26 samples of
bee pollen Serbia Mold

Total mold count:

See Table 1 [48]
Alternaria spp. 1 × 103 cfu/g

Mucor spp. 1 × 103 cfu/g

Rhizopus spp. 1 × 103 cfu/g

Trichoderma spp. 1 × 104 cfu/g

1 sample of bee pollen Not known Mold/Yeast Not specified Total mold and yeast count:
>2l cfu/g

Presence of yeast and mold can be
responsible for the potential presence of

toxins in the samples.
[74]

18 samples of
commercial
bee pollen

Argentina Mold/Yeast Not specified Total mold and yeast count:
<102 cfu/g

The total fungi number is specified for 28%
of the samples. [75]

62 samples of
dehydrated
bee pollen

Brazil Mold/Yeast Not specified Total mold and yeast count:
1.9 × 102–7.62 × 102 cfu/g

The microbial contamination is dependent
on geographical origin of samples. [76]

8 samples of
commercial
bee pollen

Algeria Mold/Yeast Not specified Total mold and yeast count:
104–2.8 × 105 cfu/g / [77]
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Table 3. Cont.

No. of Examined
Pollen Samples Geographical Origin Detected

Microbial Class
Microbial Species or/and Total

Microbial Microbial Count Observations Reference

32 (13 fresh (F) and 19
dried (D) samples of

bee pollen)
Bulgaria Mold

Identified mold:
Aspergillus spp.
Fusarium spp.

Penicillium spp. (P. brevicompactum)
Alternaria spp.

Cladosporium spp.
Other species

Total mold count:
5.6 × 102 –3.7 × 104 cfu/g (F)

150–1.1 × 104 cfu/g (D)

The results show that the values for fungal
colony count were significantly lower in the

dried pollen samples. 136 fungal isolates
were identified. Among detected isolates,
genus Penicillium was dominant while the

genus Fusarium was the least fungal
contaminant. Dominant species isolated

from 14 different samples was
P. brevicompactum.

[78]

19 samples of stored
pollen of five stingless

bee species
Brazil Mold/Yeast Not specified

Total mold and yeast count:
4.2 × 101 cfu/g
(1 sample only)

The results show that only for the stored
pollen of the stingless bee specie

Frieseomellite varies it was possible to
enumerate mold and yeast.

[79]

bee pollen samples Colombia Mold/Yeast Not specified Total mold and yeast count:
3 × 102–2 × 105 cfu/g

Number of quantified microbes is strongly
dependent on applied temperature for

drying of samples.
[80]
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4. Legislations of Mycotoxins Level in Food and Pollen

In order to prevent undesirable consequences and to protect consumers health, the European
Commission, as well as some other international agencies, have proposed maximum permissible
concentrations (MPC) for several mycotoxins in different types of food [33,81]. Maximum permissible
concentrations vary due to differences in food origin and greater/less possibility of contamination
with mycotoxins, as well as because of smaller or larger intake in meals. For instance, the MPC for
AFB1 alters from 0 to 8 µg/kg [33]. Zero tolerance is established for milk and dairy products due to
regular daily consumption while the maximal value has been proposed for groundnut-based food.
Furthermore, for sensitive groups (such as infants and children), special lower limits have been usually
established. The proposed limits are subject to corrections as a result of the development of new, more
precise, and sensitive analytical methods for determining the content of mycotoxins [81]. In Table 4
current EU MPC values for some food types are given.

Table 4. Examples for the current maximum permissible concentrations (MPC) for some mycotoxins in
different types of food/food supplements.

Food/Food Supplements Mycotoxin(s) MPC Value(s) Reference

Groundnuts used as components for
food production

AFB1 8 µg/kg
[33]

Sum of AFB1, AFB2,
AFG1 and AFG2

15 µg/kg

Groundnuts for direct human consumption
AFB1 2 µg/kg

[33]
Sum of AFB1, AFB2,

AFG1 and AFG2
4 µg/kg

Dried fruits used as components for
food production

AFB1 5 µg/kg
[33]

Sum of AFB1, AFB2,
AFG1 and AFG2

10 µg/kg

Dried fruits for direct human consumption
AFB1 2 µg/kg

[33]
Sum of AFB1, AFB2,

AFG1 and AFG2
4 µg/kg

Raw milk used for consumption and
dairy productions, infant formulae

and infant-milk

AFB1 0 µg/kg
[33]

Sum of AFB1, AFB2,
AFG1 and AFG2

0 µg/kg

Unprocessed cereals OTA 5 µg/kg [33]

Cereals based products OTA 3 µg/kg [33]

Instant coffee OTA 10 µg/kg [33]

Roasted coffee OTA 5 µg/kg [33]

The Scientific Committee of Food requested and obtained from the European Food Safety
Authority (EFSA) current data for Tolerable Weekly Intake (TWI) for OTA—0.12 µg/kg of body
weight (bw) [82]. Recently, EFSA published new information about the potential increase of maximum
allowable level (from 4 to 10 µg/kg) for total AFs in peanuts and processed products, requested by EU
Commission [83]. The CONTAM panel (EFSA Panel on Contaminants in the Food Chain) strongly
opposed this request due to the significant increase of cancer risk (factor value = 1.6–1.8). For other
mycotoxins proposed Tolerable Daily Intake (TDI) values are: 2 µg/kg bw for nivalenol, 0.25 µg/kg bw
for ZEN [84], 2 µg/kg (provisional maximum TDI) for FBs [85], 1 µg/kg bw for DON [86], 0.1 µg/kg
bw for the sum of T-2 and HT-2 toxins [87], 0.06 µg/kg for combined trichothecenes mycotoxins
group [33]. In these legislations, there is no information about proposed limits for mycotoxins in pollen.
In 2008 Campos et al. [2] proposed that in the case of AFB1 occurrence in pollen the MPC value should
be set at 2 µg/kg i.e., 4.2 µg/kg for total AFs. To the best of our knowledge, this is the only proposal
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which defines the level of some mycotoxins in pollen. Since this paper gives an overview about the
presence of different mycotoxins in pollen samples originating from various locations around the
world, it will be of great importance to define some tolerable levels for other fungi-produced toxins in
pollen, especially for OTA. Moreover, current values for AFB1 and AFs should be reconsidered and
checked due to an increasingly frequent aflatoxin contamination caused by climatic changes. Special
concerns exist due to mixed (cross) contamination of pollen samples as confirmed by the presented
data. Previously, several authors [32,88,89] confirmed that some combined mycotoxins have a more
distinct detrimental effect on human health. Furthermore, Manafi et al. [90] have shown that AFs and
T-2 toxin synergistically influenced the decrease of total serum protein and albumin levels in broiler
chickens as well as decreased antibody titers. It is therefore of the utmost importance to evaluate the
toxicological impact of mycotoxin combinations on animal and human health risks.

5. Conclusions and Future Perspectives

Pollen could be used as a food supplement which can be attributed to its appropriate chemical
composition. The microbiological quality of pollen is equally important as its nutritional characteristics.
The fungal contamination of different feed/food, including pollen will be more frequent as a result
of intensive climatic changes. The quality of pollen can be significantly influenced by the presence
of toxigenic fungi. Since it has been proved that the absence of microbial contamination in pollen
does not exclude the presence of mycotoxins, mycotoxicological analyses should also be included as
a regular control measure together with microbiological tests. Since aflatoxins and ochratoxins are
proven as carcinogenic substances, their presence in pollen is extremely undesirable. Therefore, it is
important to monitor mold and mycotoxin levels in feed/food in order to avoid adverse health effects.
The incorporation of pollen as a food supplement in current legislation will be useful. Proposed quality
parameters need to cover tolerable daily/weekly intake for different mycotoxins as well as their sum.
In order to obtain reliable and accurate recommendations for pollen quality control, further studies on
the toxicological impact of mycotoxin combinations should be conducted.
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