Supplementary Materials: Development and Application of Extraction Methods for LC-MS Quantification of Microcystins in Liver Tissue

David Baliu-Rodriguez, Daria Kucheriavaia, Dilrukshika S. W. Palagama, Apurva Lad, Grace M. O'Neill, Johnna A. Birbeck, David J. Kennedy, Steven T. Haller, Judy A. Westrick and Dragan Isailovic

он и			
	Congener	2	4
	MC-LR	Leu	Arg
	MC-RR	Arg	Arg
	MC-YR	Tyr	Arg
	MC-LA	Leu	Ala
	MC-LW	Leu	Trp
	MC-LF	Leu	Phe

Figure S1. General MC structure. Amino acids at positions 2 and 4 vary depending on congener. Common congeners are shown in the inset.

Figure S2. General structures of common MC adducts A) MC-GSH and B) MC-Cys. Primary amines are protonated at mobile phase pH.

Figure S3. LC-SIM-MS chromatograms showing separation of 8 MCs. *m*/*z* values of detected monoisotopic MC ions are in Table S1.

Figure S4. Relative abundances of 7 MCs spiked into 5 mouse liver samples and extracted using 5 different solvents: 55:45 (v:v) CH₃CN:H₂O containing 1% FA (ES-6), 65:35 (v:v) CH₃CN:H₂O containing 1% FA (ES-7), 75:25 (v:v) CH₃CN:H₂O containing 1% FA (ES-8), 85:15 (v:v) CH₃CN:H₂O containing 1% FA (ES-9), and CH₃CN containing 1% FA (ES-10). Relative abundances were compared. Error bars are ± standard deviation of triplicate LC-MS measurements.

Figure S5. Relative abundances of 7 MCs spiked into 4 mouse liver samples and extracted using 4 different solvents: 85:15 (v:v) CH₃CN:H₂O containing 0.1% FA (ES-11), 85:15 (v:v) CH₃CN:H₂O containing 1% FA (ES-9), 85:15 (v:v) CH₃CN:H₂O containing 100 mM ZnSO₄ and 0.1% FA (ES-12), and 85:15 (v:v) CH₃CN:H₂O containing 100 mM ZnSO₄ and 1% FA (ES-3). Relative abundances were compared. Error bars are ± standard deviation of triplicate LC-MS measurements.

Figure S6. Relative abundances of 7 MCs spiked into 5 mouse liver samples and extracted using 5 different solvents: 85:15 (v:v) CH₃CN:H₂O containing 25 mM ZnSO₄ and 1% FA (ES-13), 85:15 (v:v) CH₃CN:H₂O containing 50 mM ZnSO₄ and 1% FA (ES-14), 85:15 (v:v) CH₃CN:H₂O containing 100 mM ZnSO₄ and 1% FA (ES-3), 85:15 (v:v) CH₃CN:H₂O containing 150 mM ZnSO₄ and 1% FA (ES-15), and 85:15 (v:v) CH₃CN:H₂O containing 200 mM ZnSO₄ and 1% FA (ES-16). Relative abundances were compared. Error bars are ± standard deviation of triplicate LC-MS measurements.

A)

B)

Figure S7. Matrix-matched internal standard (IS) calibration curves used to quantify 7 MCs extracted from **A**) wild-type and **B**) Lepr^{db}/J mouse liver samples.

B)

Figure S8. Concentration of **A**) MC-LR and **B**) MC-LR-Cys in the livers of wild-type mice gavaged with 100 μ g MC-LR per kg bodyweight. The livers of mice 1–5 were harvested 2 hours after final gavage, the livers of mice 6–10 were harvested 4 hours after final gavage, and the livers of mice 11–15 were harvested 48 hours after final gavage. MCs were extracted from 40-mg liver samples that were spiked with internal standard. MC-LR in the livers of mice 2 and 9 was detected below the LOQ and could not be quantified. Error bars are ± standard deviation of triplicate LC-MS measurements.

Figure S9. Concentration of MC-LR and MC-LR-Cys in the livers of Lepr^{db}/J mice gavaged with MC-LR. Mice 1–9 were gavaged with 50 μ g MC-LR per kg bodyweight, and mice 10–16 were gavaged with 100 μ g MC-LR per kg bodyweight. Tissues of mice 1–4 and 10–13 were harvested 2 hours after final gavage, and tissues of mice 5–9 and 14–16 were harvested 4 hours after final gavage. MCs were extracted from 40-mg samples that were spiked with internal standard. MC-LR-Cys concentration in the liver of mouse 12 (45.75 ng/g) was found to be an outlier using Grubbs' test with 95% confidence, and removed. Error bars are ± standard deviation of triplicate LC-MS measurements.

Table S1. Mass accur	acies of detected	monoisotopic MC ions.
----------------------	-------------------	-----------------------

MC Congener	Ion formula	Theoretical m/z	Experimental m/z	Accuracy (ppm)
MC-LR	$[C_{49}H_{74}N_{10}O_{12} + H]^+$	995.5560	995.5574	1.41
MC-RR	[C49H75N13O12 + 2H] ²⁺	519.7902	519.7907	0.96
MC-YR	$[C_{52}H_{72}N_{10}O_{13} + H]^+$	1045.5353	1045.5368	1.43
MC-LA	[C46H67N7O12 + H] +	910.4920	910.4935	1.65
MC-LF	[C52H71N7O12 + H] +	986.5233	986.5247	1.42
MC-LW	$[C_{54}H_{72}N_8O_{12} + H]^+$	1025.5342	1025.5356	1.37
MC-LR-Cys	$[C_{52}H_{81}N_{11}O_{14}S + 2H]^{2+}$	558.7915	558.7923	1.43
C2D5 MC-LR	$[C_{51}H_{73}D_5N_{10}O_{12} + H]^+$	1028.6187	1028.6200	1.26

MC Congener	5 ng/g		100 ng/g		
	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	
MC-LR	94.2	2.43	95.0	6.33	
MC-RR	92.0	5.35	93.7	3.48	
MC-YR	93.7	7.35	95.9	2.25	
MC-LA	92.0	5.01	80.6	2.11	
MC-LF	80.4	5.35	74.0	1.73	
MC-LW	74.0	4.65	60.8	3.12	
MC-LR-Cys	71.4	3.11	77.3	2.53	
C2D5 MC-LR	76.4	3.98	67.9	4.73	

Table S2. Percent recoveries of 8 MCs spiked at 2 concentration levels into 20-mg mouse liver samples and extracted using the optimized procedure.

Table S3. Percent errors and relative standard deviations at the LOQs of 7 MCs. Calibration curve equations were used to calculate experimental value of LOQs.

MC Congener	LOQ (ng/g)	Experimental value (ng/g)	Error (%)	RSD (%)
MC-LR	0.25	0.29	16.24	13.62
MC-RR	0.50	0.43	13.78	19.81
MC-YR	0.50	0.46	8.72	14.08
MC-LA	0.75	0.82	9.74	3.30
MC-LF	2.50	2.88	15.08	9.11
MC-LW	2.50	2.21	11.63	4.62
MC-LR-Cys	0.75	0.76	1.88	3.15