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Abstract: Citrullus colocynthis L. Schrader is an annual plant belonging to the Cucurbitaceae family,
widely distributed in the desert areas of the Mediterranean basin. Many pharmacological properties
(anti-inflammatory, anti-diabetic, analgesic, anti-epileptic) are ascribed to different organs of this
plant; extracts and derivatives of C. colocynthis are used in folk Berber medicine for the treatment
of numerous diseases—such as rheumatism arthritis, hypertension bronchitis, mastitis, and even
cancer. Clinical studies aimed at confirming the chemical and biological bases of pharmacological
activity assigned to many plant/herb extracts used in folk medicine often rely on results obtained
from laboratory preliminary tests. We investigated the biological activity of some C. colocynthis stem,
leaf, and root extracts on the mycotoxigenic and phytopathogenic fungus Aspergillus flavus, testing
a possible correlation between the inhibitory effect on aflatoxin biosynthesis, the phytochemical
composition of extracts, and their in vitro antioxidant capacities.

Keywords: antimycotoxigenic activity; Citrullus colocynthis; Aspergillus flavus; model system;
HPLC-MS/MS

1. Introduction

Oxidation is considered an underlying mechanism in the incidence of chronic diseases: Reactive
oxygen species (ROS) such as superoxide anions, hydroxyl radicals, and hydrogen peroxide are cytotoxic,
leading to tissue injuries. Asina “domino effect”, oxidative stress resulting from the imbalance between
the generation of reactive oxygen species and endogenous antioxidant systems induces inadvertent
enzyme activation and consequent oxidative damage to cellular systems [1]. It is widely reported
that cellular oxidative damage is responsible for numerous disorders, such as cardiovascular [2],
Alzheimer’s [3], and Parkinson’s disease [4]—as well as ulcerative colitis [5], atherosclerosis [6],
and cancer [7]. A key defense mechanism against radical mediated toxicity is represented by
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antioxidants, which protect cells from the damage caused by free radicals [8]. Consequently, during the
last thirty years, several antioxidant-based formulations for the prevention and treatment of complex
diseases have been developed [9-11]. Among these antioxidant formulations, a high number of
plant-derived drugs, widely used for ethnopharmaceutical preparations, have been applied as “natural”
principles included in modern medical applications [12,13]. Accordingly, interest in botanicals as
a source of bioactive compounds has increased worldwide, and the finding of new biologically
remarkable natural compounds affects not only the pharmaceutical field, but the nutraceutical and
cosmeceutical fields too [14-17]. Clinical studies aimed at confirming the scientific bases (chemical and
biological) of pharmacological activity of many plants used in folk medicine often rely on the results
obtained from preliminary laboratory tests. For example, the antioxidant properties of plant extracts are
typically evaluated through in vitro analyses, such as DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate)
and ABTS [2,2"-azinobis-(3-ethylbenzothiazoline-6-sulfonate)] assays [18], and to date, the number
of in vitro studies far exceeds the number of in vivo studies, remaining the most cost effective and
predominant type of research investigations performed. In fact, factors including costs, interspecific
differences that preclude the adequate predictive value of the experiments, feasibility of testing
procedures, and ethical concerns generally limit the utilization of animal models and human subjects
for this kind of research [19]. The possibility of using high-throughput small-scale in vivo or ex
vivo model systems to predict a possible antioxidant biological activity of plant extracts before their
medical application is therefore desirable. Eukaryotic microorganisms, though few, have sometimes
been selected for this purpose: For example, the yeast Saccharomyces cerevisiae has been employed to
determine the antioxidant activity of different berry juices, which reportedly contain high amounts of
phenolics [20].

Aspergillus flavus, a saprophytic plant pathogen, is the predominant species producing aflatoxins
(AFs). Among multiple events that contribute to aflatoxin production, those involving ROS
accumulation—such as during morphological and metabolic transitions—and the establishment of
an oxidative intracellular environment seem to possess a key role in triggering AF biosynthesis.
This correlation has been supported by the identification of at least one transcription factor,
which responds to the cellular oxidative stress by activating a series of enzymes responsible for
the scavenging of cytoplasmic ROS excess [21-23]. Conversely, many compounds with antioxidant
properties (such as ascorbate, eugenol, ethylene, methyl jasmonate, and o-lipoic acid) showed to exert
an inhibition/containment effect on AF biosynthesis [24-27], mainly through the stimulation of catalase,
superoxide dismutase, and glutathione peroxidase activity [28]. An inhibitory effect on AF biosynthetic
pathway and A. flavus growth has been recently reported for a wide number of botanicals and essential
oils [29-31]. Since the response of aflatoxin metabolism to redox balance alterations is well known,
as they are considered a sort of “defense molecule” synthesized to cope with an excess of ROS in the
late phase of growth [22,23], we proposed this airborne microorganism as a model system to screen the
antioxidant potential of plant extracts.

Here we analyzed the effect of organic extracts of Citrullus colocynthis L. Schrader, an annual plant
belonging to the Cucurbitaceae family which grows in arid and semi-arid regions, on AF biosynthesis
and A. flavus growth. Native to tropical Asia and Africa, C. colocynthis is is now widely distributed
in the desert areas of the Mediterranean basin (in Italy the only known population is located in
the Aeolian island of Vulcano). Many pharmacological properties (anti-inflammatory, anti-diabetic,
analgesic, anti-epileptic) are ascribed to different organs of this plant [32-35]: Extracts and derivatives
of C. colocynthis are used in folk Berber medicine for the treatment of numerous diseases; the root is
used for arthritic pain, breast inflammation, ophthalmia, and uterine pain; and the leaves are used for
treatment of cough, many tumors, and as a cholagogue [36]. Recently, antifungal and antibacterial
activities of organic extracts from leaves and seeds were reported [37-39]. However, despite various
studies on the medical use of C. colocynthis derivatives, information about its antimycotoxigenic
potential are still scarce. The aim of this work is to evaluate the antiaflatoxigenic effect of organic
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extracts of C. colocynthis stem, leaf, and root through the use of A. flavus as a model system, comparing
their effect on the basis of phytochemical composition.

2. Results and Discussion

2.1. Phytochemical Characterization of C. colocynthis Extracts

Several studies reported a high in vitro antioxidant potential of organic C. colocynthis extracts
obtained from various tissues, due to their polyphenolic composition [40,41]. The antioxidant capacity
of root, stem, and leaf extracts and phenolic content were then measured according to the DPPH
and Folin-Ciocalteu’s methods, respectively. As a general consideration, it should be noted that stem
and leaf extracts showed a wider range of antioxidant activity, depending on the extraction solvent,
than root extracts (Figure 1). The highest antioxidant capacity was determined in the methanol (MET)
leaf extract and ethyl acetate (EA) root extracts, followed by chloroform (CHL) and methanol root
extracts. On the contrary, MET stem extracts showed the lowest activity (Figure 1).
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Figure 1. DPPH scavenging activity of Citrullus colocynthis root, leaf, and stem extracts. Data are means
of three replicates + S.D. Same letters indicate absence of statistically significant differences (p < 0.05).

A detailed phytochemical characterization of the leaves, stems, and roots of C. colocynthis revealed
the presence of different classes of metabolites—such as coumarins, hydroxycinnamic acid derivatives,
flavan-3-ols glycosides, flavone glycosides, and tetracyclic triterpenes (Table 1)—as according to
previous investigations [42—44]. These compounds, which have been indicated as responsible for
antifungal activity against Aspergillus strains [38], were abundant in the analyzed extracts (Table 1).
Esculetin (1), p-coumaric acid derivatives (2, 5), orientin (3), vitexin (6), apigenin derivatives (4, 7,
8,9, 12,17), and epicatechingallate (18) were identified according to their MS fragmentation pattern
and absorption spectra (Table 1). The remaining identified peaks corresponded to different flavone
derivatives (10, 11), and cucurbitacin derivatives (13, 14, 15, 16) were elucidated by their molecular
weight obtained by MS analysis, their UV spectra, and by comparing experimental data with respective
literature data (Table 1) [45-47]. In particular, cucurbitacin derivatives and colocynthoside B did not
furnish any MS fragment as previously reported by Chawech et al. [44]. In order to exclude that these
compounds were artefacts due to solvent extraction, they were also compared with MS and UV spectra
of authentic standards of cucurbitacin E and I. Compound 19 (Table 1) was tentatively identified as
colocynthoside B on the basis of its molecular weight, its UV spectrum, and the comparison with
literature data [48]. Marked differences were observed among the tissues. However, in all three
extracts, the leaf contained the highest variety of phenolics, as well as the higher content of secondary
metabolite, except for compound 12 (Table 1), which was more abundant in the ethyl acetate extract
of the stem. Overall, our results showed that ethyl acetate was the most efficient solvent to extract
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phenolic constituents in all tissues, apart from orientin, coumaric flavone derivative, two apigenin
hexosides (compounds 7 and 17), epicatechin gallate, vitexin, and compound 5—which were more
concentrated in methanol extracts. On the contrary, chloroform was efficient to extract cucurbitacin I
derivatives (compounds 13, 14, 16) and colocynthoside B. The most abundant cucurbitacin derivative
(compound 13) resulted in extraction to the same extent as in ethylacetate and chloroform. The presence
of cucurbitacins is relevant to the bitterness and toxicity of the plant, but it also has some biological
effects—such as anti-inflammatory, purgative, and anti-cancer activities [49].

2.2. Antifungal and Anti-Aflatoxigenic Activity

The prediction of the biological activity of natural extracts may often be difficult due to the
variation in their chemical constituents, that in turn depend on the growth stages of the plants,
and/or their geographic origin [50]. On the other hand, screening plant crude extracts can simplify
the discovery of new and promising bioactives, and allows a further, more specific identification of
the chemical compounds responsible for the observed activity. We performed a preliminary assay
to evaluate the effect of the different C. colocynthis extracts on A. flavus growth, intended as daily
radial increase of fungal colonies diameter. Concentration of 500 pg/mL was tested for each extract.
As reported in Table 2, none of them resulted in a significant reduction of radial mycelium growth,
suggesting that the composition of extracts did not possess appreciable antimicrobial activity against
the fungus.

These preliminary results led to the exclusion of any antifungal or fungistatic potential of extracts
on the mycelium long-term growth. However, various studies have reported that several compounds,
both synthetic and natural, are effective in lowering AF production without apparently interfering
with the fungal development [51,52]. At present, these compounds are a promising tool for uncovering
the regulatory mechanisms triggering the mycotoxigenic metabolism, one of the main targets for
mycotoxin diffusion/contamination control strategies [53,54].

To assess and compare the efficacy of different organic extracts of C. colocynthis tissues on total
AF biosynthesis, conidia of A. flavus were inoculated in clarified coconut medium (CCM) and the
fluorescence-based microplate procedure was used [27]. Leaf, stem, and root organic extracts were
tested at increasing concentrations (data not shown); the lower and the higher concentrations (100 and
500 pg/mL, respectively) are reported in Figure 2. Chloroform (CHL), ethyl acetate (EA), and methanol
(MET) extracts were administrated to aflatoxigenic A. flavus cultures. After six days of incubation,
aflatoxin accumulation showed a dose-dependent alteration in response to extract exposure: The lowest
dose (100 pg/mL) was less effective in limiting the amount of toxins in the culture, while the effect
increased when extracts were added at the concentration of 500 ug/mL. Among tissues, leaf and root
extracts had the highest levels of aflatoxin inhibition (Figure 2B,C), exceeding 80% inhibition in both
CHL extracts. In addition, root extracts were able to lower the aflatoxin concentration by up to 12% in
the most effective (CHL), and around 45% in the case of the least effective (MET; Figure 2B).
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Table 1. UPLC-DAD-MS/MS characterization and quantification (umol g~! D.W.) of main secondary metabolites present in the different extracts of C. colocynthis. Data
are means + S.D. (n = 3). * nd = not detectable.

Ethyl Acetate Methanol Chloroform
n° Name MW [Mr; /:H_’ MS/MS, m/z A;‘;:x’ Leaf Stem Root Leaf Stem Root Leaf Stem Root
1 Esculetin 178 177 133,105, 89 330 40.6 +4.91 10.5+1.08 17.7 £2.03 n.d. n.d. nd. n.d. n.d. nd.
2 p-Coumaric acid 164 163 147,119 225,310 20.7 £1.24 6.55 + 0.45 1.67 £ 0.09 1.59 +0.12 1.75+£0.17 n.d. n.d. n.d. n.d.
3 Orientin 448 447 327,357,285 350, 269 n.d. n.d. 0.28 +0.01 140.3 +20.87 7.30 £0.97 1.20 +0.18 n.d. n.d. n.d.
4 Apigenin-hexoside 432 431 311, 269,211,159 267,337 1.59 £ 0.23 0.41 +0.05 n.d. n.d. n.d. n.d. n.d. n.d. n.d.
5 trans E_'S?;ZI:EC acid 280 279 147,119 225,310  079£009 189031 nd. 2837+021 544+ 0,61 nd. nd. nd. nd.
6 Vitexin 432 431 311, 341, 269 267,337 3.86 + 0.04 n.d. n.d. 7.69 +0.68 4.66 + 0.59 n.d. n.d. n.d. n.d.
7 _D_glucopyrﬁfg‘:’;ﬂgjﬁpiommnog o 564 563 311, 269 267,337 59.6+073 1310+ 1.44 nd. 529.1+30.17 1085+ 11.39 nd. nd. nd. nd.
8 Apigenin derivative (isomer 1) 548 547 311 267,337 13.5+1.70 3.16 £0.29 0.05 £ 0.00 4.6 +0.42 0.31 +0.00 0.7 nd. n.d. nd.
9 Apigenin derivative (isomer 2) 548 547 311 267,337 47.7 £3.99 143 +1.74 0.28 £ 0.01 13.6+0.15 8.09 = 0.06 1.77 n.d. n.d. n.d.
10 caffeoyl malic Flavone 578 577 179 340, 270 3.08 +0.29 1.19 £ 0.02 n.d. n.d. n.d. nd. n.d. nd. n.d.
11 coumaric Flavone derivative 584 583 285,147 348, 310 4.88 +0.51 5.06 = 0.61 0.08 £ 0.00 55.1+6.48 6.68 +0.52 1.34 +0.14 nd. n.d. nd.
12 Apigenin derivative 752 751 311 267,337 n.d. 63.6 £ 5.41 249 +1.84 128 +2.54 n.d. n.d. n.d. n.d. n.d.
13 Cucurbitacin E 556 555 n.d. 229 542+ 6.0 579 +6.9 13. 6 £0.98 n.d. 6.84 +0.54 248 +0.54 445+ 541 559 +7.82 145 +2.54
14 Cucurbitacin T 514 513 nd. 229 99.8 +8.21 5.81+£0.42 27.6 +3.41 n.d. nd. nd. 2126 £3277  2202+199 413 £6.77
15 acetyl Cucurbitacin E 760 759 n.d. 229 9.31 +0.57 n.d. 3.59 +0.08 n.d. n.d. n.d. n.d. n.d. n.d.
16  coumaroyl acetyl Cucurbitacin I 864 863 nd. 229 7.13 + 0.44 n.d. 0.99 + 0.00 nd. nd. nd. 36.6 + 4.09 nd. n.d.
17 Apigenin-dihexoside 594 593 311 267,337 nd. n.d. nd. 154 £2.01 18.1+2.55 nd. nd. nd. n.d.
18 Epicatechin gallate 442 441 289 280 n.d. n.d. n.d. 16.8 +2.11 10.8 £0.98 n.d. n.d. n.d. n.d.
19 Colocynthoside B 806 805 n.d. 230 n.d. n.d. n.d. n.d. n.d. n.d. 25.6 +3.29 3.89 +0.45 6.69 +0.71
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Table 2. Effect of 500 pug/mL C. colocynthis extracts on A. flavus radial growth. Radial increment is
expressed as the mean of daily radial increase of colonies radius (cm/d) + S.D. Same letters indicate
absence of statistically significant differences (p < 0.05).

CHL EA MET CNT
Root 0.45+0.132 043 +0.064 0.43 +£0.092 0.47 £0.084
Stem 0.45+0.112 0.39 £0.154 0.44 +0.122 0.47 £0.08 @
Leaf 0.44 +0.132 0.46 +0.084 0.43+0.102 0.47 £0.084
A Stem extract B Leaf extract
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Figure 2. Activity on toxin accumulation and mycelium growth. Aflatoxin accumulation (reported as
fluorescence arbitrary units) in A. flavus six-days after CCM cultures treated with stem (A), leaf (B), and
root (C) extracts. (D) Early mycelium growth inhibition of A. flavus conidia treated with 500 pg/mL
extracts, measured 48 h after inoculum by optical density increasing, and expressed as percentage in
respect to control. Error bars refer to mean values of four replicates + S.D.

A similar correlation between solvent and aflatoxin inhibition rate was observed for the highest
concentration of EA leaf and root extracts in eculetin, p-coumaric acid, apigenin, and cucurbitacin
derivatives (Table 1). Interestingly, the high activity of the CHL extract could be related to cucurbitacin
derivatives and colocynthoside B. In particular, colocynthoside B was detected only in the chloroform
extracts and may be responsible of the observed aflatoxin inhibition (Figure 2). Prevention of AF
accumulation has, for a long time now, been associated with the action of molecules and/or conditions
that interfere with fungal growth [24,29,30]; however, during the last decades, several other substances
have been shown to be effective in completely blocking the biosynthesis of mycotoxins without affecting
mycelium development [52,55]. Thus, the correlation between aflatoxin metabolism and A. flavus
growth should be considered under different perspectives of fungal development: Colonies may have
the same radius, but vary significantly in hyphal density and, therefore, biomass. In fact, hyphae
branching, which is necessary for an efficient colonization and utilization of the substrate, responds
to nutrient gradients, growing away from areas staled by metabolic by-products of existing hyphae.
However, colony radial growth is not influenced by the concentration of nutrients, since existing
hyphal tips at the colony margin, which determine the colony diameter, have priority over all other
hyphal tips (i.e., the branches). For this reason, the evaluation of colony radial growth as a unique
parameter for the assessment of any antifungal effect could be misleading about possible fungistatic
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activities of tested compound/mixture, or might disguise an early stadium effect. As reported in
Figure 2D, when C. colocynthis extracts were administrated to A. flavus conidia in YES liquid cultures at
the higher concentration (500 pg/mL), early mycelium development was delayed by the majority of
extracts. The exerted effect depended either on the tissue or solvent: For example, while CHL and
EA extracts from the stem and leaf did not significantly differ in their inhibitory effect (50 vs. 60%
and 45 vs. 50%, respectively), EA root extract proved to be more highly effective against the initial
development of mycelium than CHL extract from the same tissue (70 vs. 25%).

2.3. Aflatoxin-Modulating Activity

Time-dependent aflatoxin production was analyzed by time-course experiments, where the kinetic
of toxin accumulation was “real time”, determined by starting from 65 to 146 h after inoculum in
CCM medium. As previously reported [27] the AF concentration in the control cultures progressively
increased for up to 85-90 h, maintaining, from here on, a ‘plateau” value. AF production in the A. flavus
cultures treated with a 500 pg/mL extract concentration showed a similar time course, but the maximum
quantity of toxins produced varied consistently, with the extract-dependent inhibition rate observed in
the end-point cultures. Stem extracts did not significantly differ from each other in terms of global
inhibition level, blocking AF accumulation to 50% of the control value (Figure 3A). On the contrary,
leaf and root extracts resulted in a variable range of toxin containment: The AF accumulation course,
in cultures treated with leaf extracts, split from control at 72 h after inoculum, reaching a peak at 89 h
(Figure 3B). A similar pattern was observed in root MET treated cultures, whereas root CHL and root
EA avoided AF accumulation already before 65 h (Figure 3C).

A Stem extract B Leaf extract
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- gh&-—-—__ 3
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Figure 3. Aflatoxin time-course accumulation. Effect of stem (A), leaf (B), and root (C) extracts on AF
time-course accumulation in A. flavus. (D) Comparison between 500 pg/mL stem, leaf, and root CHL

extract; «-lipoic acid 1 mM is used as a reference. Error bars refer to mean values of four replicates
+SD.

Due to the variety of synergistic phenomena occurring in the cell, the antioxidant activity (and
resulting biological effect) may rarely be calculated on the basis of chemical in vitro assays, mainly in the
case of botanicals and phytocomplexes as those reported here. Therefore, the effect of different extracts
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on the redox balance could only in part be predicted. Additionally, the use of high concentrations of
single constituents (when, actually, a plant extract is a complex mixture) may result in the in vitro
system being exposed to an overstated and unrealistic concentration. However, a comparison with a
standard molecule, owning well-documented antioxidant properties consistent with the biological
effect in the object of this study, should be done. Lipoic acid is a well-known ROS scavenger, and its
efficacy in preventing aflatoxin production in A. flavus was already reported [27]. At the highest dose
considered here (500 pug/mL), CHL root extracts resulted in AF accumulation containment, which was
comparable to that observed for 1 mM «-lipoic acid. Stem and leaf CHL extracts were less efficient
inhibitors of AF biosynthesis, as compared to «-lipoic acid and root CHL extracts. It thus appears
that CHL root extracts are a promising source of anti-aflatoxigenic molecules. On the other hand,
reinforcing evidence shows that A. flavus aflatoxin-producing strains may be used as an in vivo model
to test the antioxidant activity of new mixture/compounds.

2.4. Time Course of Extract Administration on Aflatoxin Accumulation

According to various authors, many plant extracts showing an inhibitory effect against aflatoxin
accumulation at the early stage seemed to become almost ineffective after protracted incubation [56,57],
suggesting that their biological activity might depend not only on phytochemical composition, but also
on the chemical structure and related properties of single components. Additionally, evidence has
been provided showing that the delivery time of an anti-oxidant compound during fungal growth
may affect its inhibitory efficacy on aflatoxin biosynthesis and/or accumulation [40]. In Figure 4,
the time course of C. colocynthis root extracts (CHL and EA) administration is reported. As a general
observation, early administration (time 0; at the germination stage) of the relevant extract in the medium
resulted in the highest inhibition of AF accumulation, whereas delaying the time of administration
(from 65 h onwards) did not block mycotoxin biosynthesis but, in the best case (65 h), retarded
aflatoxin accumulation.

A B

30000 30000

N N
——-CNT 25000 ——-CNT

—{=t=0
20000 {——Z—t=65

——t=72
15000 O—t=86

25000

—{=t=0
20000 A =65

——t=72 /
15000 ——t=86 /

£ 10000 = 10000
g —— | e
& 5000 g 5000 -
< o
0 . - : < 0 : ; :
45 65 85 105 125 45 65 85 105 125
Time after inoculum (h) Time after inoculum (h)

Figure 4. Effect of 500 pg/mL CHL (A) and EA (B) root extract over time on aflatoxin production.
Extracts were added to conidia of A. flavus inoculated in CCM after 65, 72, and 86 h of incubation. Error
bars refer to mean values of four replicates + SD.

As previously reported for lipoic acid [27], the efficacy of CHL and EA root extracts in preventing
AF accumulation is limited to a short time interval (0-65 h) that precedes the burst of AF biosynthesis.
It would be worth analyzing the metabolic and regulatory networks operating during this time window
to uncover possible molecular targets for designing new and specific anti-aflatoxigenic compounds.

2.5. Conidia Production and Conidiophores Morphology

In Aspergilla, vegetative reproduction and subsequent colonization of the surrounding
environment rely on the differentiation of specialized structures (conidiophores) bearing vegetative
spores (conidia), whose formation process characterizes the late phase of mycelium growth. We tested
the effect of C. colocynthis CHL and MET stem, leaf, and root extracts on the production of conidia; as



Toxins 2019, 11, 286 9 of 15

reported in Figure 5, a tissue and solvent (CHL and MET) dependent efficacy of the various extracts on
lowering the number of conidia accumulated by treated mycelia was observed.

The overall pattern of tissue/solvent efficacy on conidia production was quite different with that
observed for mycelium growth (Table 2) or hyphae elongation, and for AF accumulation (Figure 2).
Interestingly, the scanning emission microscopy analysis (SEM) conducted to evaluate the conidiophore
organization showed that no significant alteration of either the morphology or the general aspect of
these reproductive structures occurred (an example is reported in Figure 5B), providing evidence that
the relevant treatment affected the number of conidia or conidiophores.

A

100

e

80

60

d
20 A
) I = N

R-MET  S-MET L-MET R-CHL S-CHL L-CHL

Sporification inhibition (%)

Figure 5. Effect of 500 pg/mL root, stem, leaf (R, S, L) MET and CHL extracts on conidia production (A)
and conidiophores morphology (B) (left: Control; right: R-CHL treated cultures) in A. flavus 96-wells
CCM cultures. Values are reported as inhibition percentages in respect to control; Error bars refer to
mean values of four replicates + S.D. Different letters over the bars indicate the differences that were
statistically significant (p < 0.05).

3. Conclusions

Plants with significant pharmacological properties have often been found to be rich in polyphenols
and other secondary metabolites that have been proven to possess high antioxidant potentials due
to their activity as reducing agents, metal chelators, and free radical quenchers. In this sense, every
bioactive able to interfere with the oxidative status of fungal cells, on which the mycotoxin metabolism
relies, should be validated as a biocontrol agent in organic strategies aimed at reducing aflatoxin
contamination in food and feed commodities. On the other hand, a search for new antifungal and
antimycotoxigenic substances is of increasing interest, with the perspective of improving antifungal
resistance and understanding the underlying mechanisms of these new drugs with a wide range of
applications—from medical mycology to agricultural and food safety.
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4. Materials and Methods

4.1. Plant Materials

Citrullus colocynthis L. Schrader plants were collected near Medenine (Tunisia), in the municipality
of Sidi Makhlouf. The identification was performed according to the flora of Tunisia [58] and a voucher
specimen (C.C-01.01) deposited in the biological laboratory of the Faculty of Pharmacy of Monastir.

4.2. Extraction Protocol

Fresh tissues (roots, stems, and leaves) were dried and powdered using a tissue blender. Different
solvents, in ascending polarity (petroleum ether, chloroform, ethyl acetate, and methanol) were used
for Soxhlet extraction to fractionate the soluble compounds from the plant material. The extraction
was performed with dried powder (100 g) placed inside a thimble made by thick filter paper, loaded
into the main chamber of the Soxhlet extractor, which consisted of an extracting tube, a glass balloon,
and a condenser. The total extracting time was 6 h for each solvent, continuously refluxing over the
sample at a temperature not exceeding the boiling point. The resulting extracts were evaporated at
reduced pressure to obtain the crude extracts. The organic solvents used were 99% pure. Extracts were
all ethanol resuspended for further analysis. All the chemicals were obtained from Sigma (St. Louis,
MO, USA).

4.3. Determination of the Total Phenolic Contents

Phenolic compound concentration in the different extracts was determined by using the
Folin—Ciocalteu’s phenol reagent, according to Singleton and Rossi [59], with some modifications.
Briefly, 100 pL of the extract solution was mixed with 100 uL of Folin—Ciocalteu’s phenol reagent.
After 3 min, 100 pL of saturated sodium carbonate solution was added to the mixture and adjusted to 1
mL with distilled water. The reaction was kept in the dark for 90 min, after which the absorbance was
recorded at 720 nm. Gallic acid was used to design the standard curve. The contents of total phenolic
are expressed as mg of gallic acid equivalents (GAE)/g of extract. Data were reported as means of three
replicates + S.D.

4.4. Determination of DPPH Radical Scavenging Activity

The ability to scavenge the DPPH-free radical was monitored according to a method first introduced
by Blois (1958) and developed by Brand-Williams et al. [60]. Various concentrations of sample extracts
(0.5 mL) were mixed with 0.5 mL of methanolic solution containing DPPH radicals (6 x 10~> M).
The mixture was shaken vigorously and left to stand in the dark until stable absorption values were
obtained. The reduction of the DPPH radical was measured by continuously monitoring the decrease
of absorption at 517 nm. The DPPH scavenging effect was calculated as a percentage of DPPH
discoloration using the following equation: % scavenging effect = [(ADPPH x AS)/ADPPH] x 100,
where AS is the absorbance of the solution when the sample extract has been added at a particular
level, and ADPPH is the absorbance of the DPPH solution. Three experiments were performed in
triplicate. The antiradical activity was expressed in terms of the amount of antioxidant necessary to
decrease the initial DPPH absorbance by 50% (IC50). The IC50 value for each extract was determined
graphically by plotting the percentage of DPPH scavenging as a function of extract concentration.

4.5. UPLC-DAD-ESI-MS/MS Analysis

For the chemical characterization, 60 mg of each extract were re-dissolved in methanol-distilled
water (1:1 v/v) and filtered with a PTFE membrane. 5 uL were injected in a LC-DAD-MS/MS system,
consisting of a Shimadzu Nexera UPLC system (Kyoto, Japan) coupled with a diode array detector
(DAD), and a Shimadzu LCMS-8030 quadrupole mass spectrometer (Kyoto, Japan) equipped with a
electrospray ionization source (ESI). Analytical separation was performed on a reversed-phase Waters
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Nova-Pak C18 column (4.9 X 250 mm, 4 um) (Water Milford, MA, USA), operating at 30 °C. The mobile
phase consisted of 1% aqueous formic acid (solvent A) and 1% formic acid in acetonitrile (solvent B).
The elution gradient consisted of 3% B isocratic for 5 min, from 5 to 100% B linear for 30 min, 100% B
isocratic for 7 min. The flow rate was 0.5 mL/min. The mass spectrometer operated in Negative Ion
Scan and in Product Ion Scan mode, acquiring over a mass-range from m/z 50 to 1100 and using Argon
as Collision Induced Dissociation (CID) gas at a pressure of 230 kPa. The interface voltage was set to
—3.5 kV; desolvation line (DL) temperature was 250 °C and the heat block temperature was 400 °C.

Identification of the major secondary metabolites in the different extracts was carried out using
their retention times, and both UV-VIS, MS and MS/MS spectra. Quantification of single compounds
was performed by UPLC-DAD in triplicates through an external standard method, using stock
solutions of the following compounds: Esculetin, p-coumaric acid, orientin, catechin, vitexin, (all
from Sigma-Aldrich, Milan, Italy) and cucurbitacin I, cucurbitacin E, and apigenin-7-O-glucoside from
Extrasynthese (Lyon, France). All solvents used for the analyses were purchased from Sigma-Aldrich
(Milan, Italy).

4.6. Fungal Strains, Media and Culture Condition

Aspergillus flavus toxigenic strain Fri2 and atoxigenic strain TO¢ used were previously isolated
from corn fields of the Po Valley [61]. Conidia suspensions were obtained from 10-day YES-agar [2%
(w/v) yeast extract (Difco, Detroit, MI, USA), 5% (w/v) sucrose (Sigma, St Louis, MO, USA), 2% (w/v)
agar (Difco)] cultures incubated at 28 °C; conidia concentration (quantified by ODggg) and viability
(>90%) were determined according to Degola et al. [42]. Coconut milk-derived medium (CCM) used for
microplate assays was obtained as described in Degola et al. [27]: Briefly, 400 mL of commercial coconut
cream was diluted to the final volume of 1.2 L with bidistilled water, sterilized by autoclaving (10 min,
120 °C), cooled at 4 °C overnight, and clarified by centrifugation (15 min at 3200x g). The residual
floating material and the pellet were discarded, and the intermediate phase was then recovered and
used as culture medium in the aflatoxin inhibition assays.

4.7. Aflatoxin Production Assay

The extracts’ effects on aflatoxin biosynthesis were assessed by the microplate fluorescence-based
procedure described in Degola et al. [27]. Standard flat-bottom 96-well microplates (Sarstedt, Newton,
NC, USA) were used. Suspensions of conidia were diluted to the appropriate concentrations and
brought to the final concentration of 5 x 10? conidia/well; cultures were set in a final volume of
200 uL/well of CCM medium. C. colocynthis organic extracts were ethanol resuspended and added to
the culture medium. The plates were incubated in the dark under stationary conditions for up to 6 days
at 25 °C; visual inspection of mycelium development and conidiation served as an indicator of the
culture growth. Total aflatoxin accumulation was monitored by fluorescence emission determination;
readings were performed directly from the wells bottom of the culture plate with a microplate reader
(TECAN SpectraFluor Plus, Médnnedorf, Switzerland) using the following parameters: Aex = 360 nm;
Aem = 465 nm; manual gain = 83; lag time = 0 pus; number of flashes = 3; integration time = 200 us).
Inocula were performed in quadruplicate.

4.8. Aspergillus Flavus Growth

A. flavus radial growth was performed in YES-agar added with C. colocynthis extracts at 500 ug/mL
final concentration: Three equidistant single spots (5 uL of a 107 conidia/mL suspension each) of
aflatoxigenic strain Fri2 were inoculated in Petri dishes (9 cm O), plates were incubated for 4 days
at 25 °C, and the mycelium growth was evaluated daily by measuring colonies reverse along two
orthogonal diameters. YES-agar plates supplemented with 0.5% EtOH (v/v) were used as control. Early
mycelium development was assessed, recording changes in optical density of liquid cultures over time:
In a 96 wells microtiter plate (Sarstedt, Newton, NC, USA), 1 X 10* conidia were inoculated in a final
volume of 200 pL of YES 5% liquid medium, added with 500 ug/mL organic extracts, and incubated at
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28 °C. The optical density at 620 nm (ODgpg) was recorded for each well, using a microplate reader
(RosysAnthos ht3; AnthosLabtec Instruments GmbH, Salzburg) without shaking. Experiments were
performed in quadruplicate.

4.9. Conidiation Rate Assessment and Reproductive Structures Analysis

Conidia production was estimated for CHL and MET leaf, stem, and root extract treated cultures
(500 pg/mL). From the eight replicates of each condition, four mycelia were collected from the CCM
microplates used in the AF accumulation assay, and individually washed three times in a 0.1% (v/v)
Tween20® aqueous solution by vortexing 1 min. The spore suspensions were then washed three
times with a 80% (v/v) ethanol solution and conidia concentration was then determined with a Burker
chamber. The remaining four CHL and MET leaf, stem, and root extract treated cultures from AF
accumulation plates were observed using a Scanning Electron Microscope (SEM) JEOL IT 300, in high
vacuum mode. Samples were fixed for 4 h in 3% (v/v) glutaraldehyde, acetone dehydrated (from 30%
to 100% water/acetone solutions), critical point dried, and coated with a thin layer of gold by means of
a Sputter Coater “Agar”. Observations were conducted at an acceleration voltage of 10.0 kV and at a
450x magnification.

4.10. Statistical Analysis

The data were analyzed using the statistical and graphical function of PASW Statistics (SPSS
Inc., Chicago, IL, USA). Differences were assessed using analysis of variance (ANOVA), followed by
Dunnet-t post hoc test.

Author Contributions: Conceptualization, ED., EM.R., A.B., and B.M.; Investigation and Visualization, FD.;
Chemical Analyses, B.M., C.B., and A.G.; Electron Scanning Microscopy Analysis, L.D., ED., and S.G.; Resources,
BM., EM.R,, C.B., and S.G.; Writing—Original Draft Preparation, ED. and B.M.; Writing—Review & Editing,
FM.R., A.B, CB.,, and A.G.

Funding: This research received no external funding.

Acknowledgments: We are indebted to the Laboratoire de biologie végétale, Unité de Pharmaco-économie et
développement des médicaments, Faculté de Pharmacie, Monastir (Tunisia) for providing the C. colocynthis organic
extracts. We are also indebted to Massimo Cigarini for the technical help. We would like to thank Prof. Justice
Johannson for the English language editing of proof.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Wiseman, H.; Halliwell, B. Damage to DNA by Reactive Oxygen and Nitrogen Species: Role in Inflammatory
Disease and Progression to Cancer. Biochem. J. 1996, 313, 17-29. [CrossRef] [PubMed]

2. Singh, U,; Jialal, I. Oxidative stress and atherosclerosis. Pathophysiology 2006, 13, 129-142. [CrossRef]

3. Smith, M.A.; Rottkamp, C.A.; Nunomura, A.; Raina, A.K,; Perry, G. Oxidative stress in Alzheimer’s disease.
Biochim. Biophys. Acta 2000, 1502, 139-144. [CrossRef]

4. Onyou, H. Role of Oxidative Stress in Parkinson’s Disease. Exp. Neurobiol. 2013, 22, 11-17.

5. Ramakrishna, B.S.; Varghese, R.; Jayakumar, S.; Mathan, M.; Balasubramanian, K.A. Circulating antioxidants
in ulcerative colitis and their relationship to disease severity and activity. ]. Gastroenterol. Hepatol. 1997, 12,
490-494. [CrossRef] [PubMed]

6. Kattoor, A.J.; Pothineni, N.VK, Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis.
Curr. Atheroscler. Rep. 2017, 19, 42. [CrossRef]

7. Kinnula, V.L,; Crapo, ].D. Superoxide dismutases in malignant cells and human tumors. Free Radic. Biol.
Med. 2004, 36, 718-744. [CrossRef]

8.  Lien Ai, P-H.; Hua, H.; Chuong, P-H. Free Radicals, Antioxidants in Disease and Health. Int. ]. Biomed. Sci.
2008, 4, 89-96.

9. Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated antioxidant and anti-inflammatory role
of rruits, vegetables, herbs, spices and cocoa in humans. Curr. Pharm. Des. 2016, 22, 6701-6715. [CrossRef]


http://dx.doi.org/10.1042/bj3130017
http://www.ncbi.nlm.nih.gov/pubmed/8546679
http://dx.doi.org/10.1016/j.pathophys.2006.05.002
http://dx.doi.org/10.1016/S0925-4439(00)00040-5
http://dx.doi.org/10.1111/j.1440-1746.1997.tb00471.x
http://www.ncbi.nlm.nih.gov/pubmed/9257238
http://dx.doi.org/10.1007/s11883-017-0678-6
http://dx.doi.org/10.1016/j.freeradbiomed.2003.12.010
http://dx.doi.org/10.2174/1381612823666161123094235

Toxins 2019, 11, 286 13 of 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.;
Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical
perspective. Int. J. Nanomed. 2017, 12, 2689-2702. [CrossRef]

Ahmad, N.; Mukhtar, H. Antioxidants meet molecular targets for cancer prevention and therapeutics.
Antioxid Redox Signal. 2013, 19, 85-88. [CrossRef]

Zhang, YJ.; Gan, R.Y;; Li, S;; Zhou, Y,; Li, ANN.; Xu, D.P; Li, H.B. Antioxidant phytochemicals for the
prevention and treatment of chronic diseases. Molecules 2015, 20, 21138-21156. [CrossRef]

Szymanska, R.; Pospisil, P.; Kruk, J. Plant-Derived Antioxidants in Disease Prevention. Oxidative Med.
Cell. Longev. 2016, 2016, 192-208. [CrossRef]

Naveen, J.; Baskaran, V. Antidiabetic plant-derived nutraceuticals: A critical review. Eur. |. Nutr. 2018, 57,
1275-1299. [CrossRef]

Tessema, E.N.; Gebre-Mariam, T.; Neubert, R.H.H.; Wohlrab, ]J. Potential Applications of Phyto-Derived
Ceramides in Improving Epidermal Barrier Function. Ski. Pharm. Physiol. 2017, 30, 115-138. [CrossRef]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med.
Cell. Longev. 2009, 2, 270-278. [CrossRef]

Reuter, J.; Merfort, I.; Schempp, C.M. Botanicals in dermatology: An evidence-based review. Am. ]. Clin.
Dermatol. 2010, 11, 247-267. [CrossRef]

Fidrianny, I.; Rahmiyani, I.; Wirasutisna, K.R. Antioxidant capacities from various leaves extracts of four
varieties mangoes using DPPH, ABTS assays and correlation with total phenolic, flavonoid, carotenoid. Int. J.
Pharm. Pharm. Sci. 2013, 5, 189-194.

Markowitz, J.S.; Zhu, H.J. Limitations of in vitro assessments of the drug interaction potential of botanical
supplements. Planta Med. 2012, 78, 1421-1427. [CrossRef]

Slatnar, A.; Jakopic, J.; Stampar, F.; Veberic, R.; Jamnik, P. The effect of bioactive compounds on in vitro and
in vivo antioxidant activity of different berry juices. PLoS ONE 2012, 7, e47880. [CrossRef]

Reverberi, M.; Zjalic, S.; Ricelli, A.; Punelli, F; Camera, E.; Fabbri, C.; Picardo, M.; Fanelli, C.; Fabbri, A.A.
Modulation of antioxidant defense in Aspergillus parasiticus is involved in aflatoxin biosynthesis: A role for
the ApyapA gene. Eukaryot. Cell 2008, 7, 988-1000. [CrossRef]

Roze, L.V.; Hong, S.-Y,; Linz, ].E. Aflatoxin biosynthesis: Current frontiers. Annu. Rev. Food Sci. Technol.
2013, 4,293-311. [CrossRef]

Roze, L.V,; Laivenieks, M.; Hong, S.-Y.; Wee, J.; Wong, S.S.; Vanos, B.; Awad, D.; Ehrlich, K.C.; Linz, J.E.
Aflatoxin biosynthesis is a novel source of reactive oxygen species—A potential redox signal to initiate
resistance to oxidative stress? Toxins 2015, 7, 1411-1430. [CrossRef]

Passone, M.A.; Resnik, S.L.; Etcheverry, M.G. In vitro effect of phenolic antioxidants on germination, growth
and aflatoxin By accumulation by peanut Aspergillus section Flavi. J. Appl. Microbiol. 2005, 99, 682—691.
[CrossRef]

Huang, ].-Q.; Jiang, H.-E; Zhou, Y.-Q.; Lei, Y.; Wang, S.-Y.; Liao, B.-S. Ethylene inhibited aflatoxin biosynthesis
is due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavus. Int. |.
Food Microbiol. 2009, 130, 17-21. [CrossRef]

Galanopoulou, D.; Markaki, P. Study of the Effect of Methyl Jasmonate Concentration on Aflatoxin B(1)
Biosynthesis by Aspergillus parasiticus in Yeast Extract Sucrose Medium. Int. J. Microbiol. 2009, 2009, 842626.
Degola, F,; Dall’Asta, C.; Restivo, FM. Development of a simple and high-throughput method for detecting
aflatoxins production in culture media. Lett. Appl. Microbiol. 2012, 55, 82-89. [CrossRef]

Reverberi, M.; Fabbri, A.A.; Zjali¢, S.; Ricelli, A.; Punelli, F.; Fanelli, C. Antioxidant enzymes stimulation in
Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl. Microbiol. Biotechnol. 2005, 69,
207-215. [CrossRef]

Reddy, K.R.N.; Reddy, C.S.; Muralidharan, K. Potential of botanicals and biocontrol agents on growth and
aflatoxin production by Aspergillus flavus infecting rice grains. Food Control. 2009, 20, 173-178. [CrossRef]
Reddy, K.R.N.; Nurdjjati, S.B.; Salle, B. An overview of plant-derived products on control of mycotoxigenic
fungi and mycotoxins. Asian J. Plant Sci. 2010, 9, 126-133. [CrossRef]

Cabral, L.D.C; Pinto, V.E; Patriarca, A. Application of plant derived compounds to control fungal spoilage
and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1-14. [CrossRef] [PubMed]


http://dx.doi.org/10.2147/IJN.S131973
http://dx.doi.org/10.1089/ars.2013.5299
http://dx.doi.org/10.3390/molecules201219753
http://dx.doi.org/10.1155/2016/1920208
http://dx.doi.org/10.1007/s00394-017-1552-6
http://dx.doi.org/10.1159/000464337
http://dx.doi.org/10.4161/oxim.2.5.9498
http://dx.doi.org/10.2165/11533220-000000000-00000
http://dx.doi.org/10.1055/s-0032-1315025
http://dx.doi.org/10.1371/journal.pone.0047880
http://dx.doi.org/10.1128/EC.00228-07
http://dx.doi.org/10.1146/annurev-food-083012-123702
http://dx.doi.org/10.3390/toxins7051411
http://dx.doi.org/10.1111/j.1365-2672.2005.02661.x
http://dx.doi.org/10.1016/j.ijfoodmicro.2008.12.027
http://dx.doi.org/10.1111/j.1472-765X.2012.03264.x
http://dx.doi.org/10.1007/s00253-005-1979-1
http://dx.doi.org/10.1016/j.foodcont.2008.03.009
http://dx.doi.org/10.3923/ajps.2010.126.133
http://dx.doi.org/10.1016/j.ijfoodmicro.2013.05.026
http://www.ncbi.nlm.nih.gov/pubmed/23816820

Toxins 2019, 11, 286 14 of 15

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Marzouk, B.; Marzouk, Z.; Haloui, E.; Fenina, N.; Bouraoui, A.; Aouni, M. Screening of analgesic and
anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J. Ethnopharmacol. 2010, 128, 15-19.
[CrossRef] [PubMed]

Gurudeeban, S.; Ramanathan, T. Antidiabetic effect of Citrullus colocynthis in alloxon-induced diabetic rats.
Ethno Pharm. 2010, 1, 112-119.

Abdel-Hassan, I.A.; Abdel-Barry, ].A.; Tarig Mohammeda, S. The hypoglycaemic and antihyperglycaemic
effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. ]. Ethnopharmacol.
2000, 71, 325-330. [CrossRef]

Mehrzadi, S.; Shojaii, A.; Pur, S.A.; Motevalian, M. Anticonvulsant Activity of Hydroalcoholic Extract of
Citrullus colocynthis Fruit: Involvement of Benzodiazepine and Opioid Receptors. J. Evid. Based Complementary
Altern. Med. 2016, 21, 31-35. [CrossRef] [PubMed]

Hussain, A.L; Rathore, H.A.; Sattar, M.Z.; Chatha, S.A.; Sarker, S.D.; Gilani, A.H. Citrullus colocynthis (L.)
Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional
potential. J. Ethnopharmacol. 2014, 155, 54-66. [CrossRef]

Marzouk, B.; Marzouk, Z.; Décor, R.; Edziri, H.; Haloui, E.; Fenina, N.; Aouni, M. Antibacterial and
anticandidal screening of Tunisian Citrullus colocynthis Schrad. from Medenine. J. Ethnopharmacol. 2009, 125,
344-349. [CrossRef]

Amine, G.; ELHADJ-Khelil-Aminata, O.; Bouabdallah, G. Evaluation of antifungal effect of organic extracts
of Algerian Citrullus colocynthis seeds against four strains of Aspergillus isolate from wheat stored. J. Med.
Plants Res. 2013, 7, 727-733.

Gowri, S.S.; Priyavardhini, S.; Vasantha, K.; Umadevi, M. Antibacterial activity on Citrullus colocynthis Leaf
extract. Anc. Sci. Life 2009, 29, 12-13.

Benariba, N.; Djazir, R.; Bellakhdar, W.; Belkacem, N.; Kadiata, M.; Malaisse, W.].; Sener, A. Phytochemical
screening and free radical scavenging activity of Citrullus colocynthis seeds extracts. Asian Pac. ]. Trop. Biomed.
2013, 3, 35-40. [CrossRef]

Rizvi, T.S.; Mabood, E; Ali, L.; Al-Broumi, M.; Al Rabani, H.K.M.; Hussain, J.; Jabeen, E; Manzoor, S.;
Al-Harrasi, A. Application of NIR Spectroscopy Coupled with PLS Regression for Quantification of Total
Polyphenol Contents from the Fruit and Aerial Parts of Citrullus colocynthis. Phytochem. Anal. 2018, 29, 16-22.
[CrossRef]

Delazar, A.; Gibbons, S.; Kosari, A.R.; Nazemiyeh, H.; Modarresi, M.; Nahar, L.; Sarker, S.D. Flavone
C-glycosides and cucurbitacin glycosides from Citrullus colocynthis. DARU J. Pharm. Sci. 2006, 14, 109-114.
Ogpbuji, K.; McCutcheon, G.S.; Simmons, A.M.; Snook, M.E.; Harrison, H.E; Levi, A. Partial Leaf Chemical
Profiles of a Desert Watermelon Species (Citrullus colocynthis) and Heirloom Watermelon Cultivars
(Citrullus lanatus var. lanatus). HortScience 2012, 47, 580-584. [CrossRef]

Chawech, R.; Jarraya, R.; Girardi, C.; Vansteelandt, M.; Marti, G.; Nasri, I.; Racaud-Sultan, C.; Fabre, N.
Cucurbitacins from the Leaves of Citrullus colocynthis (L.) Schrad. Molecules 2015, 20, 18001-18015. [CrossRef]
[PubMed]

Hussain, A.L; Rathore, H.A.; Sattar, M.Z.; Chatha, S.A.; ud din Ahmad, F.; Ahmad, A.; Johns, E.J. Phenolic
profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora.
Ind. Crop. Prod. 2013, 45, 416—422. [CrossRef]

Adam, S.EI; Al-Yahya, M.; l-Farhan, A.H. Response of Najdi sheep to oral administration of Citrullus
colocynthis fruits, Nerium oleander leaves or their mixture. Small Rumin. Res. 2001, 40, 239-244. [CrossRef]
Yoshikawa, M.; Morikawa, T.; Kobayashi, H.; Nakamura, A.; Matsuhira, K.; Nakamura, S.; Matsuda, H.
Bioactive saponins and glycosides. XXVII. Structures of new cucurbitane-type triterpene glycosides and
antiallergic constituents from Citrullus colocynthis. Chem. Pharm. Bull. 2007, 55, 428-434. [CrossRef]
Shawkey, A.M.; Rabeh, M.A.; Abdellatif, A.O. Biofuntional moleculs from Citrullus colocynthis: An HPLC/MS
analysis in correlation to antimicrobial and anticancer activities. Adv. Life Sci. Technol. 2014, 17, 51-61.

Jian, C.C.; Chiu, M.H.; Nie, R.L.; Cordell, G.A.; Qiu, S.X. Cucurbitacins and cucurbitaneglycosides: Structures
and biological activities. Nat. Prod. Rep. 2005, 22, 386-399.

Negri, M.; Salci, T.P.; Shinobu-Mesquita, C.S.; Capoci, L.R.; Svidzinski, T.I; Kioshima, E.S. Early state research
on antifungal natural products. Molecules 2014, 19, 2925-2956. [CrossRef]


http://dx.doi.org/10.1016/j.jep.2009.11.027
http://www.ncbi.nlm.nih.gov/pubmed/19962436
http://dx.doi.org/10.1016/S0378-8741(99)00215-9
http://dx.doi.org/10.1177/2156587215615455
http://www.ncbi.nlm.nih.gov/pubmed/26634927
http://dx.doi.org/10.1016/j.jep.2014.06.011
http://dx.doi.org/10.1016/j.jep.2009.04.025
http://dx.doi.org/10.1016/S2221-1691(13)60020-9
http://dx.doi.org/10.1002/pca.2710
http://dx.doi.org/10.21273/HORTSCI.47.5.580
http://dx.doi.org/10.3390/molecules201018001
http://www.ncbi.nlm.nih.gov/pubmed/26437392
http://dx.doi.org/10.1016/j.indcrop.2013.01.002
http://dx.doi.org/10.1016/S0921-4488(01)00184-5
http://dx.doi.org/10.1248/cpb.55.428
http://dx.doi.org/10.3390/molecules19032925

Toxins 2019, 11, 286 15 of 15

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Caceres, I; El Khoury, R.; Medina, A Lippi, Y.; Naylies, C.; Atoui, A.; El Khoury, A.; Oswald, L; Bailly, ].-D.;
Puel, O. Deciphering the anti-aflatoxinogenic properties of eugenol using a large-scale g-PCR approach.
Toxins 2016, 8, 123. [CrossRef]

Degola, F; Bisceglie, F.; Pioli, M.; Palmano, S.; Elviri, L.; Pelosi, G.; Lodi, T.; Restivo, EM. Structural
modification of cuminaldehyde thiosemicarbazone increases inhibition specificity toward aflatoxin
biosynthesis and sclerotia development in Aspergillus flavus. Appl. Microbiol. Biotechnol. 2017, 101,
6683-6696. [CrossRef]

Abbas, H.K.; Wilkinson, J.; Zablotowicz, R.; Accinelli, C.; Abel, C.; Bruns, H.; Weaver, M. Ecology of Aspergillus
flavus, regulation of aflatoxin production, and management strategies to reduce aflatoxin contamination of
corn. Toxin Rev. 2009, 28, 142-153. [CrossRef]

Ehrlich, K.C.; Moore, G.G.; Mellon, J.E.; Bhatnagar, D. Challenges facing the biological control strategy for
eliminating aflatoxin contamination. World Mycotoxin |. 2015, 8, 225-233. [CrossRef]

Bhatnagar, D.; McCormick, S.P. The inhibitory effect of neem (Azadirachta indica) leaf extracts on aflatoxin
synthesis in Aspergillus parasiticus. ]. Am. Oil Chem. Soc. 1988, 65, 1166-1168. [CrossRef]

Masood, A.; Ranjan, K.S. The effect of aqueous plant extracts on growth and aflatoxin production by
Aspergillus flavus. Lett. Appl. Microbiol. 1991, 13, 32-34. [CrossRef]

Ansari, A.A.; Shrivastava, A.K. The effect of eucalyptus oil on growth and aflatoxin production by
Aspergillus flavus. Lett. Appl. Microbiol. 1991, 13, 75-77. [CrossRef]

Pottier Alapetite, G. Flore de la Tunisie. Angiospermes-dicotylédones, Gamopétales. Programme Flore
Végétation Tunis. 1981, 655-1190.

Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid
Reagents. Am. J. Enol. Vitic. 1965, 16, 144-158.

Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity.
LWT-Food Sci. Technol. 1995, 28, 25-30. [CrossRef]

Degola, F.; Berni, E.; Restivo, EM. Laboratory tests for assessing efficacy of atoxigenic Aspergillus flavus
strains as biocontrol agents. Int. J. Food Microbiol. 2011, 146, 235-343. [CrossRef] [PubMed]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/toxins8050123
http://dx.doi.org/10.1007/s00253-017-8426-y
http://dx.doi.org/10.1080/15569540903081590
http://dx.doi.org/10.3920/WMJ2014.1696
http://dx.doi.org/10.1007/BF02660575
http://dx.doi.org/10.1111/j.1472-765X.1991.tb00562.x
http://dx.doi.org/10.1111/j.1472-765X.1991.tb00574.x
http://dx.doi.org/10.1016/S0023-6438(95)80008-5
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.02.020
http://www.ncbi.nlm.nih.gov/pubmed/21419507
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Phytochemical Characterization of C. colocynthis Extracts 
	Antifungal and Anti-Aflatoxigenic Activity 
	Aflatoxin-Modulating Activity 
	Time Course of Extract Administration on Aflatoxin Accumulation 
	Conidia Production and Conidiophores Morphology 

	Conclusions 
	Materials and Methods 
	Plant Materials 
	Extraction Protocol 
	Determination of the Total Phenolic Contents 
	Determination of DPPH Radical Scavenging Activity 
	UPLC-DAD-ESI-MS/MS Analysis 
	Fungal Strains, Media and Culture Condition 
	Aflatoxin Production Assay 
	Aspergillus Flavus Growth 
	Conidiation Rate Assessment and Reproductive Structures Analysis 
	Statistical Analysis 

	References

