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Abstract: Uremic toxins can induce endothelial dysfunction in patients with chronic kidney disease
(CKD). Indeed, the structure of the endothelial monolayer is damaged in CKD, and studies have
shown that the uremic toxins contribute to the loss of cell–cell junctions, increasing permeability.
Membrane proteins, such as transporters and receptors, can mediate the interaction between uremic
toxins and endothelial cells. In these cells, uremic toxins induce oxidative stress and activation of
signaling pathways, including the aryl hydrocarbon receptor (AhR), nuclear factor kappa B (NF-κB),
and mitogen-activated protein kinase (MAPK) pathways. The activation of these pathways leads
to overexpression of proinflammatory (e.g., monocyte chemoattractant protein-1, E-selectin) and
prothrombotic (e.g., tissue factor) proteins. Uremic toxins also induce the formation of endothelial
microparticles (EMPs), which can lead to the activation and dysfunction of other cells, and modulate
the expression of microRNAs that have an important role in the regulation of cellular processes.
The resulting endothelial dysfunction contributes to the pathogenesis of cardiovascular diseases,
such as atherosclerosis and thrombotic events. Therefore, uremic toxins as well as the pathways
they modulated may be potential targets for therapies in order to improve treatment for patients
with CKD.
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Key Contribution: Uremic toxins lead to impairment of endothelial function, causing loss of
integrity and induction of a proinflammatory and prothrombotic phenotype, which contributes to the
development of cardiovascular diseases in CKD patients. This review aims to discuss the cellular and
molecular mechanisms modulated by uremic toxins that result in endothelial dysfunction.

1. Introduction

Chronic kidney disease (CKD) is caused by progressive loss of kidney function, leading to the
accumulation of uremic toxins in the bloodstream; the endothelium, which is directly exposed to
these toxins, is negatively affected. The endothelium plays an important role in the maintenance of
vascular homeostasis and its dysfunction may contribute to the pathogenesis of cardiovascular diseases
(CVD) [1,2]. Clinical studies have shown that CKD patients are at increased risk of morbidity and
mortality from CVD, such as atherosclerosis and thrombotic events [1,3–7]. In fact, multiple studies
indicate that uremic toxins mediate endothelial dysfunction and vascular inflammation, both main
contributors to the development of CVD [1,2].

Endothelial cells are exposed to a variety of uremic toxins, which can be divided into three major
groups: (I) small water-soluble compounds; (II) middle molecules; and (III) protein-bound uremic
toxins [8,9]. Small water-soluble compounds have a molecular weight of less than 500 Da, such as urea,
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uric acid, and guanidines [8,10]. The middle molecules have a molecular weight greater than 500 Da,
among which are leptin, adiponectin, and β2-microglobulin [8,10–12]. Finally, protein-bound uremic
toxins generally have low molecular weight and are difficult to remove by dialysis therapies. Prototypes
of this group are p-cresyl sulfate (PCS), indoxyl sulfate (IS), and indole-3 acetic acid (IAA) [3,8,10].

Recently, in vivo and in vitro studies have investigated the effects of isolated uremic toxins or
uremic serum from CKD patients on endothelial cells to better understand the molecular and cellular
mechanisms involved in endothelial dysfunction mediated by uremic toxins [13,14]. This review aims
to discuss the main findings of the impact of uremic toxins on the endothelium, including effects on cell
structure, expression of receptors and transporters of uremic toxins, activation of signaling pathways,
microRNA (miRNA) regulation, inflammation and thrombosis processes, and formation of endothelial
microparticles (EMPs) (Figure 1).
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Figure 1. The progression of chronic kidney disease (CKD) results in the accumulation of uremic toxins
in the bloodstream, which leads to endothelial dysfunction. Vascular endothelial cells exposed to
uremic toxins have a proinflammatory and a prothrombotic phenotype, and the monolayer structure
is damaged, increasing permeability. This impairment of endothelial function can contribute to
cardiovascular diseases (CVD) pathogenesis.

2. Endothelial Dysfunction in CKD

In CKD, impairment of endothelial function is characterized by increased oxidative stress,
expression of proinflammatory and prothrombotic molecules, structural damage, and failure of the
endothelial repair and protection mechanisms. Uremic toxins can contribute to these deleterious effects
on the endothelium, as demonstrated by several in vitro and in vivo studies. Although this review
addresses the effects of uremic toxins on the endothelium, it is important to keep in mind that other
factors also contribute to endothelial dysfunction in CKD patients, such as shear stress. In fact, laminar
shear stress is a hemodynamic force with a relevant role in maintaining endothelial functions, including
the production of nitric oxide (NO), vasodilation, and permeability [15,16]. However, patients with
end-stage renal disease (ESRD) have low shear stress, which is associated with increased EMPs and
vascular dysfunction [17–20].
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2.1. Uremic Toxins Induce Inflammation and Oxidative Stress in Endothelial Cells

CKD patients develop CVD and inflammation, especially in advanced stages of the disease, as
the regulatory properties of the vascular endothelium are altered leading to diapedesis and immune
cell activity [21–24]. In response to the injury caused by uremic toxins to the endothelium, the
concentration of proinflammatory cytokines and chemokines in the bloodstream, such as monocyte
chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), stromal cell-derived
factor-1 (SDF-1), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6),
and high sensitivity C-reactive protein (hsCRP), is altered [1,22,23,25–27]. During the inflammatory
process, MCP-1 attracts monocytes and macrophages to the injured endothelium. We have previously
demonstrated that MCP-1 expression increases with higher concentrations of the toxins (IS and PCS)
in the human endothelial cell line (EA.hy926) [14], and p-cresol (PC) and PCS on vascular smooth
muscle cells (VSMC), via nuclear factor kappa B (NF-κB) [28]. We also demonstrated the presence of
elevated levels of MCP-1 in uremic plasma, especially in patients with advanced stage of CKD [29].
VEGF and SDF-1 attract endothelial progenitor cells (EPCs) from the bone marrow to the injury site,
leading to the activation of endothelial cells [22,25,26,30]. Ribeiro et al. [30] showed that uremic serum
can decrease the levels of SDF-1 in human umbilical vein endothelial cells (HUVECs) in comparison
with healthy serum after 6 h, while IL-8 concentration increased within 12 h, indicating a poor vascular
adaptation of patients with CKD [31,32].

Uremic toxins also alter the expression of adhesion molecules, such as E-selectin, P-selectin,
intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), which
promote the infiltration of monocytes and macrophages in the activated endothelium [22,23,25,26].
In fact, a positive correlation between IS, PCS, and IAA in the pre-dialysis plasma of CKD patients
and soluble vascular cell adhesion molecule-1 (sVCAM-1) has been observed [27]. Shen et al. [33]
demonstrated that IS increased IL-1β-induced E-selectin expression and monocyte adhesion in
HUVECs. Ito et al. [34] also showed that IS enhanced E-selectin expression in TNF-α-treated HUVECs.
The regulation of E-selectin expression involves several intracellular signaling pathways, including
phosphorylation of mitogen-activated protein kinases (MAPKs), activation of NADPH oxidase,
reactive oxygen species (ROS) production, and NF-κB signaling, as well as aryl hydrocarbon receptor
(AhR) [26,33,34]. Six et al. [35] used in vitro aortic rings of wild type mice to show that IS can increase
the expression of ICAM-1 and VCAM-1. Hyperphosphatemia also enhanced the expression of ICAM-1
and VCAM-1 in the aortic endothelium of CKD mice [36]. Similarly, Jing et al. [1] demonstrated that
PCS induced the expression of ICAM-1, VCAM-1, and E-selectin in HUVECs, as well as enhancing
monocyte–endothelium interaction in vitro and in vivo. Interestingly, the authors observed a greater
amount of atherosclerotic lesions and macrophage infiltration in the aortas of nephrectomized mice
treated with PCS compared to the sham group, indicating that PCS induces atherogenesis [1]. Hippurate,
another uremic toxin, can also increase the expression of ICAM-1 and decrease the production of
endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs), contributing to
cellular dysfunction [37].

In vitro and in vivo studies have shown that uremic toxins lead to inhibition or reduction of
NO production, which is an important regulator of vascular tone, while promoting the production
of ROS, resulting in oxidative stress [38–40]. Uremic toxins can also decrease antioxidants defenses,
such as superoxide dismutase (SOD), catalase, glutathione peroxidase, and glutathione reductase [41].
In an in vitro study, Pieniazek et al. [42] showed that IS may induce oxidative stress and decrease the
antioxidant defense in mononuclear cells, leading to lipid and protein damage; thus evidencing the
importance of maintaining the oxidative balance. Indeed, uremic toxins induce ROS production, which
is related to oxidative stress and, therefore, to the inflammatory process [33,38]. Li et al. [43] evidenced
that trimethylamine-N-oxide (TMAO) can increase the production of superoxide and proinflammatory
cytokines while reducing eNOS activity in rats with CKD. The effect of IS on HUVECs was shown
by Masai et al. [38], where the production of intracellular ROS (superoxide) was increased. This ROS
activates transcription factors (e.g., NF-κB), therefore leading to the expression of inflammatory
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cytokines. Mitochondrial respiration is a potential source of ROS, as well as xanthine oxidase, NADPH
oxidase, NO synthases, peroxidases, and other hemoproteins [44–46]. In HUVECs, IS leads to an
increase in ROS production through the activation of NADPH oxidase, as well as causing mitochondrial
dysfunction, thereby inducing cell death [44,45]. In contrast, ROS are related to the transduction of
intracellular signals involved in a spectrum of biological processes [47]. ROS and their metabolites are
involved in the activation of ions channel, such as transient receptor potential vanilloid 1 (TRPV1) and
transient receptor potential ankyrin 1 (TRPA1), which are subfamilies of the transient receptor potential
(TRP) channels [48–50]. Both TRPV1 and TRPA1 are involved in vascular tone and endothelial cell
function regulation under physiological conditions [48,49]. Wang et al. [51] demonstrated that the
activation of TRPV1 can suppress the inflammatory response of endothelial cells.

Furthermore, uremic toxins inhibit late stage autophagy, since the cells are more sensitive to
oxidative stress in uremic conditions, contributing to endothelial dysfunction [52]. Inhibition or
interference in the autophagic process in the endothelium by uremic toxins may lead to atherogenesis
and arterial aging [52–54]. Taken together, these findings demonstrate that uremic toxins induce
oxidative stress as well as the expression of proinflammatory molecules that are involved in the
pathogenesis of CVD.

2.2. Uremic Toxins Contribute to the Prothrombotic State of the Endothelium

The endothelium is directly involved in the prothrombotic and antithrombotic balance of the
hemostatic system. However, in uremic conditions endothelial function is compromised and may
contribute to abnormal coagulation and fibrinolysis processes [55]. Prothrombotic properties can lead
to the development of thrombotic disorders, such as thromboembolism and ischemia. In fact, clinical
studies have reported that patients with CKD are at increased risk of thrombotic events [6,55–57].
In addition, CKD patients have enhanced levels of some coagulation and fibrinolysis factors, such as
tissue factor (TF), von Willebrand factor (vWF), thrombomodulin, factor VIII, and D-dimer [55,58,59].

TF is a membrane protein in the coagulation cascade that initiates the extrinsic pathway of blood
clotting in response to a vascular injury; however, under pathological conditions it can contribute
to thrombus formation [60]. CKD patients have higher plasma levels of TF as well as greater TF
procoagulant activity, which is observed in the shorter of lag time of thrombin generation in the plasma
of CKD patients compared to healthy controls, suggesting a hypercoagulable state [58,61]. In vitro
studies have shown that IS and IAA increased TF expression in endothelial cells, including HUVECs,
HAECs, and cardiac-derived microvascular endothelial cells (HMVEC-C) [61,62]. Higher production
of factor Xa by TF was also observed in HUVECs exposed to IS and IAA [61]. These data indicate that
uremic toxins cause endothelial activation and procoagulant activity.

The endothelium produces vasoactive compounds relevant for the regulation of hemostasis,
but this may be altered in uremic conditions. NO is an important vasodilator produced by eNOS
in the endothelium that also inhibits platelet adhesion and aggregation [63]. In uremic conditions,
however, NO production and bioavailability are reduced in endothelial cells [64,65]. In vitro studies
have demonstrated that IS and inorganic phosphate decrease NO bioavailability, which is related,
at least in part, to the increase in oxidative stress in endothelial cells [64–66]. Furthermore, patients
with CKD have high levels of the uremic toxin asymmetric dimethylarginine (ADMA), which is an
eNOS antagonist and, therefore, reduces NO production [67,68]. The endothelium also produces
prostaglandins, such as prostaglandin E2 (PGE2), that have a procoagulant role in inducing platelet
aggregation [69]. PGE2, derived from arachidonic acid, is produced by cyclooxygenase-2 (COX-2),
which is overexpressed in endothelial cells exposed to IS and IAA [62,70]. Therefore, endothelial
damage and inflammation contribute to the prothrombotic state. In vivo, greater thrombus formation
was observed after vascular injury in rats treated with IS compared to those not exposed to toxin [71,72].
Based on these studies, the uremic toxins lead to a proinflammatory and prothrombotic endothelial
phenotype, which is related to the occurrence of thrombotic events and other CVD in CKD patients.
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Fibrinolysis is enhanced in CKD, as demonstrated by higher levels of tissue plasminogen activator
(t-PA) and plasminogen activator inhibitor 1 (PAI-1) in this setting compared to healthy controls [58,73].
Likewise, there are also higher serum levels of D-dimer, a product of fibrin degradation, in CKD
patients [55]. In vivo, Karbowska et al. [72] found increased levels of PAI-1, but not of D-dimer, in rats
treated with IS compared to control group. Therefore, both coagulation and fibrinolysis systems are
altered in CKD [58,73,74].

2.3. Uremic Toxins Increase Endothelial Permeability

Uremic toxins contribute to structural damage of the endothelial monolayer, which results in
increased permeability. In CKD patients, studies have detected disruptions to the structure of the
endothelial monolayer in renal arteries [13,75]. Loss of endothelial integrity and enhanced permeability
are also seen in the aortic endothelium of nephrectomized rats, an animal model of CKD [76,77].
In vitro, PCS, IS, and uremic serum reduced the transendothelial electrical resistance (TEER), which
indicates an increase in endothelial permeability [75,78,79]. In this regard, studies have also found that
uremic toxins induced F-actin cytoskeletal remodeling in endothelial cells, leading to changes in cell
morphology [13,79,80].

In vitro studies have shown that uremic toxins lead to the rupture of cell-cell junctions, especially
related to vascular endothelial (VE)-cadherin and zonula occludens-1 (ZO-1) proteins [13,75,78,79].
VE-cadherin is a transmembrane protein that belongs to adherent junctions and plays a crucial role in
cell–cell interaction [81,82]. ZO-1 is an intracellular protein that is part of tight junction proteins and
regulates VE-cadherin [83]. Our group have demonstrated a decrease in the expression of VE-cadherin
and ZO-1 in endothelial cells exposed to inorganic phosphate and uremic serum, while no change
in expression was observed when cells were exposed to PCS and IS [13]. However, Chen et al. [75]
recently demonstrated that PCS increased phosphorylation of VE-cadherin at tyrosine 658 (Y658) in
HUVECs. In a similar manner, Assefa et al. [78] found that IS increased VE-cadherin phosphorylation
in bovine aortic endothelial cells (BAECs). VE-cadherin phosphorylation is mediated by tyrosine
kinases, such as Src, and is associated with enhanced endothelial permeability, possibly by inducing
VE-cadherin internalization [81]. Based on this, Chen et al. [75] and Assefa et al. [78] observed that
PCS and IS also increased Src phosphorylation. These findings suggest a Src-mediated VE-cadherin
phosphorylation mechanism induced by uremic toxins, which results in loss of endothelial cell–cell
interactions [75,78].

The impairment of the endothelial barrier induced by uremic toxins contributes to the increased
permeability that is associated with vascular injury and the development of CVD, such as atherosclerosis
(Figure 2) [77,84]. However, studies have found that vitamin D supplementation attenuated the effects
of uremic toxins on endothelial disruption in HUVECs, and in nephrectomized rats [76,79].

2.4. Uremic Toxins Impairs Endothelial Protective Mechanisms

Mechanisms that protect endothelial functions may be impaired by uremic toxins. One of these
mechanisms is the repair capacity mediated by endothelial progenitor cells, which are recruited to injury
sites for vascular regeneration [85–87]. Studies have demonstrated that uremic toxins cause dysfunction
of endothelial progenitor cells, including decreased chemotactic motility and angiogenesis [85,86].
Furthermore, clinical studies have also shown a reduction in the number of endothelial progenitor
cells in CKD patients [87–89].

The expression of molecules with protective functions in endothelial cells may be altered in uremic
conditions. For example, Krüppel-like factor 2 (KLF2) expression, an important transcription factor
for endothelial homeostasis, is suppressed by PCS, IS, AGEs, and uremic serum [90,91]. In a similar
manner, IS and uremic serum reduce the expression of sirtuin 1 (SIRT1), which plays an important role
in maintaining endothelial functions, inhibiting senescence and oxidative stress [72,91]. Moreover,
Shang et al. [91] demonstrated that decreased expression of KLF2 and SIRT1 in endothelial cells exposed
to uremic toxins is miR-92a-dependent. Uremic toxins can also modulate the Klotho expression, which
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has a protective role on the endothelium. In this regard, endothelial cells exposed to soluble Klotho
had an increase in NO production [92]. Klotho also attenuated TNF-α-induced activation of NF-κB as
well as the expression of ICAM-1 and VCAM-1 in endothelial cells [93]. Importantly, Klotho expression
and its serum concentration are decreased in patients with CKD [94]. Interestingly, Sun et al. [95]
demonstrated that PCS and IS are capable of reducing Klotho expression in renal tubular cells through
an epigenetic mechanism, the DNA hypermethylation of its gene. Taken together, these data indicate
that uremic toxins can negatively affect mechanisms that protect and repair the endothelium.Toxins 2020, 12, x FOR PEER REVIEW 6 of 24 
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Figure 2. Uremic toxins lead to the loss of intercellular junctions, which results in increased endothelial
permeability. This scheme demonstrates that uremic toxins induce cytoskeleton remodeling, reduce
vascular endothelial (VE)-cadherin gene expression and activate Src, which phosphorylates VE-cadherin
and leads to its internalization. In addition, uremic toxins also decrease zonula occludens-1 (ZO-1)
protein levels.

3. Transporters and Receptors of Uremic Toxins in the Endothelium

Transporters and receptors may change plasma levels of substrates through the secretion and
reabsorption of many compounds, including uremic toxins [14,96,97]. In the endothelium, the
expression of transporters and receptors of uremic toxins may play an important role in endothelial
dysfunction. The organic anion transporter (OAT) family is a major class of transporters, which
are essential for the elimination of many compounds and uremic toxins that are in anionic form at
physiological pH. The 10 known isoforms of OATs belong to the family of solute carrier genes (SLC),
more specifically solute carrier 22 (SLC22), and are well described in the literature [14,97]. OATs are
located in various tissues and organs, including the liver, brain, kidney, and endothelium, where they
mediate the movement of drugs and toxins between bodily fluid compartments and tissues [14,97–99].

Recently, we suggested that the uptake of IS and PCS are mediated by OATs (OAT1 and OAT3)
in human endothelial cells. In this study, endothelial cells were treated with PCS and IS in the
presence or absence of probenecid (an OAT inhibitor). After 60 min of treatment, both uremic toxins
showed significant internalization, while no internalization was observed in the presence of probenecid,
suggesting that OATs are involved in the transportation of these toxins [14]. However, more studies are
necessary to provide robustness to these results. Other studies have shown the uptake of uremic toxins
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by OATs, such as Miyamoto et al. [100], who demonstrated the uptake of PCS by OAT3 in HK-2 cells,
and Deguchi et al. [101], who described the uptake of IS, IAA, and hippurate using stable transfectants
of rOat1/hOAT1 and rOat3/hOAT3 in LLC-PK1 cells, indicating the contribution of OAT1 and OAT3 to
the uptake of IS, and of OAT1 to the uptake of IAA and hippurate.

The organic anion transporting polypeptides (OATPs) are a different category of organic anion
transporters involved in the uptake of uremic toxins in the endothelium. OATPs belong to the SLCO
superfamily and they have been detected in various tissues, such as lung, liver, kidney, and brain [102,103].
Grube et al. [104] showed that these transporters are expressed in the cardiac endothelium. Also,
Bronger et al. [105] demonstrated the OATPs expression in the luminal membrane of the blood–brain
barrier endothelial cells. Nakano et al. [106] observed that OATP2B1 expressed by human macrophages
are involved in the in vitro IS uptake; thus, inducing vascular inflammation. It has also been showed
that there are transporters that efflux uremic toxins, such as multidrug resistance-associated proteins
(MRPs) [107–109].

Transporter-mediated phosphate uptake may be related to the endothelial dysfunction caused by
hyperphosphatemia in patients with CKD [36,110]. The sodium-dependent phosphate cotransporters
(NaPiTs) are composed of type-I (SLC17 family), type-II (SLC34 family), and type-III (SLC20 family).
The two known type-III NaPiTs—PiT-1 and PiT-2—are involved in phosphate homeostasis in the
human body, contributing to cellular uptake [111,112]. Inden et al. [112] demonstrated that PiT-2 is
present in neurons, astrocytes, and vascular endothelial cells. Abbasian et al. [113] also observed
an increase in the intracellular concentration of inorganic phosphate in endothelial cells exposed to
hyperphosphatemia conditions, which was reversed by PiT-1 knockout and inhibition. The effect
of phosphate on vascular function has been described by Six et al. [36] using in vitro (HUVECs and
HVSMCs) and in vivo (mouse model) assays, where it was shown that increased levels of phosphate
in blood can lead to oxidative stress, causing deleterious effects on vascular function and structure.
In patients, higher mortality during the pre-dialysis phase and acceleration of kidney function decline
have been shown to be correlated with hyperphosphatemia [110,114].

Advanced glycation end products (AGEs), proinflammatory and pro-oxidative compounds
classified as uremic toxins, are produced through the non-enzymatic glycation and oxidation of
proteins, lipids, and nucleic acids. Their accumulation in CKD promotes endothelial dysfunction
and subsequent diseases [115–120]. Atherosclerosis, autoimmune disease, diabetes mellitus, and
inflammatory diseases are closely linked to the AGE receptor-ligand axis [121–124]. AGEs induce cell
injury by interacting with their receptor, denominated receptor for advanced glycation end products
(RAGE), which is a ubiquitous multiligand transmembrane cell surface receptor of the immunoglobulin
superfamily [116,125–127]. We also previously demonstrated that AGEs induced RAGE expression
in endothelial cells [128]. The importance of blocking RAGE is described by Wang et al. [124], who
used in vivo (rat model) and in vitro (HAECs) assays to emphasize that the inhibition of interaction
between AGEs and RAGE helps to soften endothelial dysfunction. Thus, blocking the RAGE-ligand
axis may be a therapeutic target, agreeing with other studies [116,121,123,129–132].

PCS and IS may also activate epidermal growth factor receptor (EGFR), transmembrane protein
with cytoplasmic kinase activity with role in signaling transduction [133]. In vitro analyzes demonstrated
that PCS and IS induced the dimerization and activation of EGFR by phosphorylation [133,134]. IS also
enhanced EGFR expression in VSMCs [134]. Consequently, PCS and IS led to increased expression
of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) in renal cells through the EGFR signaling
pathway [133].

Taken all together, the experimental data available indicates that the interactions between a
transporter or receptor and their ligands (e.g., uremic toxins) are important targets for therapeutic
strategies, since these interactions trigger deleterious effects in the endothelium and in other body tissues.
However, more studies are needed to better understand the mechanisms involved in this process.
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4. Cell Signaling Pathways Altered by Uremic Toxins

Uremic toxins lead to phenotypic endothelial changes through the activation of cellular signaling
pathways. Given the complexity of these pathways, important proteins that modulate the cellular
response to uremic toxins stand out, such as AhR, NF-κB, and MAPKs. These molecules, therefore,
have potential to be used as therapeutic targets in CKD.

4.1. AhR Pathway

AhR is a ligand-inducible transcription factor that belongs to the basic helix–loop–helix
transcription factor family. Inactivated AhR is found in the cytoplasm bound to chaperones, which
dissociate when AhR is activated by binding to a ligand [135]. Studies have identified several exogenous
and endogenous ligands for AhR, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dioxin-like
planar polychlorinated biphenyls (PCBs), and uremic toxins, including IS, IAA, indoxyl glucuronide,
kynurenic acid, and other tryptophan derivatives [62,135–140]. Activated AhR can induce genomic
signaling, known as the canonical pathway, as well as the non-genomic pathway.

In the genomic signaling pathway, activated AhR is translocated to the nucleus, where it forms a
dimer with aryl hydrocarbon receptor nuclear translocator (ARNT) [135]. The AhR/ARNT complex
binds to the xenobiotic responsive element (XRE; 5′-GCGTG-3′) in the promoter region of several
target genes, inducing their expression [135,141]. Studies have shown that IS and IAA induce AhR
translocation to the nucleus in endothelial cells [26,62,136]. In addition, overexpression of CYP1A1 and
CYP1B1, genes directly regulated by AhR/ARNT, was found in endothelial cells exposed to IS and IAA,
an effect that was reversed with AhR inhibitors [26,62,70,136]. Furthermore, it has been demonstrated
in HUVECs that IS and IAA, through AhR, induce AhRR expression, an AhR repressor that competes
for ARNT binding, which ultimately leads to a negative regulatory loop for AhR [61,70,141].

In the non-genomic pathway, activated AhR interacts with various other signaling molecules,
such as NF-κB and Src, independently of ARNT [62]. Ito et al. [26] demonstrated that IS increased
the expression of E-selectin in an AhR-dependent manner in HUVECs. Despite that, the authors
verified that AhR did not directly bind to the E-selectin gene promoter [26]. However, it was found that
E-selectin overexpression was associated with the activity of the transcription factor activator protein-1
(AP-1), which is induced by AhR through the non-genomic pathway [26]. Similarly, Addi et al. [62]
demonstrated that HUVECs exposed to IAA had an increase in TF gene expression, but AhR was
not linked to the gene promoter despite the effect being reversed with AhR knockout and inhibition.
The authors then found that NF-κB was essential for increasing TF expression, but its activity was
decreased by the AhR inhibitor, suggesting a regulation between them [62].

Studies have shown that the activation of AhR by uremic toxins is involved in vascular
inflammation, permeability, and the development of CVD [26,78,136]. In HUVECs, IS induced
MCP-1 and E-selectin expression, proinflammatory molecules involved in leukocyte recruitment
and adhesion to the endothelium, in an AhR-dependent manner [26,136]. In vivo, Ito et al. [26] also
found that IS increased interaction between leukocytes and the endothelium of the femoral artery in
wild-type mice, an effect that was not seen in endothelial cell-specific AhR knockout mice treated with
IS. Furthermore, the activation of AhR by IS also enhanced Src phosphorylation and, consequently,
VE-cadherin phosphorylation, inducing an increase in endothelial permeability that was reversed
with AhR inhibitors [78]. Koizumi et al. [39] demonstrated that IS-induced senescence of HUVECs
is AhR-dependent and may contribute to CVD. In HUVECs, IAA and IS increased the expression of
TF through AhR, which is associated with the pathogenesis of atherosclerosis and thrombosis [61,62].
Therefore, these studies suggest that AhR activation induced by uremic toxins has an important role
in endothelial dysfunction and vascular injury. Interestingly, IS through the AhR pathway led to
upregulation of OAT1 in renal proximal tubule cells as well as P-glycoprotein, an efflux pump that is
part of the ABC transporter superfamily, in human hepatoma cells [142,143]. These data suggest that
the AhR pathway may be involved in the regulation of the expression of cellular transporters.
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AhR activating potential (AhR-AP) corresponds to the combination of all AhR agonists present in
uremic serum, such as IS, IAA, and indoxyl glucuronide. Dou et al. [144] demonstrated that uremic
serum from stage 3 to 5 and stage 5D CKD patients had higher AhR-AP than serum from healthy
controls by an AhR-responsive bioassay. In addition, the authors reported that AHR-AP is associated
with cardiovascular events in CKD patients [144]. In vivo, Dou et al. [144] detected higher serum
levels of AhR agonists as well as overexpression of Cyp1a1, a gene regulated by AhR, in the aorta and
heart of nephrectomized mice compared to AhR-/- nephrectomized or wild-type mice. In a cohort of
patients with ESRD, Shivanna et al. [145] noted greater AhR activity in uremic serum compared to that
of healthy controls. Kolachalama et al. [140] also found increased AhR activity and TF levels in serum
from CKD patients who had thrombotic events compared to their counterparts without thrombosis.
Taken together, these data indicate a relationship between uremic toxins, AhR activation, and the
development of CVD [140,144,146].

4.2. NF-κB Pathway

NF-κB is a family of transcription factors that play a crucial role in endothelial inflammation.
There are five forms of NF-κB proteins: p50 (NF-κB1), p52 (NF-κB2), p65 (RelA), RelB, and c-Rel.
The p52 and p50 proteins are derived from the p100 and p105 forms, respectively. NF-κB family
members form dimers, of which the p50/p65 dimer is the most common [147,148]. In the inactivated
state, NF-κB dimers are found in the cytoplasm bound to inhibitory proteins, such as IκBα and IκBβ.
In the presence of a stimulus, NF-κB dissociates from the inhibitory proteins, which are degraded. In the
canonical pathway, the activation of IκB kinase (IKK) mediates the phosphorylation of IκBα, releasing
NF-κB (mainly the p50, p65, and c-Rel forms) which is then translocated to the nucleus [147,148].
On the other hand, in the non-canonical pathway, also known as the alternative pathway, the activation
of NF-κB-inducing kinase (NIK) leads to p100 phosphorylation and processing to the p52 form, which
is translocated to the nucleus along with RelB [147,148].

Studies have shown that the NF-κB pathway participates in gene regulation in endothelial cells in
the uremic conditions [38,70,149]. HUVECs exposed to uremic serum had greater IκB degradation and,
consequently, higher levels of p50/p65 in the nucleus compared to those exposed to healthy serum [150].
In HUVECs, Tumur et al. [149] demonstrated that IS induced p65 phosphorylation as well as MCP-1
and ICAM-1 overexpression, which was reversed with NF-κB inhibitors. Furthermore, Masai et al. [38]
reported an increase in the translocation of p65 to the nucleus and MCP-1 upregulation in HUVECs
exposed to IS. Interestingly, the authors verified that this effect was suppressed by ERK1/2 and p38
MAPK inhibitors, indicating the participation of these proteins in the activation of the IS-induced
NF-κB pathway [38]. In addition, studies have demonstrated an increase in the translocation of p50
and p65 to the nucleus in HUVECs exposed to IAA, which was decreased with AhR and p38 MAPK
inhibitors [62,70]. Inhibition of NF-κB also reversed IAA-induced COX-2 and TF overexpression in
HUVECs [62,70]. Based on these data, it is suggested that the NF-κB pathway is important for the
upregulation of proinflammatory proteins in uremic conditions.

4.3. MAPK Pathway

MAPK are a family of serine/threonine kinases that are activated by phosphorylation [113].
There are three main groups of MAPK: Extracellular signal-regulated kinase (ERK1 and ERK2), C-Jun
N-terminal kinase (JNK1, JNK2, and JNK3), and p38 MAPKs (α, β, γ, and δ) [151]. The MAPK signaling
pathway is activated in the presence of a stimulus and, consequently, mediates the cellular response
through activation of other proteins, such as transcription factors, by phosphorylation [152,153].
Therefore, MAPK has a significant role in signal transduction [151].

In uremic conditions, studies have shown that the MAPK pathway is activated in endothelial
cells. Uremic serum enhanced ERK1/2 phosphorylation in HUVECs compared to normal serum [150].
IAA and IS also induced phosphorylation of p38 MAPK and ERK1/2 in HUVECs in the first 30 min of
exposure [38,70]. In addition, MAPK pathway inhibition can reverse the effects of uremic toxins [38,62,70].
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Inhibition of p38 MAPK reduced IAA-induced TF and COX-2 overexpression in HUVECs, the expression
of which are possibly modulated by the AhR/p38MAPK/NF-κB pathway [62,70]. In another study, it was
shown that inhibition of ERK1/2 and p38 MAPK suppressed IS-induced p65 phosphorylation (NF-κB) as
well as MCP-1 overexpression in HUVECs [38]. Figure 3 shows the mechanisms modulated by the AhR,
NF-κB, and MAPK signaling pathways in endothelial cells exposed to uremic toxins.
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Figure 3. Uremic toxins activate the aryl hydrocarbon receptor (AhR), nuclear factor kappa B (NF-κB),
and mitogen-activated protein kinase (MAPK) pathways in endothelial cells. Toxins such as indoxyl
sulfate (IS) and indole-3 acetic acid (IAA) activate AhR, which is translocated to the nucleus, forms a dimer
with aryl hydrocarbon receptor nuclear translocator (ARNT), and induces the expression of CYP1A1,
CYP1B1, and AhRR (genomic pathway). Activated AhR can stimulate other pathways (non-genomic
pathway), including the activation of AP-1 that induces E-selectin expression. Uremic toxins also cause
the activation of the MAPK pathway, such as p38MAPK and ERK1/2, by phosphorylation. MAPK and
AhR can induce the NF-κB pathway. In uremic conditions, IκB is degraded and p50/p65 are translocated
to the nucleus, inducing monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1
(ICAM-1), cyclooxygenase-2 (COX-2), and tissue factor (TF) expression. The activation of these pathways
by uremic toxins can lead to endothelial dysfunction.

5. Modulation of MicroRNAs by Uremic Toxins in Endothelial Cells

MicroRNAs (miRNAs) play an important role in the regulation of endothelial cell function via the
modulation of eNOS-derived nitric oxide bioavailability, angiogenesis, and innate immune response [91].
Recent studies have demonstrated the involvement of miRNAs in endothelial dysfunction since they
act as regulators in endothelial cells [154–156]. miRNAs are part of a family of small endogenous
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noncoding RNA made up of about 21 nucleotides, and influence physiological/pathological processes,
including cell growth, differentiation, and apoptosis [91,156]. Uremic toxins can upregulate miRNA-92a,
as well as miR-142-3p, miRNA-92a-3p, and miRNA-489-3p, suppressing the expression of genes critical
for endothelial homeostasis, thus contributing to their dysfunction [91,156,157]. Uremic toxins can
also cause the downregulation of miRNAs, such as lower levels of miRNA-214, which promotes
apoptosis [158]. In patients with CKD, lower levels of circulating miR-126 and miR-223 were associated
with a lower estimated glomerular filtration rate and with higher mortality and cardiovascular
events [159]. These mechanisms may lead to the discovery of a new perspective for the treatment
of CKD [160,161]. All these data suggest possible new targets for the treatment of endothelial
injury in CKD, demonstrating the importance of studies of the other effects of uremic toxins on
endothelial dysfunction.

6. Uremic Toxins Induce the Formation of Endothelial Microparticles

Endothelial microparticles (EMPs) are vesicles derived from the cell membrane, between 0.1 µm
and 1 µm in size, which carry content from the source cell, including proteins and miRNAs [162,163].
EMPs interact directly with target cells, such as VSMCs, monocytes, endothelial progenitor cells, and
other endothelial cells [163–165]. This interaction leads to the internalization of EMPs and the transfer
of their active biomolecules to the target cell, which may activate signaling pathways [164]. Therefore,
EMPs are important tools of intercellular communication formed in physiological and pathological
processes, including in CKD [162,166].

In uremic conditions, it was demonstrated that PCS, IS, and inorganic phosphate induced the
formation of EMPs from endothelial cells [113,163,167–169]. Studies have also shown that EMPs are
related to endothelial dysfunction in CKD patients [17,167,170,171]. In vitro, Carmona et al. [163]
showed that EMPs from endothelial cells exposed to IS had increased levels of ICAM-1 and PECAM-1,
and miRNAs (e.g., miR-181a-5p, miR-4454, and miR-150-5p). In the same study, the authors found
that IS-induced EMPs had an anti-angiogenic effect on endothelial progenitor cells, which are
important in the endothelium repair process [163]. Furthermore, IS- and IAA-induced EMPs had
greater procoagulant activity, due to the production of factor Xa by TF, compared to EMPs from
cells not exposed to these toxins [61]. Similarly, EMPs from cells exposed to hyperphosphatemia
conditions caused an increase in thrombin formation, also indicating procoagulant activity [113].
Soriano et al. [165] isolated EMPs from CKD patients and found that they increase osteocalcin (OCN)
expression in endothelial progenitor cells, VSMCs, and fibroblasts, which indicates cellular dysfunction
and vascular calcification. Furthermore, IS-induced EMPs enhanced the proliferation of VSMCs in vitro
and in an ex vivo model, effects that contribute to neointimal hyperplasia [164,172]. These findings
suggest that EMPs formed in the uremic conditions can mediate the dysfunction of target cells and
contribute to vascular damage and the development of CVD.

7. Therapeutic Strategies for Uremic Toxins

Endothelial dysfunction is considered one of the most important triggers and mainstays of CVD
in CKD patients. As uremic toxins may lead to endothelial dysfunction by multiple pathways, several
pre-clinical and clinical studies have investigated whether therapeutic strategies devoted to reducing
uremic toxin levels could improve vascular health.

As the guts are the main source of uremic toxins, approaches targeting the gut microbiome
have been used to decrease intestinal generation of those compounds. In this regard, the short-term
administration of prebiotics, probiotics and symbiotics to CKD patients may favorably modify the
microbiome and lower the serum levels of uremic toxins, such as IS and PCS [173–176]. Changing
the source of protein intake from animal-based to plant-based diet might be other strategy to
reduce intestinal production of uremic toxins. For instance, it has been reported that patients on
hemodiafiltration (HDF) eating a vegetarian diet present lower plasma levels of IS and PCS [177].
Other potential advantage of vegetarian diet is a better control of serum phosphate levels [177,178].
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It should be kept in mind that, to date, high-quality intervention trials dedicated to modulate intestinal
production of uremic toxins are still scarce.

AST-120 is an oral carbon adsorbent that can bind to IS and PCS precursors in the gut lumen,
therefore lowering serum levels of these toxins [179]. AST-120 treatment of CKD mice improved
vascular function, reduced aortic VCAM-1 and ICAM-1 expression, and prevented an increase in
pulse wave velocity [35]. Administration of AST-120 to CKD patients (n = 40) for 6 months resulted in
a significant increase in flow-mediated dilation (FMD), an early marker of endothelial dysfunction,
with a decrease in IS levels and oxidative stress [180]. It has also been reported that sevelamer,
a non-absorbable phosphate binder, may improve endothelial function. Its administration for a
short period of 8 weeks to stage 4 CKD patients improved FMD, an effect also observed for calcium
acetate [181,182]. Sevelamer treatment in CKD mice decreased serum phosphate levels and ameliorated
cardiovascular abnormalities, including pulse-wave velocity [183]. This beneficial effect of sevelamer on
endothelial function might be further explained by its pleiotropic effects, such as binding to AGEs [128].
Interestingly, the vitamin D receptor activator paricalcitol, despite not targeting uremic toxins, may
ameliorate endothelial function in moderate CKD [184]. In vitro studies have demonstrated that
paricalcitol may protect endothelial cells from uremic toxin exposure by promoting the expression of
VE-cadherin at intercellular junctions, which ultimately leads to the recovery of endothelial barrier
function and cell–cell interactions [79]. In addition, in CKD patients, there is a decrease in active
vitamin D levels (25 hydroxyvitamin D and 1,25-dihydroxyvitamin D), that plays an important role in
the metabolism of calcium, phosphate, and parathyroid hormone (PTH) [185].

Evidences indicates that HDF is superior to conventional hemodialysis therapy for recovery
of endothelial function, likely due to a broader clearance of uremic toxins [186,187]. Despite of
similar removal of protein-bound uremic toxins, HDF provides superior removal of low-molecular
weight protein when compared to high-flux-hemodialysis [188,189]. Among the three main options
for convective dialysis therapies, post-dilution HDF has been reported to be more effective than
pre-dilution HDF and pre-dilution hemofiltration for the removal of uremic toxins [190]. Interestingly,
a recent study has reported that use of novel medium cut-off dialyzers in hemodialysis therapy may
improve the removal of larger middle molecules compared to high-flux hemodialysis and HDF [191].

Due to the limited removal of protein-bound uremic toxins by conventional dialysis technique,
new approaches based on adsorption-based techniques and on displacement of these toxins from their
albumin binding sites, in order to increase their dialysable free-fraction, have been examined. In a
proof-of-concept study, Madero et al. [192] have elegantly demonstrated that the infusion of ibuprofen,
used as a competitive binding inhibitor, during a conventional 4-h high-flux hemodialysis treatment
led to greater dialytical removal and serum levels reduction of IS and PCS. A recent in vitro study has
reported promising results for the use of adsorber techniques to enhance hydrophobic uremic toxins
removal, without harmful effects on hemocompatibility [193].

Finally, as uremic toxins levels has been related to residual kidney function in dialysis patients [189,194],
its preservation is ultimately an important therapeutic approach for a better control of uremic toxins levels.
Even though these results are promising, they should be interpreted with caution. Most studies are of
limited duration, have included a low number of patients, and have been based on surrogate markers
rather than on hard outcomes; this prevents the assumption that these effects on endothelial function will
be translated into clinical benefits, such as lower rates of cardiovascular events. Furthermore, an in vitro
effect is not a guarantee of an equivalent action in the patient.

8. Final Considerations

Uremic toxins, when in high concentrations in the bloodstream, play an important role in
endothelial dysfunction. These compounds can lead to changes in vascular homeostasis and cell
function, including changes in cell structure, the expression of receptors and transporters, and the
activation of signaling pathways, leading to the release of cytokines and chemokines and the beginning
of the inflammatory process. In this review, we described the effects of uremic toxins in endothelial
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permeability—mainly their relationship with VE-cadherin and ZO-1 proteins—and their possible
transporters and receptors. We also described cell signaling pathways, specifically the AhR, NF-κB,
and MAPK pathways, and the inflammation and thrombosis processes, as well as EMPs formation and
the involvement of uremic toxins in epigenetic regulation through miRNAs (Figure 4). The available
experimental data demonstrated the importance of studying the interaction between uremic toxins
and endothelium, evidencing new therapeutic strategies.
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