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Abstract: Neuroinflammation is involved in various neurological diseases. Activated microglia secrete
many pro-inflammatory factors and induce neuronal cell death. Thus, the inhibition of excessive
proinflammatory activity of microglia leads to a therapeutic effect that alleviates the progression of
neuronal degeneration. In this study, we investigated the effect of Croton tiglium (C. tiglium) Linn.
extract (CTE) on the production of pro- and anti-inflammatory mediators in microglia and astrocytes
via RT-PCR, Western blot, and nitric oxide assay. Neurotoxicity was measured by cell viability assay
and GFP image analysis. Phagocytosis of microglia was measured using fluorescent zymosan particles.
CTE significantly inhibited the production of neurotoxic inflammatory factors, including nitric oxide
and tumor necrosis factor-α. In addition, CTE increased the production of the neurotrophic factor,
brain-derived neurotrophic factor, and the M2 phenotype of microglia. The culture medium retained
after CTE treatment increased the survival of neurons, thereby indicating the neuroprotective effect
of CTE. Our findings indicated that CTE inhibited pro-inflammatory response and increased the
neuroprotective ability of microglia. In conclusion, although CTE is known to be a poisonous plant
and listed on the FDA poisonous plant database, it can be used as a medicine if the amount is properly
controlled. Our results suggested the potential benefits of CTE as a therapeutic agent for different
neurodegenerative disorders involving neuroinflammation.

Keywords: poisonous plant; neuroinflammation; Croton tiglium Linn.; neuroprotection; M2
phenotype; microglia

Key Contribution: The anti-neuroinflammatory and neuroprotective effects of a poisonous plant
CTE can be used to develop treatments for neurodegenerative disorders.

1. Introduction

Neuroinflammation is observed in many neurological disorders, including Alzheimer disease (AD),
stroke, multiple sclerosis, Parkinson’s disease (PD), and neuroinfections [1–3]. As innate immune cells
in the central nervous system, microglia play a key role in regulating the pathogenesis of neurological
disorders. Inflammatory activation of microglia (called as proinflammatory M1 microglia) increases
neuroinflammation by releasing proinflammatory factors, including nitric oxide (NO), prostaglandin
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E2, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. These molecules are known to promote the
progression of neurodegenerative diseases [4,5]. On the other hand, alternatively activated microglia
(called anti-inflammatory M2 microglia) have neuroprotective properties that release neurotrophic
factors (nerve growth factor or brain-derived neurotrophic factor; BDNF) and eliminate abnormal
protein aggregation and pathogens [6–8]. Therefore, efforts are underway to identify natural materials
and their target molecules that inhibit M1 inflammatory activation and promote M2 activation, and
thus can be used as therapeutic agents for neurological diseases.

Croton tiglium (C. tiglium) Linn. extract (CTE) is the extract of the seed of this plant, which is
an Asian herbal medicine. As a traditional medicine, C. tiglium is prescribed for many applications
such as constipation, gastrointestinal disorders, intestinal inflammation, rheumatism, headache,
and visceral pain. However, it is toxic at high doses [9–12]. Recent studies have investigated
the antinociceptive effect, both in vivo and in vitro [13]. In these studies, the pain relief effect
exerted by CTE was evaluated using the writhing test in mice, and six compounds were identified
using high-performance liquid chromatography (HPLC). Moreover, CTE has been reported to exert
antimicrobial and antidermatophytic properties [14,15]. Therefore, the ethanolic CTE has been used
as a topical application, shampoo, or soap [14]. More recently, the antioxidant effect of CTE has
been evaluated, and the efficiency of the extract was found to be enhanced after the incorporation of
nanoparticles [16]. Antioxidant, pain relief, and anti-inflammatory properties are important features
required in the treatment and prevention of many neurological diseases related to neuroinflammation.
However, the anti-neuroinflammatory and neuroprotective properties of CTE have not yet been studied.
Although CTE is known to be a poisonous plant and listed on the Food and Drug Administration
(FDA) poisonous plant database, it can be used as a medicine if the amount is properly controlled.

In this study, we studied a novel function of CTE in the microglia. CTE was found to exert
an anti-neuroinflammatory effect via the phenotypic switch toward the M2 anti-inflammatory and
neuroprotective phenotype of microglia.

2. Results

2.1. Anti-Neuroinflammatory Effect of CTE

Microglia are the resident immune cells of the brain and are implicated in the regulation of
synaptic pruning and neuronal networking in resting condition. However, under neuroinflammatory
condition, activated microglia play a key role in the pathophysiology of many neurodegenerative
diseases by releasing inflammatory and neurotoxic factors such as TNF-α, NO, and reactive oxygen
species [17]. To identify potent anti-inflammatory and neuroprotective agents from natural materials,
we searched the database of Korea Natural Herb Information and identified candidate materials based
on lowering NF-κB activity from the NIKON bank (NIKOM Co. published in homepage). Among
them, CTE showed strong anti-inflammatory effect in microglia. A microglia cell line, BV-2, was plated
and stimulated with LPS (100 ng/mL) in the absence or presence of CTE (10 µg/mL). CTE significantly
inhibited LPS-induced NO production but has no effect on microglial cell viability (Figure 1a,b).
To confirm this anti-inflammatory effect, another microglia cells, namely, the HAPI cell line were used.
Similarly, CTE significantly inhibited LPS-induced NO production, indicating the anti-inflammatory
effect on HAPI cells. Furthermore, the half-maximal inhibitory concentration (IC50) of CTE was
determined by constructing a dose–response curve and examining the effect of different concentrations
of CTE on LPS-induced NO production (Figure 1c,d).
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Figure 1. Anti-inflammatory effect of CTE in the microglia. The anti-inflammatory effect of CTE was 
measured in the mouse microglial cell line BV-2 cells. (a) BV-2 cells were stimulated with 
lipopolysaccharide (LPS, 100 ng/mL), in the presence or absence of CTE (10 µg/mL). The level of nitric 
oxide (NO) in the culture medium was measured 24 h post treatment. LPS-induced NO production 
was significantly reduced by CTE treatment. (b) Cytotoxicity was measured by 
methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay 24 h after treatment with LPS, in the 
presence or absence of CTE. (c) Dose-response curve and IC50 value for CTE-treated microglia. Dose-
dependent effect of CTE was observed in the microglial cell line HAPI. Graph for IC50 calculation, 
with the x-axis indicating CTE (log transformation), and y-axis, normalized nitrite concentration 
(percent maximum value). IC50 was calculated by non-linear regression analysis. (d) Cell viability 
after stimulation with LPS and CTE in HAPI cells. MTT was used to measure cell viability. N = 3 
independent experiments/group. Each black filled Δ represents an individual value. Values represent 
the mean ± SEM, *p < 0.05 vs. LPS-only, from ANOVA. 

2.2. Verification of the Anti-Neuroinflammatory Effect of CTE by Using Primary Microglia and Astrocytes 

Next, we confirmed the anti-inflammatory effect of CTE in primary MGCs, because microglia 
and astrocytes are key players in neuroinflammation. The cells were cultured on 96-well plates and 
NO release was measured after 48 h of LPS treatment. CTE significantly inhibited LPS-induced NO 
release (Figure 2a) but has no effect on primary astrocytes and microglial cell viability. The expression 
of inflammatory cytokines was also studied. LPS increased the mRNA levels of TNF-α and iNOS, 
compared to the vehicle-treated group (Figure 2b). LPS-induced increase in proinflammatory 
cytokines was significantly suppressed by CTE treatment (Figure 2c,d). 

Figure 1. Anti-inflammatory effect of CTE in the microglia. The anti-inflammatory effect of CTE
was measured in the mouse microglial cell line BV-2 cells. (a) BV-2 cells were stimulated with
lipopolysaccharide (LPS, 100 ng/mL), in the presence or absence of CTE (10 µg/mL). The level
of nitric oxide (NO) in the culture medium was measured 24 h post treatment. LPS-induced
NO production was significantly reduced by CTE treatment. (b) Cytotoxicity was measured by
methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay 24 h after treatment with LPS, in the
presence or absence of CTE. (c) Dose-response curve and IC50 value for CTE-treated microglia.
Dose-dependent effect of CTE was observed in the microglial cell line HAPI. Graph for IC50 calculation,
with the x-axis indicating CTE (log transformation), and y-axis, normalized nitrite concentration
(percent maximum value). IC50 was calculated by non-linear regression analysis. (d) Cell viability
after stimulation with LPS and CTE in HAPI cells. MTT was used to measure cell viability. N = 3
independent experiments/group. Each black filled ∆ represents an individual value. Values represent
the mean ± SEM, * p < 0.05 vs. LPS-only, from ANOVA.

2.2. Verification of the Anti-Neuroinflammatory Effect of CTE by Using Primary Microglia and Astrocytes

Next, we confirmed the anti-inflammatory effect of CTE in primary MGCs, because microglia
and astrocytes are key players in neuroinflammation. The cells were cultured on 96-well plates and
NO release was measured after 48 h of LPS treatment. CTE significantly inhibited LPS-induced NO
release (Figure 2a) but has no effect on primary astrocytes and microglial cell viability. The expression
of inflammatory cytokines was also studied. LPS increased the mRNA levels of TNF-α and iNOS,
compared to the vehicle-treated group (Figure 2b). LPS-induced increase in proinflammatory cytokines
was significantly suppressed by CTE treatment (Figure 2c,d).
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Figure 2. Functional validation of CTE as an anti-inflammatory material in mouse mixed glial cells 
(MGC). (a) The MGC were stimulated with lipopolysaccharide (LPS) (1 µg/mL) and/or CTE. Nitric 
oxide (NO) production induced by LPS (1 µg/mL for 48 h) were significantly reduced by CTE 
treatment (10 or 100 µg/mL). Control herb extract (CHE, 100 µg/mL) was used as a negative control. 
The Control Herb Extract was obtained from Cucucrbita moschata. *p < 0.05 compared to LPS only. (b) 
mRNA expression of the microglial activation (M1) markers, TNF-α, and iNOS was measured using 
RT-PCR. MGC was treated with LPS (1 µg/mL) in the presence or absence of CTE (10 µg/mL) for 48 
h. GAPDH was used as a loading control. (c and d) TNF-α and iNOS mRNA expression was quantified 
using ImageJ, based on three independent experiments. Each black filled Δ represents an individual 
value. Values represent the mean ± SEM, *p < 0.05 from ANOVA. 

2.3. Alternative Activation of Microglia 

The inflammatory activation of microglia exerts neurotoxic effects, while alternative activation 
of microglia, called M2 type microglia, exerts neuroprotective functions such as phagocytosis and 
growth factor release [18]. To further investigate whether CTE could mediate alternative activation 
of microglia, we examined M2 activation. Primary mixed glial cells (MGCs) treated with CTE for 24 
h, increased the expression of the M2 marker, Arg1, mRNA (Figure 3a, b), and protein (Figure 3c, d) 
compared to the vehicle group. CTE increased the expression of Arg1 mRNA and protein, compared 
to the vehicle group. Similarly, the mRNA level of BDNF, a neurotrophic factor was significantly 
increased by CTE treatment in the microglia (Figure 3e). In addition, M2 polarization of microglia 
can be evaluated by phagocytic activity. Fluorescently labeled zymosan particles were significantly 
higher in CTE-treated microglia, compared to the vehicle group (Figure 3f). Our observation suggests 
that microglial polarization after CTE treatment leads to M2 activation. 

Figure 2. Functional validation of CTE as an anti-inflammatory material in mouse mixed glial cells
(MGC). (a) The MGC were stimulated with lipopolysaccharide (LPS) (1 µg/mL) and/or CTE. Nitric
oxide (NO) production induced by LPS (1 µg/mL for 48 h) were significantly reduced by CTE treatment
(10 or 100 µg/mL). Control herb extract (CHE, 100 µg/mL) was used as a negative control. The Control
Herb Extract was obtained from Cucucrbita moschata. * p < 0.05 compared to LPS only. (b) mRNA
expression of the microglial activation (M1) markers, TNF-α, and iNOS was measured using RT-PCR.
MGC was treated with LPS (1 µg/mL) in the presence or absence of CTE (10 µg/mL) for 48 h. GAPDH
was used as a loading control. (c,d) TNF-α and iNOS mRNA expression was quantified using ImageJ,
based on three independent experiments. Each black filled ∆ represents an individual value. Values
represent the mean ± SEM, * p < 0.05 from ANOVA.

2.3. Alternative Activation of Microglia

The inflammatory activation of microglia exerts neurotoxic effects, while alternative activation
of microglia, called M2 type microglia, exerts neuroprotective functions such as phagocytosis and
growth factor release [18]. To further investigate whether CTE could mediate alternative activation
of microglia, we examined M2 activation. Primary mixed glial cells (MGCs) treated with CTE for
24 h, increased the expression of the M2 marker, Arg1, mRNA (Figure 3a,b), and protein (Figure 3c,d)
compared to the vehicle group. CTE increased the expression of Arg1 mRNA and protein, compared
to the vehicle group. Similarly, the mRNA level of BDNF, a neurotrophic factor was significantly
increased by CTE treatment in the microglia (Figure 3e). In addition, M2 polarization of microglia can
be evaluated by phagocytic activity. Fluorescently labeled zymosan particles were significantly higher
in CTE-treated microglia, compared to the vehicle group (Figure 3f). Our observation suggests that
microglial polarization after CTE treatment leads to M2 activation.
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Figure 3. CTE promotes M2 polarization of microglia in vitro. (a) mRNA expression level of the M2 
marker Arg1 in primary mixed glial cells (MGC). Total RNA was extracted from 10 µg/mL CTE-
treated MGC or/and LPS (1 µg/mL) for 48 h. Arg1 mRNA expression was measured using RT-PCR. 
GAPDH was used as a loading control. (b) Arg1 mRNA expression was quantified using ImageJ, 
based on three independent experiments. (c) Expression of Arg1 protein in the microglial cell line 
HAPI. Cells were treated with CTE (10 µg/mL) for 24 h, and cell lysates were used for western 
blotting. Beta-actin was used as loading control. (d) Expression of Arg1 protein in MGC. Cells were 
treated with CTE (10 µg/mL) for 24 h, and cell lysates were used for western blotting. Beta-actin was 
used as loading control. The band intensity was measured by ImageJ and normalized by loading 
control (e) BDNF mRNA expression levels in MGC. Cells were treated with CTE for 48 h, and mRNA 
levels were quantified using real-time PCR. (f) Representative image for zymosan-red. Scale bar 50 
µm. (g) Zymosan-red phagocytosis assay in MGC. Cells were plated and treated with CTE (10 µg/mL) 
or vehicle (0.1% DMSO) for 48 h. Opsonized zymosan-fluorescent particles were added into MGC 
and further incubated for 3 h. After three rounds of washing, phagocytosed zymosan particles were 
measured by fluorescence microscopy. Fold increase of phagocytosis per vehicle is shown 
graphically. N ≥ 3 independent experiments/group. Each black filled Δ represents an individual value. 

Figure 3. CTE promotes M2 polarization of microglia in vitro. (a) mRNA expression level of the M2
marker Arg1 in primary mixed glial cells (MGC). Total RNA was extracted from 10 µg/mL CTE-treated
MGC or/and LPS (1 µg/mL) for 48 h. Arg1 mRNA expression was measured using RT-PCR. GAPDH
was used as a loading control. (b) Arg1 mRNA expression was quantified using ImageJ, based on three
independent experiments. (c) Expression of Arg1 protein in the microglial cell line HAPI. Cells were
treated with CTE (10 µg/mL) for 24 h, and cell lysates were used for western blotting. Beta-actin was
used as loading control. (d) Expression of Arg1 protein in MGC. Cells were treated with CTE (10 µg/mL)
for 24 h, and cell lysates were used for western blotting. Beta-actin was used as loading control.
The band intensity was measured by ImageJ and normalized by loading control (e) BDNF mRNA
expression levels in MGC. Cells were treated with CTE for 48 h, and mRNA levels were quantified
using real-time PCR. (f) Representative image for zymosan-red. Scale bar 50 µm. (g) Zymosan-red
phagocytosis assay in MGC. Cells were plated and treated with CTE (10 µg/mL) or vehicle (0.1% DMSO)
for 48 h. Opsonized zymosan-fluorescent particles were added into MGC and further incubated for
3 h. After three rounds of washing, phagocytosed zymosan particles were measured by fluorescence
microscopy. Fold increase of phagocytosis per vehicle is shown graphically. N ≥ 3 independent
experiments/group. Each black filled ∆ represents an individual value. Values represent the mean ±
SEM, * p < 0.05 was considered significant, by using Student’s t-test or one-way analysis of variance
(ANOVA). NS, not significant
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2.4. Cytotoxicity Assay in Neuron

Since CTE is known to be a poisonous plant, we further examined cytoxicity of CTE in brain
cell lines. Neuronal cells were treated with CTE in a dose-dependent manner, and cell viability was
examined using the neuron cell lines N2a and B35 cells. CTE, however, has no effect on neuronal cell
viability after either 24 h or 48 h of incubation with 5, 10, and 20 µg/mL CTE (Figure 4).
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2.5. Neuroprotective effect of CTE 

To confirm the neuroprotective effect of CTE, we next examined whether CTE could attenuate 
microglia-mediated neurotoxicity by using the neuroblastoma cells B35 (Figure 5a). Conditioned 
medium from LPS-treated microglia led to significant neuronal death. However, conditioned 
medium from CTE-treated microglia significantly decreased neuronal death (Figure 5b). Cell viability 
was measured by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay (Figure 5c) as well as 
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Figure 4. Cytotoxicity assay in neuronal cells treated with CTE. Cytotoxicity of CTE was analyzed
using the neuroblastoma cell lines N2a and B35 cells). Cells were treated with different concentrations
of CTE (a,b) and/or LPS (100 ng/ml) (c,d) as indicated and incubated for indicated hours. Cell viability
was measured by MTT assay. N = 3~4 independent experiments/group. Each black filled ∆ represents
an individual value. Value represent the mean ± SEM. * p < 0.05 was considered significant, by using
Student’s t-test or one-way analysis of variance (ANOVA). NS, not significant.

2.5. Neuroprotective Effect of CTE

To confirm the neuroprotective effect of CTE, we next examined whether CTE could attenuate
microglia-mediated neurotoxicity by using the neuroblastoma cells B35 (Figure 5a). Conditioned
medium from LPS-treated microglia led to significant neuronal death. However, conditioned medium
from CTE-treated microglia significantly decreased neuronal death (Figure 5b). Cell viability was
measured by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay (Figure 5c) as well as by
measuring the fluorescence intensity of EGFP (Figure 5d). Our results have demonstrated the treatment
with CTE significantly increased neuronal survival suggesting CTE significantly prevented neuronal
cell death from cytotoxic molecules produced from LPS-treated microglia.
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2.6. Anti-Neuroinflammatory Effect of CTE is Crotonic Acid-Independent 

One of the major known chemicals in CTE is crotonic acid. Therefore, we examined the anti-
neuroinflammatory effect of crotonic acid. HAPI cells were treated with crotonic acid and LPS. 
Crotonic acid did not inhibit LPS-induced NO release (Figure 6), it has no effect on microglial cell 
viability. Our result showed the anti-inflammatory effect of CTE is not derived from the single 
compound crotonic acid.  

Figure 5. Neuroprotective effects of CTE on microglia-mediated neurotoxicity. (a) Schematic diagram
of the experimental timeline. LPS (1 µg/mL), CTE (10 µg/mL), and conditional media for MGC and
neurons. MGC were treated with vehicle, LPS (1 µg/mL), CTE (10 µg/mL), or LPS/CTE and incubated
for 6 h. Then, the medium was changed and incubated for 48 h. The medium, called as conditional
medium, was retained for neuron toxicity assay. The neuroblastoma cell line B35 cells stably expressing
green fluorescent protein (B35-EGFP) were cultured in conditional medium. After further incubation
for 48 h, cell count determination (b), MTT assay (c), and fluorescent microscopy (d) were performed
for viability assessment. N = 3 independent experiments/group. Each black filled ∆ represents an
individual value. Value represent the mean ± SEM. * p < 0.05 was considered significant, by using
Student’s t-test or one-way analysis of variance (ANOVA).

2.6. Anti-Neuroinflammatory Effect of CTE is Crotonic Acid-Independent

One of the major known chemicals in CTE is crotonic acid. Therefore, we examined the
anti-neuroinflammatory effect of crotonic acid. HAPI cells were treated with crotonic acid and LPS.
Crotonic acid did not inhibit LPS-induced NO release (Figure 6), it has no effect on microglial cell
viability. Our result showed the anti-inflammatory effect of CTE is not derived from the single
compound crotonic acid.

2.7. Anti-Neuroinflammatory Effect of CTE Is MAPK-Dependent

To further examine the effects of CET on microglial activation pathway, we used the strategy of
blocking specific signaling molecules. Inhibition of MAPK with PD98059, NF-κB with Bay 11-7082, ULK
with SBI-0206965 significantly reduced LPS-induced increases in nitric oxide production suggesting
all of these signaling molecules are important for LPS-induced inflammatory response in microglia.
Interestingly, MAPK inhibitor, PD98059 abrogated the anti-inflammatory effect of CTE in microglia.
While the anti-inflammatory effect of CTE was still observed in cells pretreated with Bay and SBI
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in primary mixed glial cells (Figure 7). These results indicate that CTE inhibits the LPS-induced
production of inflammatory mediators mainly through the inactivation of MAPK pathways.Toxins 2020, 12, x FOR PEER REVIEW 8 of 14 
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Figure 6. No anti-inflammatory effect of crotonic acid in the microglia. The anti-inflammatory effect
of crotonic acid was measured in the microglial cell line HAPI cells. (a) Cells were stimulated with
lipopolysaccharide (LPS, 100 ng/mL), in the presence or absence of crotonic acid (50~800 µg/mL).
The level of nitric oxide (NO) in the culture medium was measured 24 h post treatment. LPS-induced NO
production was measured by Griess solution. (b) Cytotoxicity was measured by MTT assay 24 h after
treatment with LPS, in the presence or absence of crotonic acid. N = 3 independent experiments/group.
Each black filled ∆ represents an individual value. Values represent the mean ± SEM. * p < 0.05 was
considered significant, by using Student’s t-test or one-way analysis of variance (ANOVA).
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Figure 7. MAPK activation is required for the anti-inflammatory effect of CTE. The anti-inflammatory
effect of CTE was measured in primary mixed glial cells (MGC). MGC were pretreated with inhibitors
(PD 10 µM, SBI 5 µM, and Bay 2.5 µM) for 1 h and stimulated with lipopolysaccharide (LPS, 1 µg/mL)
and CTE (10 µg/ml) for 48 h. The level of nitric oxide (NO) in the culture medium was measured 48 h
post treatment. N = 3 independent experiments/group. Each black filled ∆ represents an individual
value. Values represent the mean ± SEM, * p < 0.05 vs. LPS-only, from ANOVA.
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3. Discussion

Neurotoxic inflammatory factors released from activated microglia and astrocytes negatively
affect brain health and cause neurodegenerative diseases, including AD and PD disease [19]. Microglia
is a major cell type involved in neuroinflammation, and neuroinflammatory reactions are associated
with neuronal death. Inflammatory activation of microglia (type M1) promotes the production of
neurotoxins such as NO, TNF-α, and IL-1β, leading to neuronal cell death. On the other hand,
alternative activation of microglia (type M2) promotes the nerve regeneration system and reduces
neuroinflammation [20]. This study investigated the effect of CTE on neuroinflammation. First, the
anti-neuroinflammatory effects of CTE were determined using the microglial cell lines BV-2 and HAPI.
CTE significantly inhibited the production of neurotoxic inflammatory factors, including NO and
TNF-α. In addition, CTE increased the expression of the pro-healing molecule Arg1 and neurotrophic
factor BDNF. The culture medium retained from the CTE-treated microglia increased neuronal survival,
thereby showing the neuroprotective effects of CTE.

C. tiglium has been used since long to treat different diseases such as diabetes, gastritis, and
digestive disorders. C. tiglium has various biological and chemical implications such as anti-tumor,
tumor-enhancing, anti-HIV, anti-inflammatory, anti-dermatophytic, and antioxidant activities [21].
In case of CNS diseases, CTE has been shown to reduce headache, seizures, and pain [13]. However, the
direct effect of CTE on neurodegenerative diseases or neuroinflammation has not yet been investigated.
Crotonoside, one of the key compounds in CTE, has been reported as a candidate for the treatment of
acute myeloid leukemia (AML) [22]. In a previous study, crotonoside was found to inhibit AML cell
proliferation by inhibiting HDAC3/6/NF-κB pathway. The HDAC inhibitor valproic acid is known to
attenuate traumatic spinal cord injury-induced inflammation via the STAT1 and NFκB pathways [23].
A limitation of our study is that the molecular mechanism of the anti-inflammatory effect of CTE was
not examined. However, it can be suggested that the anti-inflammatory effects of CTE are caused, at
least in part, by the inhibition of HDAC/NF-κB pathway [22,23] and MAPK activity (Figure 7).

C. tiglium seed contains large proportion of croton oils. Crotonic acid is one of the major compounds
of CTE, however crotonic acid is not a key compound for the anti-neuroinflammatory effect of CET
(Figure 6). C. tiglium seed contains large proportion of croton oils. Croton oil is the source of phorbol
derivatives, in particular 12-O-tetradecanoylphorbol-13-acetate (TPA), which is known as a potent cell
proliferation enhancer. Thus, it is expected that the CTE may act like TPA, which is known to exert
neuroprotective properties such as neurite outgrowth and growth cone formation [24,25]. Recently,
anti-tumor and antioxidant compounds have been isolated from C. tiglium seeds and characterized
by spectroscopic analysis [26]. CTE is also known to induce the production of vascular endothelial
growth factor (VEGF). VEGF is a secreted mitogen associated with angiogenesis [27]. VEGF was long
thought to be a potent neurotrophic factor for neuronal survival. These studies, therefore, suggest
a neuroprotective effect of CTE. In one study, pro-inflammatory effect of C. tiglium L. have been
reported [28]. Pro-inflammatory cytokines, including TNF-α and IL-1β, were significantly increased
in the macrophage cell line RAW264.7 treated with crude proteins of Croton tiglium L., and the
inflammatory effects was associated with p38-MAPK. In their study, crude protein extracted from
C. tiglium L. with petroleum ether was used for the inflammatory reaction, which is different from our
CTE extracted with the methanol-based method showing anti-inflammatory effects.

Microglia, the local immune cell type of the CNS, are widely distributed in the brain and spinal cord.
Their roles are recognized as the prime components of the CNS inflammatory system. Astrocytes are
the most abundant glia in the brain, and astrocytic activation also contributes to and expands the initial
inflammatory response and neurodestructive effects of microglia [29,30]. Although initial studies on
neuroinflammation suggested that microglial activation was detrimental to neurogenesis [31–33], more
recent studies have proven the beneficial role of microglial activation on the regulation of the migration,
proliferation, and differentiation of neural stem cells [34,35]. In particular, alternative activation of
microglia (type M2) can increase neuroprotective factors such as nuclear factor erythroid 2-related factor
2 and heme oxygenase-1 [36]. In addition, M2 microglia can produce the anti-inflammatory cytokine
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IL-10 and inhibit neuroinflammation [37,38]. It was also shown that BDNF-secreting microglial cells
found in the subventricular zone (SVZ) of the adult mouse brain are highly proliferative and facilitate
nerve regeneration by promoting the migration of neuroblasts to the site of injury [39]. Therefore, the
discovery of new drugs promoting microglial polarization toward the M2 phenotype has become a topic
of interest for the development of potential therapeutic and preventive strategies for neurodegenerative
diseases [2,18,40].

4. Conclusions

In summary, CTE significantly inhibited the production of neurotoxic inflammatory factors,
including NO and TNF-α. CTE increased the production of the neurotrophic factor, BDNF and
phagocytosis in microglia. In addition, CTE increased the survival of neurons protected from
neurotoxic factors released from LPS-stimulated microglia, thereby indicating the neuroprotective
effect of CTE. Although CTE is known to be a poisonous plant, it can be used as a medicine if the amount
and the purification method are properly controlled. The anti-neuroinflammatory and neuroprotective
effects of CTE might be beneficial for neurodegenerative diseases such as AD and PD.

5. Materials and Methods

Cell culture media and antibiotics, such as HyClone Dulbecco’s Modified Eagle Medium (DMEM),
fetal bovine serum (FBS), penicillin, and streptomycin, were purchased from GE Healthcare Life.
Lipopolysaccharide (LPS; Escherichia coli, L2880), methylthiazolyldiphenyl- tetrazolium bromide
(MTT; M2128), and poly-L-lysine (p6407), crotonic acid (113018) were purchased from Sigma Aldrich
(Saint Louis, Missouri, USA). pHrodo® Red Zymosan Bioparticles (P35364) were purchased from
Thermo Fisher Scientific (Carlsbad, CA, USA). Antibodies against arginase 1 (NB100-59730; Novus
Biologicals, Briarwood Avenue Centennial, CO, USA) andβ-actin (MA5-15739; Thermo Fisher Scientific,
Rockford, IL, USA) were also purchased.

CTE preparation. CTE was obtained from the National Development Institute of Korean Medicine;
it exerts an inhibitory effect on NF-κB activation (Homepage, Natural Herb Material Bank, Daegu,
Korea). Briefly, the seed of C. tiglium was refined, dried, and ground into fine powder. The powder
was refluxed twice with 3.5 L of 70% MeOH (sample/MeOH ratio, 1:7; w/w). The extract was filtered
through filter paper and concentrated. The extracts were concentrated under reduced pressure, and
an extract was obtained through a freeze-drying process. The extract was dissolved in DMSO at
100 mg/ml and used as a stock solution.

Cell culture. BV-2 cells, an immortalized mouse microglial cell line [40], were maintained in DMEM
containing 5% FBS and 50 µg/mL gentamicin at 37 ◦C. A highly aggressively proliferating immortalized
(HAPI) rat microglial cell line [41], B35 neuroblastoma cell line, N2a mouse neuroblastoma cell line [42],
and mouse primary microglia and astrocytes were maintained in DMEM containing 10% FBS, 10 U/mL
penicillin, and 10 µg/mL streptomycin at 37 ◦C in a humidified 5% CO2 incubator. Animal-based
and experimental procedures were approved by the Institutional Review Board of the Kyungpook
National University School of Medicine and performed according to the guidelines of the NIH Guide
for the Care and Use of Laboratory Animals. The primary microglial and astrocyte mixed cultures
were prepared from mouse brain, as previously described with minor modifications [43]. In brief, the
brains of 3-day-old C57BL/6 mice were chopped and dissociated by mechanical disruption by using a
cell strainer (size, 70-µm pores). The cells were plated onto poly-L-lysine-coated plates.

Measurement of nitric oxide (NO). NO production in cell culture media was estimated by
measuring the amount of nitrite, a stable NO metabolite. Cells were plated on 96-well plates
(40,000 cells/well) and treated for 24 h with 100 ng/mL LPS in the presence or absence of CTE. At the end
of a 24-h incubation period, the cell culture medium (50 µL) was mixed with an equal volume of Griess
reagent (5% phosphoric acid, 0.1% naphthylethylenediamine dihydrochloride and 1% sulfanilamide)
in a 96-well plate. Absorbance was read at 540 nm by using a microplate reader. Standard curves were
prepared based on the reference values of serially diluted sodium nitrite solution.
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Assessment of cell viability. Cell viability was determined using modified MTT assay. The culture
medium was aspirated after LPS treatment for 24 h, with or without the compounds. MTT (0.5 mg/mL
in phosphate-buffered saline; PBS) was added to the cells, and the mixture was incubated at 37 ◦C for
2 h. The resulting formazan crystals were dissolved in DMSO (Dimethyl sulfoxide). Absorbance was
determined at 570 nm.

Traditional and real-time polymerase chain reaction (RT-PCR). Total RNA was extracted from the
treated cells by using TRIZOL reagent (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s
protocol. cDNA is synthesized from total RNA using the Superscript II reverse transcriptase (Invitrogen)
and an oligo (dT) primer. Traditional polymerase chain reaction (PCR) was performed with specific
primer sets as shown in Table 1 using a T100 Thermal Cycler (Bio-Rad, Richmond, CA, USA). After
PCR, 10 µL of each PCR product was electrophoresed on a 2% agarose gel. DNA fragments were
detected under ultraviolet light following ethidium bromide staining. As the internal reference gene,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used. Quantitative real-time PCR was
performed using the One Step SYBR PrimeScript RT-PCR Kit (Takara Bio, Otsu, Shiga, Japan), according
to the manufacturer’s instructions, followed by detection using the ABI Prism 7000 Sequence Detection
System (Applied Biosystems, California, CA, USA).

Table 1. Primers used for RT-PCR.

Target Genes Accession
Number Forward Primer (5’-3’) Reverse Primer (5’-3’) Temp

(◦C) Cycles

TNF-α NM_013693.2 CATCTTCTCAAAATTCGAGTGACAA ACTTGGGCAGATTGACCTCAG 60 25

iNOS NM_010927.3 CCCTTCCGAAGTTTCTGGCAGCAGC GGCTGTCAGAGCCTCGTGGCTTTGG 70 30

Arg-1 NM_007482 CGCCTTTCTCAAAAGGACAG CCAGCTCTTCATTGGCTTTC 60 29

BDNF NM_007540.4 CGCAAACATGTCTATGAGGGTTC TAGTAAGGGCCCGAACATACGAT 60 30

GAPDH NM_008084 ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA 60 25

Western blot analysis. The cells were washed with cold PBS after various treatments and lysed with
RIPA lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 0.02% sodium azide, 0.1% SDS and 1% NP-40). Equal
amounts of protein were separated on 10% SDS-polyacrylamide gel and transferred to polyvinylidene
difluoride (PVDF) membranes (Bio-Rad Laboratories, California, USA). The blots were blocked with
4% skim milk in PBS with 0.1% Tween-20 (PBST), and then incubated with primary antibodies (goat
anti-Arginase1, 1:500 dilution; Novus, Biologicals, Inc., Littleton, CO, USA) and mouse anti-β-actin
(1:5000 dilution; Sigma-Aldrich, Saint-Louis, MO, USA) overnight at 4 ◦C. After thorough washing
with PBST, horseradish peroxidase-conjugated secondary antibodies (1:2000) in 5% skim milk were
applied for 1 h at room temperature. The blots were developed using an enhanced chemiluminescence
detection kit (SuperSignal™West Femto; Thermo Fisher, Franklin, MA, USA).

Neurotoxicity assay. Green fluorescent protein (GFP)-transfected B35 rat neuroblastoma cells
(B35-GFP) were used to study the neurotoxicity of CTE, as previously described [43]. In brief, rat
microglia cells, namely, HAPI cells, (4 × 104/well in 96-well plate) were treated with LPS (100 ng/mL)
in the presence or absence of 10 µg/mL CTE for 6 h and washed with PBS. Then, the cells were
cultured in DMEM for 48 h. The culture medium was then stored and used as conditional medium
for neurotoxicity assay. B35-GFP neuroblastoma cells (1 × 104/well) were incubated with conditional
medium for 48 h. At the end of incubation, the number of viable B35-GFP cells in five randomly chosen
fields per well was counted, and GFP images were captured by fluorescence microscopy. Neuronal cell
survival was measured by MTT assay. N2a, that is, mouse neuroblastoma cells, were used to confirm
the absence of neurotoxicity in the cells treated with different concentrations of CTE.

Phagocytosis of fluorescent zymosan particles. Primary mixed glial cells (MGC) were seeded
at a density of 2 × 104 cells/well in 96-well plates and cultured for 48 h. Cells were treated with
LPS (1 µg/mL) and/or CTE (10 µg/mL) for 1 h in serum-free DMEM. Fluorescent zymosan particles
(30 µg/mL; zymosan A from Saccharomyces cerevisiae) were added into cells and incubated at 37 ◦C
for 3 h (BioParticles conjugated with Photo; Molecular Probes Inc., Carlsbad, CA, USA). Cells were
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then washed three times with ice-cold PBS to remove unbound particles. Photomicrographs of five
randomly chosen fields were captured under a fluorescent microscope (Nikon ECLIPSE 80i, Nikon
Corp, Nishioi, Shinagawa-ku, Tokyo, Japan).

Statistical analysis. Data represented as the mean ± standard error of mean (SEM) from three or
more independent experiments unless stated otherwise. p-values of < 0.05 were considered statistically
significant. To check the statistical significance of three or more groups, one-way ANOVA was used to
compare the values, followed by Tukey’s multiple comparison test. For the comparison of two groups,
unpaired two-tailed Student’s t-test was used using GraphPad Prism software (version 8). All data of
this work are available from the corresponding authors on request.
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