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Abstract: Food and crop contaminations with mycotoxins are a severe health risk for consumers and
cause high economic losses worldwide. Currently, different chromatographic- and immuno-based
methods are used to detect mycotoxins within different sample matrices. There is a need for
novel, highly sensitive detection technologies that avoid time-consuming procedures and expensive
laboratory equipment but still provide sufficient sensitivity to achieve the mandated detection
limit for mycotoxin content. Here we describe a novel, highly sensitive, and portable aflatoxin B1
detection approach using competitive magnetic immunodetection (cMID). As a reference method, a
competitive ELISA optimized by checkerboard titration was established. For the novel cMID
procedure, immunofiltration columns, coated with aflatoxin B1-BSA conjugate were used for
competitive enrichment of biotinylated aflatoxin B1-specific antibodies. Subsequently, magnetic
particles functionalized with streptavidin can be applied to magnetically label retained antibodies.
By means of frequency mixing technology, particles were detected and quantified corresponding
to the aflatoxin content in the sample. After the optimization of assay conditions, we successfully
demonstrated the new competitive magnetic detection approach with a comparable detection limit
of 1.1 ng aflatoxin B1 per mL sample to the cELISA reference method. Our results indicate that the
cMID is a promising method reducing the risks of processing contaminated commodities.

Keywords: frequency mixing technology; immunofiltration; magnetic beads; mycotoxin

Key Contribution: Novel nanoparticle-based aflatoxin B1 detection system using magnetic frequency
mixing technology for the possibility of highly sensitive on-field testing.

1. Introduction

According to the Food and Agriculture Organization of the United Nations and a recent study by
Eskola et al. in 2019, approximately 25% of food-crops worldwide are contaminated with mycotoxins,
a group of secondary metabolites produced by molds [1,2]. Particularly, the toxins of Aspergillus,
Fusarium, and Penicillium species are the most detrimental ones because these so-called aflatoxins,
ochratoxins, trichothecenes (especially deoxynivalenol), and zearalenone have various adverse effects
on the health of humans and animals [3–8]. From all mycotoxins, aflatoxin B1 (AFB1), mainly produced
by Aspergillus species, has the strongest adverse effects on health, as it might lead to liver cancer [9–12].
Several factors can promote the enrichment of mycotoxins within food products. Key drivers are
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late harvests of crops as well as elevated humidity and temperature during storage. Within the EU,
but also in the USA, Brazil, and other countries, regulatory requirements regarding the maximum
tolerable levels of mycotoxins in various foods have been established. Regulatory limits in the EU for
the IARC group 1 carcinogen aflatoxin B1 are set to 2–8 ng/g (ppb; ng·mL−1) in grain, corn, nuts, and
fruits, as published in (EG) Nr. 1881/2006. Especially due to those harsh effects and corresponding low
regulatory limits, highly sensitive and reliable detection technologies are of primary importance.

Currently, there are basically three analytical technologies used for mycotoxin testing. On the
one hand, laboratory-based liquid chromatography (LC) coupled to mass spectrometry (MS) is the
most common method, as well as enzyme-linked immunosorbent assay (ELISA), are routinely used
for highly sensitive mycotoxin testing. On the other hand, lateral flow assays (LFA) are used for fast
but less sensitive on-field testing [13–19]. Although LC-MS/MS methods have the great advantage of
high sensitivity and simultaneous detection of currently more than 500 mycotoxins within a single
run, expensive equipment, highly qualified staff, and a possible complex sample cleanup inhibit the
applicability for fast on-site testing [20]. In comparison to LC-based methods, ELISA techniques are
cheaper and, according to Renauld and colleagues (2019), faster in assay procedure, but also require a
lab with the corresponding equipment for sample preparation and analysis [21].

In the field of ELISA, the most commonly used format for aflatoxin detection is the competitive
assay because of the small molecular structure of the antigen that prevents the simultaneous binding
of two antibodies, which would be the prerequisite for a sandwich ELISA. The basic working principle
is the coating of mycotoxin-conjugate onto a microtiter plate followed by the addition and incubation
of a mycotoxin-specific antibody in the presence of a liquid extract of sample material. In this
step, mycotoxins in the sample compete with coated mycotoxins for antibody-binding. Subsequently,
antibodies saturated with soluble mycotoxins are removed during a washing step and cannot contribute
to a signal, achieved by either direct readout or indirect readout by means of a labeled secondary
antibody. In this format, a low signal corresponds to a high concentration of mycotoxin within the
sample, and vice versa. Most of the currently commercially available ELISA-based assay formats have
a limit of detection (LOD) ranging from 1 µg·mL−1 (equals ng·mL−1 or ppb) up to 50 µg·mL−1, for
example, Ridascreen Aflatoxin B1 30/15 test kit (r-biopharm, Darmstadt, Germany) or AgraQuant
Aflatoxin B1 ELISA test (Romer Labs, Butzbach, Germany). Nevertheless, due to the requirement for
laboratory equipment, their usability for on-site testing is very limited. In such cases, commercially
available LFA have the highest potential for fast and cost-effective on-site mycotoxin testing. However,
most of these assay systems provide only qualitative results with LODs ranging from 4 ppb to 5 ppb, as
achieved with RIDA®Quick Aflatoxin test kit(r-biopharm, Darmstadt, Germany) or AFB1 (Aflatoxin B1)
lateral flow assay kit (Elabscience, Texas, USA), respectively. Primarily due to matrix interference
effects, these assays can result in false-positive detection [22,23].

A novel, portable magnetic immunodetection approach has been described in previous
studies [24–28]. The detection of human and plant pathogens, as well as various proteins by sensing and
quantifying superparamagnetic particles (MP) with the help of a portable magnetic reader (Figure 1A),
have been successfully demonstrated. This device can be operated using a conventional external power
adapter or a portable battery, allowing an on-site readout without electrical infrastructure. For this
immunomagnetic detection approach, MPs were functionalized with monoclonal antibodies directed
against target molecules, retained in a sandwich-based manner within an immunofiltration column,
and can be detected by means of frequency mixing magnetic detection (FMMD) technology [29].

In this technique, magnetic particles are subjected to two sinusoidal magnetic fields of different
frequencies generated by two excitation coils, which are schematically shown within the measurement
head in Figure 1B. Here, MPs are exposed to a low- and high-frequency magnetic field, so-called
driving frequency, generated by the outermost coil, and excitation frequency, generated by the
middle-positioned coil. The low frequency with 61 Hz (f2) has an amplitude of a few millitesla,
resulting in alternating positive and negative magnetic saturation of superparamagnetic particles
oscillating with a frequency of 2f2 of 122 Hz [29]. The high-frequency magnetic excitation field
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(f1) with 49 kHz probes the magnetization state of the superparamagnetic particles and yields an
iron oxide dose-dependent signal when the low-frequency driving field is close to zero. Finally, the
resulting mixing frequency signal of f1 + 2f2 can be demodulated and detected by the innermost coil,
composed of two adjacent sections, so-called detection coil (upper one) and reference coil (lower one).
Those sections differ only in the winding-orientation of coils. With this clock- and counterclockwise
orientation yielding induced voltages of opposite sign, the directly induced excitation field can be
canceled out. By placing the sample carrying the MPs in the detection head, the resulting signal is
amplified, measured, and directly visualized at the touchscreen of the handheld, portable magnetic
reader (Figure 1). Based on a calibration curve, the detected signal can be attributed to the amount of
analyte within the sample.
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Figure 1. (A) Handheld, portable frequency mixing-based readout device and (B) schematic cross-section
of detection head composed of driving coil providing the low driving frequency (f2), the excitation
coil providing the high excitation frequency (f1) and detection unit based on a detection coil detecting
the resulting mixing frequency signal of magnetic particles (MPs; f1 + 2f2) together with the directly
induced signal and the reference coil detecting only the directly induced signal. The finally resulting
measuring signal does not contain the directly induced excitation due to the opposite winding direction
of detection and reference coil.

Motivated by the above-described drawbacks of currently used analytical methods for sensitive
on-field testing, the aim of this study was to develop a novel, highly sensitive, and portable assay based
on competitive magnetic immunodetection (cMID) and FMMD. The sensitivity should be comparable
to a laboratory-based ELISA. Hence, initially, a competitive ELISA (cELISA) was established, serving
as a reference method. Assay parameters, such as the used coating and antibody concentrations, were
optimized to reach a sufficient sensitivity for the detection of aflatoxin B1. Afterward, the cMID assay
was established using the same optimization strategy in combination with further evaluation of the
required amount of nanoparticles. The basic principle of cMID is the use of biotinylated antibodies,
which can be enriched within the coated immunofiltration column by a competitive binding reaction
depending on the amount of pre-captured mycotoxin. By flushing magnetic particles functionalized
with streptavidin through the column by gravity flow, particles can bind to retained antibodies and
subsequently be detected using FMMD. Figure 2 visualizes the basic cMID principle (Figure 2A)
and the competitive binding reaction within the column with the corresponding measuring signal
(Figure 2B).
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Figure 2. Schematic overview of the competitive magnetic immunodetection principle.
(A) Immunofiltration column coated with aflatoxin B1-BSA mycotoxin conjugate with bound
biotinylated monoclonal antibodies targeting aflatoxin B1. Magnetic particles functionalized with
streptavidin bind to antibodies and can be detected by FMMD. (B) After pre-incubation of biotinylated,
monoclonal antibodies with serially diluted free aflatoxin B1, the sample is flushed through an aflatoxin
B1-BSA coated immunofiltration column. Non-saturated antibodies bind to the coated antigen and are
retained within the matrix. The higher the mycotoxin content within the sample, the more antibodies
are saturated and are flushed through the column. Afterward, streptavidin-functionalized magnetic
particles are applied onto the column, bind to retained antibodies and can be detected using FMMD.

2. Results

2.1. Competitive ELISA Conditions

As a reference method to novel cMID, a cELISA was established using optimized conditions
defined by checkerboard titration. Here, aflatoxin B1-BSA conjugate was coated, followed by the
application of aflatoxin B1-specific monoclonal antibodies pre-incubated with soluble aflatoxin B1 with
concentrations ranging from 0.006 ng·mL−1 to 5000 ng·mL−1 sample buffer. Absorbance was measured
at 405 nm by indirect readout using a secondary antibody conjugated to horseradish peroxidase (HRPO)
targeting mouse antibodies and application of respective substrate.

2.1.1. ELISA Checkerboard Titration Test

In order to determine optimal aflatoxin B1-BSA (AFB1-BSA) coating concentrations and the
appropriate amount of aflatoxin B1-specific monoclonal antibody to obtain the highest possible
sensitivity, a checkerboard titration test was performed. As shown in Figure A1, AFB1-BSA coating
concentrations ranging from 0.1 µg·mL−1 up to 5 µg·mL−1 in combination with aflatoxin B1-specific
monoclonal antibody (mAb) AFB1_002 concentrations ranging from 19.5 ng·mL−1 up to 1250 ng·mL−1

were tested in a 96-well plate. Increasing signals were achieved with antibody concentrations above
19.5 ng·mL−1 and coating concentrations up to 0.6 µg·mL−1. Coating of AFB1-BSA with higher amounts
than 0.6 µg·mL−1 resulted in saturated readout signals at all antibody concentrations that did not
further increase. Considering sensitivity, the lowest possible amount of antibody should be used
with coating concentrations resulting in highest possible signals. As a consequence, combinations of
75 ng·mL−1 or 150 ng·mL−1 antibody with 0.2 µg·mL−1 and 0.4 µg·mL−1 coating of AFB1, respectively,
seem to be best suited for further experiments.
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2.1.2. cELISA Calibration Curve Experiments

To identify the optimal assay parameters, calibration experiments were performed with the
previously most promising combinations of AFB1-BSA coating and aflatoxin B1-specific monoclonal
antibody AFB1_002 concentrations (Figure 3). Free aflatoxin B1 was used as a competitor, dilutions
ranging from 0.006 ng·mL−1 to 50,000 ng·mL−1. The combination of 0.2 µg·mL−1 coating and
150 ng·mL−1 antibody resulted in the highest sensitivity in combination with stable data behavior.
Corresponding IC50 and Limit of Detection (LOD) values of all four combinatorial experiments
are shown in Table 1. Although antibody concentrations below 75 ng·mL−1 should theoretically
lead to a higher sensitivity, this was actually not observed due to divergent measuring values
and thus a non-reliable assay procedure under these conditions (compare 0.4 µg·mL−1 coating and
75 ng·mL−1 mAb). Furthermore, reducing the amount of mAb resulted in a twofold increase of readout
time from approximately 10 min to more than 20 min (data not shown).
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Figure 3. Competitive ELISA-based calibration curves of different pairs of aflatoxin B1-BSA coating
and aflatoxin B1-specific monoclonal antibody AFB1_002 concentrations pairs. As a competitor, free
aflatoxin B1 in dilutions ranging from 0.006 ng·mL−1 up to 50,000 ng·mL−1 in sample buffer was used.
The indirect readout was done at 405 nm after the application of mouse-specific secondary antibody
conjugated with horseradish peroxidase and respective substrate. Each data point represents the
mean ± SD (n = 3).

Table 1. Sensitivity values of different cELISA-based calibration measurements with different pairs of
aflatoxin B1-BSA coating and aflatoxin B1-specific monoclonal antibodies.

ELISA Condition IC50 Limit of Detection

0.2 µg·mL−1 Coating
4.7 ng·mL−1 0.69 ng·mL−1

75 ng·mL−1 Antibody

0.2 µg·mL−1 Coating
3.5 ng·mL−1 0.28 ng·mL−1

150 ng·mL−1 Antibody

0.4 µg·mL−1 Coating
6.3 ng·mL−1 0.75 ng·mL−1

75 ng·mL−1 Antibody

0.4 µg·mL−1 Coating
8.4 ng·mL−1 0.88 ng·mL−1

150 ng·mL−1 Antibody

Considering the reliability of the developed cELISA, a further repetition of the best-paired
concentration setting, as shown in Table 1, was done. Results yielded in an averaged IC50 value
of 3.79 ng·mL−1 and an averaged LOD of 0.39 ng·mL−1, as shown in Figure 4. Those sensitivity
values obtained by our ELISA setup were used as a reference for competitive magnetic
immunodetection development.
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mAb with aflatoxin B1 competitor concentrations ranging from 0.006 ng·mL−1 to 500,000 ng·mL−1.
Measuring signal was achieved by indirect readout at 405 nm with mouse-specific secondary antibody
conjugated to horseradish peroxidase and respective substrate LOD: limit of detection; IC50: half
maximal inhibitory concentration. Each data point represents the mean ± SD (n = 12).

2.2. Competitive Magnetic Immunodetection

2.2.1. Development of Competitive Magnetic Immunodetection

In analogy to the development of the cELISA, a similar strategy was used for establishing suitable
cMID conditions regarding AFB1-BSA coating and suitable antibody concentrations. For this purpose,
equilibrated polyethylene filters were coated with AFB1-BSA conjugate concentrations ranging from
0.5 µg·mL−1 up to 10 µg·mL−1 with one column per condition. Remaining binding sites were blocked
with a BSA solution. Then aflatoxin B1-specific biotinylated monoclonal antibody AFB1_002 in
concentrations ranging from 0.3 µg·mL−1 up to 10 µg·mL−1 were applied onto these columns after
pre-incubation with 180 µg·mL−1 of 700 nm superparamagnetic streptavidin-functionalized particles
(Figure A2). After rinsing the columns with PBS by gravity flow, the columns were inserted into the
handheld magnetic readout device and superparamagnetic particles were excited by frequency mixing
technology resulting in a response signal in the millivolt (mV) range after amplification.

Especially in the range of low antibody concentrations between 0.3 µg·mL−1 and up to 1.3 µg·mL−1,
a saturation of measurement signal was reached at higher coating concentrations. In contrast, using
higher antibody concentrations, no clear saturation of signal was observed even at higher coating
concentrations. Furthermore, using antibody concentrations of 5 µg·mL−1 or 10 µg·mL−1 resulted
in high and erratic signal variability. As explained in Section 2.1.1, the lowest possible antibody
concentration should be used for obtaining the highest possible sensitivity. On the other hand, reducing
the antibody concentrations leads to a reduction of possible binding sites for magnetic particles and,
as a consequence, to a reduction in measuring signal, which may limit the dynamic range as well as
the overall robustness of the assay. To obtain the highest possible measuring signal in combination
with the highest possible sensitivity, 2 µg·mL−1 coating in combination with 2.5 µg·mL−1 biotinylated
antibody were used.

As shown in Figure A2, the measuring signal increased with higher antibody concentrations.
Therefore, it can be assumed that at the used concentrations of 180 µg·mL−1 there is still an excess
of magnetic particles when using 2.5 µg·mL−1 biotinylated mAb. To test this hypothesis, different
amounts of 700 nm magnetic particles ranging from 2.5 µg·mL−1 to 180 µg·mL−1 were flushed through
immunofiltration columns coated with 2 µg·mL−1 AFB1-BSA conjugate after applying 2.5 µg·mL−1
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biotinylated antibody to the matrix (Figure 5). The expected saturation of measuring signal was observed
when using more than 80 µg·mL−1 magnetic particles. Adding 80 µg·mL−1 resulted in 41.2 mV± 5.5 mV,
in comparison to higher bead concentrations with averaged signals of 47.4 mV ± 4.1 mV. For further
experiments, 80 µg·mL−1 magnetic particle suspension was used.
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2.2.2. cMID Calibration Curve Experiments

Once the optimal ratio of assay reagents of 2 µg·mL−1 of the coating antigen and 2.5 µg·mL−1 of
mycotoxin-specific antibody in combination with 80 µg·mL−1 magnetic particles was determined based
on the above-shown experiments, cMID calibration experiments for the detection of aflatoxin B1 were
performed, see Figure 6A. For this, samples with serially diluted free AFB1 in the range of 0.006 ng·mL−1

to 50,000 ng·mL−1 were prepared. After adding biotinylated mAb to various dilutions of the analyte,
a pre-incubation of one hour was done for a complete capturing of mycotoxins. Subsequently, the
reaction mixture was applied onto AFB1-BSA coated and blocked columns. Afterward, 700 nm
diameter magnetic particles functionalized with streptavidin at the above-determined optimum
concentration of 80 µg·mL−1 were added. As shown in Figure 6A, the data show the expected reciprocal
correlation of mycotoxin concentration and signal but with high variability of signals for dilutions in the
low- ng·mL−1 range, which prevents a reliable determination of sensitivity parameters. We speculate
that this observation could be caused by sterical hindrance within the polyethylene matrix due to the
usage of big-sized particles, as can be seen in the standard deviation and data fluctuation with bead
concentrations of 80 µg·mL−1 or higher (Figure 5). Based on these findings, the assay was repeated
with the same parameters except the size of beads used. For this, tenfold smaller magnetic particles
were used (70 nm) in order to avoid steric hindrance. As shown in Figure 6B, the use of smaller
particles results in an approximately tenfold increased detection signal of roughly 600 mV with reduced
variability. With this adapted assay procedure, IC50 values of 5.4 ng·mL−1 and a LOD of 1.1 ng·mL−1

were determined, which is in the same sensitivity range as the cELISA (Figure 4).
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biotinylated mAb in combination with (A) 700 nm streptavidin-functionalized magnetic particles, and
(B) 70 nm streptavidin-functionalized magnetic particles with aflatoxin B1 competitor concentrations
ranging from 0.006 ng·mL−1 to 500,000 ng·mL−1. LOD, limit of detection; IC50, half maximal inhibitory
concentration. Each data point represents the mean ± SD (n = 2).

3. Discussion

In this study, we demonstrated for the first time, a competitive magnetic immunodetection assay
for efficient detection and quantification of aflatoxin B1 with comparable sensitivity to described
laboratory-based cELISA. Especially due to the handheld reader device which can be operated using a
portable battery and without additional laboratory equipment, the method described here is suitable for
sensitive on-site aflatoxin B1 testing. Commonly used analytical methods for detection of mycotoxins
either exhibit high sensitivity in a laboratory-based setting or can be used on-site with reduced
sensitivity [21].
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To establish the novel cMID method, several concentration settings of a cELISA as reference
method were tested and optimized using checkerboard titration (Figure A1). Here, the most suitable
combination of antigen coating concentration and the amount of used antibody was determined.
As explained in Section 2.1.1, in all tested antibody concentrations, for a coating of 0.4 µg·mL−1 and
onwards, a saturation in measuring signal could be detected (Figure A1). A clear difference to this can
be seen within the checkerboard optimization experiment for cMID (Figure A2). Here, a saturation-like
performance can either be seen when using antibody concentrations up to 2.5 µg·mL−1 or, if further
increasing antibody concentrations, saturation cannot be reached. This could be due to the more than
40-fold higher protein binding surface of immunofiltration columns in comparison to the binding
surface of an ELISA microtiter plate well. Especially due to the highly porous membrane of the
immunofiltration column, a higher protein binding capacity can be reached. High binding 96-well
microtiter plates (Greiner Bio-One, article number 655061) have a maximum binding capacity of
600 ng·cm2, whereas ABICAP immunofiltration columns can bind up to 24,000 ng·cm2, which in fact
explains the absence of signal saturation at the used conditions. A further difference when using
checkerboard titration for assay optimization of cELISA or cMID can be seen in fluctuating readout
signals, whereas in ELISA, concentration-dependent signals were obtained with almost no variability
between consecutive measuring points. In contrast, signals generated in MID checkerboard titration
varied, especially at high antibody concentrations. This could be caused by an overdose of magnetic
particles, which might result in sterical hindrances and a partly erratic aggregation of particles within
the assay matrix. Based on this hypothesis, a magnetic-particle dose adaptation was made by reducing
the applied concentration towards robustly detectable saturated measuring signals (Figure 5).

However, the resulting cMID assay did not lead to the expected results when using 700 nm
magnetic beads. Switching to 70 nm magnetic particles instead resulted in a tenfold increase of
measuring signal combined with reduced variability and provides a basis for a highly sensitive and
reliable assay (Figure 6). The results presented here correlate with data published by Achtsnicht et al.
in 2019, where the authors used magnetic frequency mixing for the detection of cholera toxin subunit
B (CTB) in a sandwich-based manner [27]. In their experiments, using magnetic particles with
hydrodynamic diameters of 75 nm and 1010 nm, they observed an eight-fold higher response signal
with smaller particles compared to the larger beads when detecting a concentration of 750 ng·mL−1

CTB. The most simple explanation for this striking difference would be the higher absolute number of
small particles compared to larger particles when used at identical concentrations (80 µg·mL−1) since
the molar concentration is proportional to the molecular weight of the particles. By applying a higher
ratio of small particles onto the column, a higher amount of small MPs could bind to antigens coated
on the column surface. Another explanation could be the occurrence of steric hindrance within the
ABICAP immunofiltration matrix when using large particles. Especially if there is a low concentration
of free mycotoxin within the sample, a high amount of biotinylated antibody will be retained within
the matrix in a competitive assay approach, resulting in a high antibody density on the matrix surface.
When large MPs are applied, steric hindrance can occur at the surface. Either multiple, closely located
biotinylated antibodies could be linked to one MP, or multiple antibodies could be blocked due to the
size of large MPs. Here, especially the thousand-fold increased volume of 700 nm diameter MPs in
comparison to 70 nm MPs in diameter might have the most important role. By the greatly increased
size and volume, several antibodies are covered by one single MP, so that they are no longer accessible
for binding of further MPs. By using smaller particles, shielding effects and sterical hindrances at the
surface are reduced, resulting in a higher magnetic particle density within the column, and finally,
a higher readout signal. A similar effect observed by Achtsnicht et al. (2019) when using small 75 nm
instead of large 1010 nm particles in their MID experiments was also explained by the blocking of
remaining binding sites [27]. The authors also found similar high standard deviations when large
particles remain in a high concentration within the column (Figure 6A). With such a high SD, sensitive
detection of either CTB or aflatoxin B1 is almost impossible. In their study, a LOD of 3.1 ng·mL−1 was
found when using the large particles, but a more than 15-fold lower LOD of 0.2 ng·mL−1 could be
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reached using the small-sized MPs. In our study, especially due to the high standard deviations at
high measuring signals when exciting the 700 nm MPs for aflatoxin B1 detection, a reliable calculation
of LOD or IC50 values was not possible. However, by using 70 nm particles, high and stable readout
signals in combination with a perfectly matching nonlinear-fit (R2 = 0.9938) enabled the reliable
calculation of LOD and IC50 values of 1.1 ng·mL−1 and 5.4 ng·mL−1, respectively, which are in the
same sensitivity range as our comparative lab-based cELISA

Although the best performance of the cMID assay was achieved with 70 nm small magnetic
particles, the general applicability of 700 nm large particles in cMID assays should not be completely
neglected since, in contrast to small particles, larger particles can be separated in a gradient magnetic
field. However, the possibility of magnetic separation and thereby enrichment of magnetic particles
might play a crucial role in sample preparation where cleanup and concentrating of an analyte is
required to achieve sufficient assay sensitivity, as it was used for example by Lee et al. (2013) or
Xuan and colleagues (2019) [30,31]. In the case of mycotoxin detection, magnetic separation-based
sample cleanup could be beneficial, especially when working with partially soluble or insoluble, or
roughly homogenized, e.g., grain samples. After magnetic beads captured the mycotoxin molecules
in the sample, a magnetic separation step can be applied in which magnetic particles are retained in
the magnetic field, while sample debris can be discarded. Additionally, separated mycotoxin-loaded
magnetic particles could be resuspended in a much smaller volume, resulting in an enrichment of
analyte. As a consequence, this could lead to increased sensitivity when samples are finally analyzed
by cMID.

The 70 nm particles used in this study cannot be efficiently separated in a magnetic gradient
field, since their magnetic attraction is low, which was shown by Achtsnicht and colleagues (2018) [32].
They correlated the magnetophoretic velocity of superparamagnetic particles when applying a magnetic
field and found an increased velocity with increasing particle size [32]. Typically only bigger particles
above 700 nm are used for magnetic separation experiments [30,31]. Further testing of different beads
or other strategies as combining big and small-sized particles will be addressed in further studies to
enable an optimized pairing of separation and cMID.

In conclusion, we successfully demonstrated the development and implementation of a competitive
magnetic immunodetection assay for the detection and quantification of aflatoxin B1 with a LOD of
1.1 ng·mL−1. Based on our findings, it can be concluded that the competitive magnetic immunodetection
is a powerful tool for portable, easy-to-use on-site monitoring of mycotoxin contamination in various
matrices to reduce the risk of processing contaminated food and agricultural products. In future work,
we will focus on the further optimization of the cMID procedure using the 70 nm MPs. Especially,
a significant reduction of the assay time from currently approximately 4.5 h to less than one hour
should be addressed, similar to that described by Rettcher et al. (2015) [26]. There a sandwich-based
MID assay lasting less than 30 min was achieved by a more than 50% reduction of initially needed
assay time [26]. By using MPs, pre-conjugated with specific anti-mycotoxin antibodies, ready-to-use
coated and blocked immunofiltration columns, and testing successive reductions of incubation times
of sample-pre-incubation and competitive binding reaction within the matrix, an additional increase of
applicability for on-site testing should be possible. The applicability of the described cMID approach
will be further studied regarding the detection and quantification of other mycotoxins, as well as a
combination of those toxins within a food matrix of one sample. Especially the multiplex detection
of various mycotoxins within one sample will be addressed as shown by the multiplex detection
of several antibodies in stacked sample matrices by Achtsnicht et al. (2019) [33]. Here the authors
detected two different target molecules, namely antibodies, within one sample solution by stacking
3D printed immunofiltration columns coated with different capture antibodies in a sandwich-based
MID approach. By adapting this procedure, multiple individually coated matrices could be used
for the specific retention of corresponding anti-mycotoxin antibodies in a cMID assay, and with this,
a multiplex detection in a food matrix could be obtained.
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4. Materials and Methods

4.1. Material and Chemicals

Dimethyl sulfoxide, Tween-20, Aflatoxin B1, Aflatoxin B1-BSA, EZ-Link™NHS-PEG4 Biotinylation
Kit, ABTS buffer, as well as ABTS tablets were purchased from Merck KGaA, Darmstadt, Germany.
NaCl, KCl, Na2HPO4 × 12 H20, KH2PO4, Na2(CO3), NaHCO3, Milk powder, and Albumin Fraction V
(biotin-free) were acquired from Carl Roth, Karlsruhe, Germany.

The used coupling buffer was prepared by dissolving 15 mM Na2CO3 and 35 mM NaHCO3 in
MilliQ-water, and pH was set to 9.6 with glacial acetic acid. Phosphate buffered saline (PBS) was
prepared by dissolving 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4 × 12 H2O, and 1.5 mM KH2PO4

in MilliQ-water and setting pH to 7.4 with hydrochloric acid. As a washing buffer, PBS-T was produced
by adding 0.05% (v/v) Tween-20 to PBS. ELISA blocking buffer (EBP) was prepared by adding 5%
(w/v) milk powder to PBS. For magnetic immunodetection experiments, blocking solution consists of
1% (w/v) albumin fraction V (biotin free) in PBS, and is called MID-BP. All other chemicals, except
Tween-20, were acquired from Roth.

Immunofiltration columns (ABICAP HP columns) were purchased from Senova Gesellschaft
für Biowissenschaft und Technik mbH, Weimar, Germany. High binding 96-well microtiter plates
(article number 655061) were purchased from Greiner Bio-One GmbH, Frickenhausen, Germany.
Anti-mycotoxin monoclonal antibody AFB1_002 was purchased from fzmb GmbH, Bad Langensalza,
Germany. Secondary antibody goat anti-mouse IgG-HRPO (article number 115-035-008) was
purchased from Jackson ImmunoResearch Europe Ltd. UK. 700 nm streptavidin-functionalized
magnetic particles (nanomag®-CLD/synomag®-CLD; article number 05-19-502 S09718) as well as
70 nm streptavidin-functionalized magnetic particles (synomag®-D, article number 104-19-701) were
purchased from micromod Partikeltechnologie GmbH, Rostock, Germany.

4.2. Optimization of ELISA

The most suitable aflatoxin B1-BSA coating concentrations for a competitive ELISA protocol in
combination with appropriate anti-aflatoxin B1 monoclonal antibody concentrations were determined
by checkerboard titration. Throughout the following protocol, all incubation steps were performed
at room temperature for one hour in the dark. For coating varying concentrations of AFB1-BSA, the
antigen was diluted in a coupling buffer, and 100 µL per well was added to a 96-well highbinding
microtiter plate (Greiner Bio-One) and incubated as mentioned above. After washing each well thrice
with PBS-T, all wells were blocked using 200 µL of EBP and incubated. Then, the plate was washed
again, and concentrations of monoclonal antibody ranging from 19.5 ng·mL−1 up to 1250 ng·mL−1,
diluted in PBS, were added. After another washing step, as described above, 100 µL of secondary
antibody goat anti-mouse IgG-HRPO, diluted 1:10,000 in PBS was added to each well and incubated.
Prior to readout with 100 µL of 1 mg·mL−1 ATBS substrate in ABTS buffer, the plate was washed again.
Absorption was measured at 405 nm after 10 min incubation in the dark.

4.3. cELISA Procedure

For competitive ELISA procedure, AFB1-BSA conjugate was diluted in coupling buffer and plated
with 100 µL per well onto a high binding 96-well microtiter plate. As mentioned in Section 4.2, all
incubation steps were performed at room temperature for one hour in the dark. After the washing step
with PBS-T, each well was blocked with EBP and incubated. Meanwhile, pre-incubation of free aflatoxin
B1with the monoclonal anti-aflatoxin B1 antibody was prepared. For this, 75 µL of a serial dilution of
aflatoxin B1 in PBS was prepared, and then 75 µL of antibody solution diluted in PBS was added and
incubated. After washing the blocked assay plate three times with PBS-T, 100 µL of pre-incubated
samples were transferred to each well, respectively. After incubation, the plate was washed three
times with PBS-T. Subsequently, 100 µL of conjugated goat anti-mouse IgG-HRPO secondary antibody,
diluted 1:10,000 in PBS was added to each well and incubated. After washing three times with PBS-T,
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100 µL of 1 mg·mL−1 ABTS substrate in ABTS buffer was added, and absorbance was measured at
405 nm after 15 min incubation in the dark.

4.4. Preparation of Immunofiltration Columns

The equilibration of immunofiltration columns was done, as described by Rettcher et al. (2015) [26].
In brief, after degassing in 96% (v/v) ethanol in a desiccator at –0.8 bar pressure, columns were washed
sequentially with 750 µL 50% (v/v) ethanol-water, 750 µL water and twice 750 µL coupling buffer.
Afterward, for coupling of aflatoxin B1-BSA conjugate to the matrix, the conjugate was applied to
the column in gravity flow diluted in 500 µL coupling buffer and incubated for one hour at room
temperature in dark surrounding. For checkerboard titration, a coating concentration, as shown in
Figure A2, was used. For the bead-response curve, a coating concentration of 2 µg·mL−1 was applied,
as well as for cMID assays. Subsequent washing of the columns was performed twice with 750 µL
PBS. Remaining binding sites were blocked by applying twice 750 µL of MID-BP. After the first 750 µL
flushed through the column by gravity flow, an incubation time of 5 min was set. After the second
time, columns were incubated for further 30 min after they were washed again twice with PBS.

After equilibration or blocking, columns can be stored in the coupling buffer or PBS, respectively,
at 4 ◦C for at least 14 days. In this study, a maximum storage time of one day was used.

4.5. Biotinylation of Anti-Aflatoxin B1 Monoclonal Antibody

For biotinylation of antibodies, the EZ-Link™ NHS-PEG4 Biotinylation Kit was used as described
by the manufacturer’s instruction.

4.6. Optimization of cMID

After coating and blocking of immunofiltration columns, 500 µL samples of biotinylated antibody,
diluted in PBS to various final concentrations between 0.3 µg·mL−1 and 10 µg·mL−1, were applied and
incubated for one hour at room temperature. Afterward, a washing step was performed by rinsing two
times 750 µL PBS through the column. Subsequently, for checkerboard titration, 500 µL of 180 µg·mL−1

700 nm magnetic beads suspension in PBS (pH 7.4) was added and flushed through by gravity flow.
For bead response analysis, various concentrations of 700 nm magnetic beads were applied. Another
washing step, as described above, was performed. For readout, columns were inserted into the portable
magnetic reader and the measuring signal in mV was detected, as previously described in Rettcher et al.
(2015) [26].

4.7. cMID Calibration Curve Analysis

For cMID calibration curve experiments, a pre-incubation of free mycotoxin and biotinylated
antibody was performed. For this, serially diluted aflatoxin B1 samples in PBS, with concentrations
ranging from 0.006 ng·mL−1 to 100,000 ng·mL−1, were mixed 1:1 with 225 µL biotinylated antibody,
also diluted in PBS. After incubation of one hour at room temperature in a dark surrounding, 500 µL
of each sample was applied on coated and blocked columns and also incubated as mentioned above.
After washing each column twice with 750 µL PBS, 80 µg·mL−1 of 70 nm or 700 nm magnetic particles
were applied and incubated, as mentioned before. After washing twice, the readout was done as
described above.

4.8. Data Analysis

For competitive ELISA as well as for competitive magnetic immunodetection and data analysis, a
Hill Slope fit was done with GraphPad Prism 8.0.0. The following formulas were used to determine
the LOD on the signal and on the concentration scale:

SignalLimit of Detection = AverageSample without Competitor − 3x SDSample without Competitor (1)
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ConcentrationLimit of Detection =

 Hill Slope

√
Maximum Signal− Lowest Signal

SignalLimit of Detection − Lowest Signal
− 1

× IC50 ng·mL−1 (2)
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Figure A1. ELISA checkerboard titration determining suitable aflatoxin B1-BSA (AFB1-BSA) coating
concentrations ranging from 0.1 µg·mL−1 to 5 µg·mL−1 and monoclonal antibody (mAb) AFB1_002
concentrations ranging from 19.5 ng·mL−1 to 1250 ng·mL−1. Absorbance was measured at 405 nm by
indirect readout after using a mouse-specific secondary antibody conjugated to horseradish peroxidase
and application of respective substrate (n = 1).
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Figure A2. Magnetic immunodetection checkerboard titration determining suitable aflatoxin B1-BSA
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