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Abstract: Bee venom (BV) is a rich source of secondary metabolites from honeybees (Apis mellifera L.).
It contains a variety of bioactive ingredients including peptides, proteins, enzymes, and volatile
metabolites. The compounds contribute to the venom’s observed biological functions as per its
anti-inflammatory and anticancer effects. The antimicrobial action of BV has been shown in vitro and
in vivo experiments against bacteria, viruses, and fungi. The synergistic therapeutic interactions of
BV with antibiotics has been reported. The synergistic effect contributes to a decrease in the loading
and maintenance dosage, a decrease in the side effects of chemotherapy, and a decrease in drug
resistance. To our knowledge, there have been no reviews on the impact of BV and its antimicrobial
constituents thus far. The purpose of this review is to address the antimicrobial properties of BV and
its compounds.

Keywords: bee venom; antimicrobial properties; melittin; apamin; phospholipase A2 (PLA2)

Key Contribution: Here, we critically review the impact of bee venom and its components as
antimicrobial agents.

1. Introduction

According to the World Health Organization (WHO), the antimicrobial drug resistance of bacterial
pathogens has reached alarming rates in several parts of the world, and few alternatives are available [1].
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The discovery of antibiotics served as a promise to eliminate numerous ailments that menaced human
life in the past. However, unexpected side effects such as resistance and mutation displayed a new
challenge for humankind. The annual deaths attributable to anti-microbial resistance are expected to
surpass those of cancer by 2050 [2]. Due to the resulting overuse of antibiotics, microbes have become
capable of developing biofilms embedded in an extracellular matrix (ECM) that are more resistant and
more difficult to penetrate with antibiotics. The rise of antimicrobial drug resistance calls for a search
of new candidates with novel mode of action. Natural products including bee venom (BV), one of
many bee products which is rich in bioactive compounds, offer a diversity of activities against variety
of diseases causes [3–6].

Venoms and their peptides from different animals or organisms such as bees, snakes, wasps, and
scorpions, represent promising antimicrobial agents against various microbial pathogenesis [7–12]. BV
is the venomous cocktail secreted by honeybee workers’ poison glands as a protection mechanism [13].
BV is injected into the victim’s skin using stingers, which ultimately leads to the death of the bee
itself afterwards. Although BV is toxic to predators, it has acquired medicinal benefits over the
years [14]. Therapeutic usage of BV dates back to Ancient Egypt (4000 BC), and was later applied by
Hippocrates, Aristotle, and Galen, during the Greek and Roman historical periods [15]. In Traditional
Chinese Medicine and other historical practices, BV was introduced for inflammatory diseases such as
rheumatoid, arthritis, tendonitis, fibrosis, lupus, and multiple sclerosis [16,17].

It is thought that medical use and subsequent public acceptance of BV is due to the availability
of biologically active compounds such as peptides. For instance, melittin is a major compound
representing 40–60% of the dry BV weight [18]; it also contains mast cell degranulating peptide
(MCDP), secapin, and its isomers (i.e., secapin-1 and -2), adolpanin, tertiapin, apamin [19–25], and
enzymes, i.e., phospholipase A2 (PLA2), hyaluronidases, and acid phosphatase [26–28]. Furthermore,
dipeptidylpeptidase IV (Api m 5) [29], Api m 6 [30], CUB serine protease (Api m 7) [31], icarapin
(Api m 10) [32], major royal jelly proteins (MRJP 8 and 9) [33,34], and volatile compounds (isopentyl
acetate and (Z)-I l-eicosen-l-ol) [35] are also present. Attributing to these constituents, BV has been
proven to be active as an anti-inflammatory [36,37], radioprotective, [38], and antibacterial agent against
several Gram-positive/negative bacteria strains [5,39]. The combination of BV and its constituents with
chemotherapy agents (vancomycin, oxacillin, and amikacin) has a synergetic effect against bacteria
due to the antibacterial properties [16].

In this review, we discuss the in vitro, in vivo, and in situ therapeutic implications of BV against
microbial diseases.

2. Antimicrobial Properties of Bee Venom and Mode of Action for the Venom and its
Derived Compounds

2.1. Antibacterial

BV has significant antimicrobial effects [40]. BV, and its major compounds, PLA2 and melittin
(Figure 1), were applied against oral pathogens identified as the causative agents of tooth decay.
The minimum inhibitory concentration (MIC) for the BV lies between 20 and 40 µg/mL against
Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, Lactobacillus casei, and Enterococcus
faecalis. Melittin showed MIC values ranging from 4 to 40 µg/mL, whereas the MIC value of PLA2
was above 400 µg/mL (Table 1) [4]. Lyme infection is a tick-borne multi-systemic illness caused by the
bacterium Borrelia burgdorferi [41]. Both BV and melittin had impacts on the morphology and size of
the biofilms of B. burgdorferi, whereas antibiotics frequently experienced backslide occurrence after
discontinuation [6].
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Figure 1. Chemical structure and amino acids sequence of bioactive peptides from bee venom as
antimicrobial agents.

BV antimicrobial and antibiofilm activity was identified in 16 poultry-isolated Salmonella
strains. BV MIC ranged 256–1024 µg/mL. Sub-inhibitory BV concentrations significantly reduced the
development of biofilm in 14 of the 16 Salmonella strains studied, with substantial motility increases.
BV did not show any influence on the motility of Salmonella isangi IG1 and S. infantis Lhica I17.
The percentage of biofilm reduction observed ranged from 27.66% (S. Infantis Lhica I17) to 68.22%
(Salmonella enterica subsp. salamae SA3), with significant variability among the different Salmonella
strains tested [42].

BV was proven effective, synergistic, and safe when combined with some conventional drugs
against certain types of microbes; however, there is a slow and careful consideration towards its
investigations in pre-clinical and clinical applications. For example, BV and melittin exhibited
a broad-spectrum antibacterial activity against both Gram-positive (MIC values between 10 and
100 µg/mL) and Gram-negative bacteria (MIC values between 30 and >500 µg/mL). Combination
of BV and melittin with other antibiotic drugs, i.e., oxacillin, vancomycin, and amikacin, using
checkerboard dilution gave fractional inhibitory concentration (FIC) indices ranging between 0.24
and 0.5; the FIC index is determined by the MIC of the test material in combination with an antibiotic
medication divided by the MIC of the test material individually [16]. BV increased the antibody
production against formalin-killed S. gallinarum in broiler chicks [43]. BV and melittin exhibited a
broad spectrum antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA) and
vancomycin-resistant enterococci at MIC values of 6–800 µg/mL, compared to vancomycin’s (reference
drug) MIC value of 1.6–25 µg/mL [16]. The combination of BV and melittin with oxacillin showed a
bactericidal effect on MRSA ATCC 33591. The treatment with both BV and melittin led to changes in
the bacterial cell membrane caused by the loss of membrane integrity and exhibition of changes in the
cell morphology including cell distortion and loss of cytoplasm content [11].

The antibacterial efficiency of melittin was studied against a variety of bacteria, such as Escherichia
coli, S. aureus, and B. burgdorferi [39,44–47]. Gram-positive bacteria have sensitivity to melittin,
compared to Gram-negative ones, due to the nature of the organism’s cell membrane [39,46,48,49].
Melittin can penetrate the peptideoglycan layer of the Gram-positive cell membrane more easily than
the Gram-negative cells, which have a layer of lipopolysaccharides protecting their membrane. The
presence of proline residue in position 14 has been shown to play a central role in the antimicrobial
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activity of melittin. Its absence in a melittin analog significantly reduced antimicrobial activity
compared to the native peptide [50]. Similarly, two synthetic melittin, serine-substituted melittin
(Mel-S) and asparagine-substituted melittin (Mel-N), were capable of penetrating E. coli cell membrane.
Mel-S was more efficient than Mel-N [51]. Melittin, in general, possesses a greater ability to destroy
biofilms formed by S. aureus compared to E. coli (biofilm production was 56% vs. 37%, respectively) [46].
MDP1: GIGAVLKVLTTGLPALIKRKRQQ and MDP2: GIGAVLKWLPALIKRKRQQ displayed strong
antibacterial activity against reference strains of S. aureus, E. coli, and Pseudomonas aeruginosa compared
to the native melittin. The antibacterial effects of MDP1 and MDP2 were explained by the changes in
the bacterial membrane and the destruction of the bacterial cell membrane. Furthermore, the hemolytic
activity of melittin (93.5%) at the dose of 3.84 µg/mL with average MIC values showed significant
reduction in MDP1 (1.46% at geometric mean (GM) of 3.01 µg/mL) and MDP2 (5.15% at GM of MICs
2.18 µg/mL) [52]. The antibacterial activity of native melittin and its two mutants, namely melittin
I17K (GIGAVLKVLTTGLPALKSWIKRKRQQ) with a higher charge and lower hydrophobicity and
mutant G1I (IIGAVLKVLTTGLPALISWIKRKRQQ) of higher hydrophobicity, were investigated against
different strains of Listeria, as mentioned in Table 1 [53].

The increased frequency of multi-drug resistant (MDR) bacteria is a major challenge to antimicrobial
treatment. Melittin shows broad antibacterial activity toward different types of bacteria such as
methicillin-susceptible S. aureus (MSSA), MRSA, and Enterococcus spp at MICs 0.5–4, 0.5–4, and
1–8 µg/mL, respectively. Furthermore, synergetic action between melittin and some antibiotics, i.e.,
daptomycin, vancomycin, linezolid, ampicillin, and erythromycin, against the previously mentioned
bacteria were investigated by Dosler et al. [54]. Melittin‘s antibacterial and synergistic effects with
β-lactam antibiotics to Acinetobacter baumannii was reported using broth microdilution method. The
MIC values of melittin, ciprofloxacin, co-amoxiclav, imipenem, netilmicin, ceftazidime, and piperacillin
are 4, 8, 16, 16, 16, 32, and 128 µg/mL, respectively. However, FIC indices for combinations of melittin
with the same antibacterial drugs are 0.750, 0.312, 0.250, 1.25, 0.187, and 0.375 µg/mL, respectively [55].
The application of melittin–doripenem has resulted in a significant decrease in the MIC of MDR
baumannii strains. When the combinations of melittin–doripenem and melittin–ceftazidime were
administrated to strains of MDR P. aeruginosa, the dose of melittin was significantly reduced. The
combination of melittin with doripenem and ceftazidime against MDR microbial pathogens could be
of great therapeutic value [56].

Furthermore, the combination between melittin and PLA2 (0.5 mg of each compound) has been
investigated against oral pathogens S. salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, Lactobacillus
casei, and E. faecalis. The MIC was studied for each one individually (melittin with MIC from 4 to
40 µg /mL and PLA2 with MIC values of >400 µg/mL) and in combination with each other (MIC
values ranging 6–80 µg/mL) [4]. The combination of BV with ampicillin or penicillin yielded an index
of inhibitory concentrations ranging from 0.631 to 1.002, indicating a partial synergistic effect. The
two MRSA strains were more susceptible to the combination of BV with gentamicin or vancomycin
compared to combination of BV with ampicillin or penicillin [5].
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Table 1. Anti-bacterial properties of bee venom and its compounds.

Bee Venom/Isolated
Compounds Organism Method Dose/Mode of Action Reference

Bee venom

S. aureus Disc diffusion
MIC 8 µg/mL [57]

MBC 16 µg/mL

S. aureus Gp Disc-diffusion At 100 µg/mL give inhibition zone 23.2 mm after
24 h [10]

MRSA CCARM 3366 Broth microdilution
MIC 0.085 µg/mL [5].

MBC 0.106 µg/ mL

S. aureus CCARM
3708

Broth microdilution
MIC 0.11 µg/mL [5].
MBC 0.14 µg/mL

MR S. aureus ATCC
33591

Broth microdilution

MIC90% 7.2 µg/mL

[11]
MBC90% 28.7 µg/mL

PC: Cephalothin
MIC90% 2 µg/mL
MBC90% 2 µg/mL

S. aureus enterotoxin
ATCC 23235

Broth microdilution
MIC 0.7 µg/mL

[11]PC: Cephalothin and Oxacillin
MIC < 0.5 µg /mL

S. hyicus Disc diffusion
MIC 128 µg/mL [57]
MBC 128 µg/mL

S. chromogenes Disc diffusion
MIC 128 µg/mL [57]
MBC 128 µg/mL

S. salivarius Broth microdilution
MIC 20 µg/mL

[4]PC: Chlorhexidine digluconate
MIC 0.9 µg/mL

S. sanguinis Broth microdilution
MIC 30 µg/mL

[4]PC: Chlorhexidine digluconate
MIC 3.7 µg/mL

S. sobrinus Broth microdilution
MIC 40 µg/mL

[4]PC: Chlorhexidine digluconate
MIC 0.9 µg/mL

S. mitis Broth microdilution
MIC 40 µg/mL

[4]PC: Chlorhexidine digluconate
MIC 3.7 µg/mL

S. mutans Broth microdilution
MIC 20 µg/mL

[4]PC: Chlorhexidine digluconate
MIC 0.9 µg/mL

Klebsiella pneumonia Broth microdilution MIC 30 µg/mL for 24 h [16]

Bacillus subtilis Broth microdilution MIC 30 µg/mL for 24 h [16]

Paenibacillus larvae Resazurin method

MIC 3.12 µg/mL

[58]
MBC 4.16 µg/mL

PC: Oxytetracycline
MIC 0.63 µg/mL
MBC 0.83 µg/mL

E. faecalis Broth microdilution
MIC 20 µg/mL

[4]PC: Chlorhexidine digluconate
MIC 3.7 µg/mL

L. casei Broth microdilution
MIC 20 µg/mL

[4]PC: Chlorhexidine digluconate
MIC 0.9 µg/mL

Salmonella
typhimurium Disc-diffusion

Inhibition zone was 15.88 mm at 45 µg
[59]PC: Gentamicin

Inhibition zone was 19 mm at 10 µg/mL

E. coli Disc-diffusion
At 45 µg inhibits 32.46 mm

[59]PC: Gentamicin
At 10 µg/mL inhibits 20 mm

P. aeruginosa NR The antibacterial activity was 38% at 50 µg/mL [60]

Borrelial spirochetes Direct counting
method

MIC 200 µg/mL
[6]PC: Doxycycline, cefoperazone, and daptomycin

MIC 10 µg/mL
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Table 1. Cont.

Bee Venom/Isolated
Compounds Organism Method Dose/Mode of Action Reference

Melittin

S. salivarius Broth microdilution MIC 10 µg/mL [4]

E. faecalis Broth microdilution MIC 6 µg/mL [4]

L. casei Broth microdilution MIC 4 µg/mL [4]

S. sanguinis Broth microdilution MIC 10 µg/mL [4]

S. sobrinus Broth microdilution MIC 10 µg/mL [4]

S. mitis Broth microdilution MIC 10 µg/mL [4]

S. mutans Broth microdilution MIC 40 µg/mL [4]

K. pneumonia Broth microdilution MIC 8 µg/mL throughout 24 h [16]

B. subtilis Broth microdilution MIC 6 µg/mL for 24 h [16]

Susceptible colistin- A.
baumannii Broth microdilution MIC 4 mg/L after 24 h [61]

Acinetobacter spp. Disc diffusion
Cell lysis

[62]Membranolytic effect
MIC 0.5 µg/mL

Colistin-resistant A.
baumannii Broth microdilution MIC 2 mg/L after 24 h [61]

Listeria monocytogenes
F4244

Agar well diffusion MIC 0.315 µg/mL [53]
MBC 3.263 µg/mL

MR S. aureus ATCC
33591

Broth microdilution

MIC90% 6.7 µg/mL

[11]
MBC90% 26 µg/mL
PC: Cephalothin
MIC90% 2 µg/mL
MBC90% 2 µg/mL

S. aureus enterotoxin
ATCC 23235

Broth microdilution
MIC 3.6 µg/mL

[11]PC: Cephalothin and Oxacillin
MIC <0.5 µg /mL

S. aureus Microtiter broth
dilution MIC 6.25 µg/mL [63]

B. spirochetes Direct counting
method

MIC 200 µg/mL
[6]PC: Doxycycline, cefoperazone, and daptomycin

MIC 10 µg/mL

A. baumannii ATCC
19606

Broth
microdilution

MIC 17µg/mL

[64]
PC: Polymyxin

MIC 0.25 µg/mL
Imipenem:

MIC ≤ 0.125 0.25 µg/mL

A.
baumannii 31852 (S)

Broth
microdilution

MIC 20 µg/mL

[64]
PC: Polymyxin

MIC 0.25 µg/mL
Imipenem:

MIC 0.25 µg/mL

A. baumannii 33677
(XDR)

Broth
microdilution

MIC 31 µg/mL

[64]
PC: Polymyxin

MIC 0.25 µg/mL
Imipenem:

MIC 16 µg/mL

A. baumannii 96734
(XDR)

Broth
microdilution

MIC 45.5 µg/mL

[64]
PC: Polymyxin

MIC 0.25 µg/mL
Imipenem:

MIC 16 µg/mL
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Table 1. Cont.

Bee Venom/Isolated
Compounds Organism Method Dose/Mode of Action Reference

Synthetic Melittin and Its Analogues

Synthetic melittin

P. aeruginosa
ATCC 47085 Luria broth MIC 12.1 µM [65]

E. coli ATCC 29222 Luria broth MIC 13.2 µM [65]

E. coli DH5 NR
MIC 3.9 µM

[66]PC: Tetracycline
MIC 1.2 µM

K. pneumoniae
ATCC 13883 Luria broth MIC 14.9 µM [65]

A. baumannii
ATCC 19606 Luria broth MIC 8.3 µM [65]

B. subtilis NR
MIC 2 µM

[66]PC: Tetracycline
MIC 0.2 µM

S. aureus NR
MIC 3.6 µM

[66]PC: Tetracycline
MIC 4 µM

Melittin Hybrid

Cecropin A–melittin
(CAM) E. coli Microtiter broth

dilution MIC 3.7 µg /mL [67]

CAM-W E. coli Microtiter broth
dilution MIC 0.3 µg/mL [67]

Cecropin A-melittin
CA(1–8)M(1–18) A. baumannii Mueller-Hinton

broth

MIC 2 µM
[68]PC: Polymyxin B

MIC 1 µM

Mutant melittin I17K L. monocytogenes
F4244

Agar well diffusion MIC 0.814 µg/mL [53]
MBC 7.412 µg/mL

Mutant melittin G1I L. monocytogenes
F4244

Agar well diffusion MIC 0.494 µg/mL [53]
MBC 5.366 µg/mL

MM-1 B. subtilis NR
MIC 2.4 µM

[66]PC: Tetracycline
MIC 0.2 µM

MM-2 B. subtilis NR
MIC 1.8 µM

[66]PC: Tetracycline
MIC 0.2 µM

Mel-H
E. coli Microtiter broth

dilution MIC 11.25 µM [69]

P. aeruginosa
ATCC27853

Microtiter broth
dilution MIC 11.25 µM [69]

S. aureus ATCC25923 Microtiter broth
dilution MIC 5.6 µM [69]

Mel(12–24)

B. subtilis Broth microdilution
MIC 0.65 µg/mL

[70]PC: Melittin
MIC 0.18 µg/mL

S. aureus Broth microdilution
MIC 1.3 µg/mL

[70]PC: melittin
MIC 0.72 µg/mL

Phospholipase A2 S. aureus Gp Disc-diffusion
Hydrolysis of phospholipids [10]

At 100 µg/mL inhibits 13.33 mm after 24 h

L. casei Broth microdilution MIC 400 µg/mL [4]

PC, Positive control; MIC, Minimum inhibitory concentration; MBC, Minimum bactericidal concentration; NR, No
reported; CAM, KWKLFKKIEKVGQGIGAVLKVLTTGL; CAM-W, KWKLWKKIEKWGQGIGAVLKWLTTWL-NH2;
melittin I17K, GIGAVLKVLTTGLPALKSWIKRKRQQ; CA(1–8)M(1–18), KWKLFKKIGIGAVLKVLTTG LPALIS-NH2;
Mel(12–24), GLPALISWIKRKR-NH2; MM-1, GIGAVLKVLTTGAPALISWIKRKRQQ; MM-2, GIGAVAKVLTTGAPA
LISWIKRKRQQ; Mel-H, GIGAVLKVLALISWIKRKR.

2.2. Anti-Viral

During the last decade, viral diseases such as hepatitis C, smallpox, polio, rubella, and AIDS
have threatened the lives of millions worldwide, especially immunocompromised patients [71]. Water
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contamination (waterborne diseases) represents a major health problem in regards to the spread of
many viral diseases like hepatitis viral disease, poliomyelitis, gastroenteritis, diarrhea, etc. [72–74].
Searching for anti-viral substitutes that are low or completely free of diverse effects is an urgent need.
In this context, natural products, in particular BV, embody a variable of exotic constituents, suggesting
an immeasurable source of anti-viral agents [75].

BV and its constituents show prominent anti-viral activities against various enveloped and
non-enveloped viruses such as Vesicular Stomatitis (VSV), Herpes Simplex (HSV), Enterovirus-71
(EV-71), Coxsackie (H3), Respiratory Syncytial Influenza A (A/PuertoRico/8/34) (in vitro study), and
influenza A subtype (H1N1) (in vivo study) (Table 2 and Figure 2) [76]. Papillomaviruses (HPVs) are
considered the most common agents responsible for cervical carcinoma. BV was able to inhibit the
growth of cervical cancer cells by the downregulation of E6/E7 proteins of HPV viruses (Table 2) [77].
BV and its constituent melittin (Figure 1) can induce the immunity against porcine reproductive and
respiratory syndrome viruses (PRRSV) via significant up-regulation of Th1 cytokines (IFN-γ and
IL-12) and several types of immune cells, including CD3+CD8+, CD4+CD8+, and γδ T cells, leading to
reduction of the viral load and decrease of the severity of interstitial pneumonia in PRRSV-infected
pigs [78].
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Figure 2. Possible inhibitory mechanisms of bee venom against a variety of viruses.

Based on the HIV tropism, honeybee PLA2 and its derivatives p3bv (containing 21–35 amino acids
of PLA2) possess potent anti-human immunodeficiency virus (HIV) activity. The p3bv peptide showed
anti-HIV activity via the prevention of the cell–cell fusion process and inhibition of the replication of
T-tropic viruses in contrast to PLA2 that inhibited both M- and T-tropic HIV viruses but was unable to
inhibit cell–cell fusion under the same condition. The authors illustrated that the mechanism behind
the inhibition of HIV replication is different for the two enzymes. PLA2 is presumably linked to a
high-affinity binding receptor of the host cells but P3bv peptide is linked with a CXCR4 chemokine
receptor [79,80]. Another type of BV phospholipases A2 called sPLA2 was evaluated using plaque
assay and proven to suppress the activity of Japanese encephalitis virus (JEV), Hepatitis C virus (HCV),
and Dengue virus (DENV) with IC50 values of 49, 117, and 183 ng/mL, respectively [81].
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Table 2. Bee venom and its compounds as antiviral agents.

Bee Venom/Isolated
Compounds Organism Method Dose/Mode of Action Reference

Bee venom

Papillomaviruses
(HPV16 E6)

Reverse
transcription assay

Inhibits mRNA expression.

[77]Suppresses cell growth.
Downregulates protein.

At 10 µg/mL inhibits 0.35 ± 0.06-fold after
24 h.

Papillomaviruses
(HPV16 E7)

Reverse
transcription assay

Inhibits mRNA expression.

[77]Suppresses cell growth.
Downregulates protein.

At 10 µg/mL inhibits 0.44 ± 0.07-fold after
24 h.

PRRSV
Enzyme-linked
immunosorbent

assay

Increases immunomodulatory against the
virus. [78]

Significant up-regulate Th1 cytokines
(IFN-γ and IL-12) and several types of

immune cells.

Vesicular stomatitis
virus (VSV)

Plaque assay Inhibits virus replication [76]
EC50 0.5 ± 0.06 µg/mL

HSV Plaque assay Inhibits virus replication [76]
EC50 1.52 ± 0.11 µg/mL

Coxsackie virus (H3) Plaque assay
Inhibits mRNA expression

[76]Inhibits virus replication
EC50 0.5 ± 0.04 µg/mL

RSV Plaque assay Inhibits virus replication [76]
EC50 1.17 ± 0.09 µg/mL

PR8 Plaque assay Inhibits virus replication. [76]
EC50 1.81 ± 0.08 µg/mL

EV-71 Plaque assay
Inhibits mRNA expression.

[76]Inhibits virus replication
EC50 0.49 ± 0.02 µg/mL

Lumpy skin disease
virus (LSDV)

Agar gel
precipitation test At the dose 0.5 µg/mL [85]

Melittin

Immunodeficiency
virus (HIV)

Lysis and fusion
assays Lytic and fusogenic [86]

Herpes simplex
(HSV-1)

Plaque assay
Virus penetration

assay

Inhibits cell fusion.
[83]Inhibits Na+, K+ pump activity.

Inhibits virus adsorption and penetration to
the cells.

Immunodeficiency
virus HIV-1

Transient
transfection

Assays

Inhibits virus replication.

[84]

Suppresses gene expression.
Suppresses intracellular

Protein and mRNA synthesis.
Suppresses long terminal repeat (LTR)

activity
ID50 0.9–1.4 µM after 24 h.

Arenavirus Junin (JV) Plaque assay Impedes the multiplication [82]
EC50 0.86 µM after 24 h.

HSV-1 Plaque assay Impedes the multiplication [82]
EC50 1.35 µM after 24 h.

Herpes simplex virus
(HSV-2)

Plaque assay Impedes the multiplication [82]
EC50 2.05 µM after 24 h.

Herpes simplex virus 1
M (HSV-1 M)

Quantitative
microplate assay Viral inactivation at 100 µg/mL [87]

Herpes simplex virus 2
G (HSV-2 G)

Quantitative
microplate assay Viral inactivation at 100 µg/mL [87]

Phospholipase A2
(sPLA2)

Hepatitis C virus
(HCV) Plaque assay IC50 117 ± 43 ng/mL after 24 h. [81]

DENV Plaque assay IC50 183 ± 38 ng/mL after 24 h. [81]

JEV Plaque assay IC50 49 ± 13 ng/mL after 24 h. [81]

EC50, Effective concentration for 50% reduction; ID50, 50% inhibitory dose; IC50, Inhibition concentration of 50%.
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Furthermore, melittin represents an agent against Arenavirus Junin (JV) and Herpes Simplex Types 1
(HSV-1) and 2 (HSV-2) via inhibition of virus multiplication, adsorption, and penetration, as well as Na+

and K+ pumps of the host cell. Utilizing plaque and viral penetration assays, melittin at a multiplicity
of infections (m.i.o) of 0.02 and 0.05 µM inhibited plaque formation giving 37 plaque formation units
(PFU) compared to 220 PFU observed in the absence of melittin [82,83]. In another in vitro study,
melittin was evaluated using the plaque assay against different viruses, namely Respiratory syncytial
virus (RSV), EV-71, HSV, H3, Fused Influenza A virus (PR8), and VSV, with EC50 values of 0.35 ± 0.08,
0.76 ± 0.03, 0.94 ± 0.07, 0.99 ± 0.09, 1.15 ± 0.09, and 1.18 ± 0.09 µg/mL, respectively [76]. Furthermore,
melittin could also be used against HIV-1, as it can inhibit the replication of HIV-1 by interfering with
host cell-directed viral gene expression [84]. In an in vivo study, melittin was examined against lethal
doses of the pathogenic H1N1 virus in mice; the results show that melittin can inhibit the replication of
the virus, as the Log10 50% tissue culture infectious dose of a virus (TCID50) was 1.53 ± 0.25, compared
to phosphate-buffered saline (PBS) at Log10 TCID50 4.22 ± 0.2 [76]. Taken together, these results suggest
that BV and its constituents have the potential to become therapeutic agents to combat infectious
viral diseases.

2.3. Anti-fungal

Fungal related diseases cause colonization, superficial skin infections, and allergies, representing
a devastating health problem worldwide. Additionally, the toxicity and resistance to antifungal drugs
are major challenges. Natural products from plants, marine life, microorganisms, and bee products
could be considered promising antifungal agents with fewer side effects [88].

Recently, BV was reported as an effective agent against many of the fungal related diseases, as
mentioned in Table 3. BV can inhibit dermatophytosis, which occurs via Trichophyton mentagrophytes
and Trichophyton rubrum fungi. BV reduced all populations of T. mentagrophytes at 15 and 30 ppm within
5 min, while, at the same dose of BV, T. rubrum growth inhibition was observed within 5 min. On the
other hand, fluconazole did not prevent the development of the same pathogens. The study proved
that the BV was more potent than fluconazole (commercial antifungal drugs) [89]. The anti-fungal
action of BV on 10 clinical isolates of Candida albicans was studied, with MIC values ranging from 62.5
to 125 µg/mL [88]. In another study, melittin showed antimicrobial activity against various strains
of fungi with MIC values between 30 and 300 µg/mL [16]. Melittin produced oxygen free radicals
(OH). that could induce apoptosis of C. albicans. The fungal cell death was explained by the disrupted
mitochondrial membrane via the Ca2+ release [90,91].

Alternaria alternate sp. and Aspergillus pillows are common pathogens that grow in the nasal cavity.
The irritation/inflammation caused by the fungus induces the production of chemical mediators from
nasal epithelial cells and fibroblasts. Melittin and apamin (Figure 1) were able to inhibit the growth of
A. alternate sp. and A. pillows causing upper airway inflammatory diseases. The mechanism of action
was shown to be via the inhibition of chemical mediators production, i.e., interleukin (IL)-6, IL-8, and
ECM, as well as induction of the phosphorylation of Smad 2/3 and p38 MAPK [3].
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Table 3. Anti-fungi properties of bee venom and its compounds.

Bee Venom/ Isolated
Compounds Organism Method Dose/Mode of Action Reference

Bee venom

T. mentagrophytes Broth dilution At 0.63 ppm inhibits 92%
After 1 h. [89]

T. rubrum Broth dilution At 0.63 ppm inhibits 26%
After 1 h. [89]

C. albicans Disc diffusion Prevents dimorphism
MIC 40 µg/mL for 48 h. [92]

C. albicans Broth
microdilution MIC 62.5–125 µg/mL for 24 h. [88]

Candida krusei Broth
microdilution MIC 60 µg/mL throughout 48 h. [16]

A. alternate NR
At 1 µg/mL inhibits 50% of interleukin (IL)-6

production. [3]

At 1 µg/mL inhibits 28.8% of interleukin
(IL)-8 production. [3]

Melittin

C. krusei Broth
microdilution MIC 30 µg/mL for 48 h [16]

C. albicans NR
Disruptive the mitochondrial membrane. [90]

Apoptotic for 4 h

Aspergillus flavus
(KCTC 1375)

Microdilution
method and MTT

assay

MIC 1.25 µM

[93]
PC: Amphotericin B:

MIC 2.5 µM
Fluconazole: MIC 10 µM
Itraconazole: MIC 10 µM

Malassezia furfur
(KCTC 7744)

Microdilution
method and MTT

assay

MIC 1.25 µM

[93]PC: Amphotericin B: MIC 2.5 µM
Fluconazole: MIC 5 µM
Itraconazole: MIC 5 µM

C. albicans (ATCC
90028)

Microdilution
method and MTT

assay

MIC 2.5 µM

[93]PC: Amphotericin B: MIC 5 µM
Fluconazole: MIC 10 µM
Itraconazole: MIC 10 µM

Apamin A. alternate NR
At 1 µg/mL inhibits 42.6% of interleukin

(IL)-6 production. [3]

At 1 µg/mL inhibits 38.7% of interleukin
(IL)-8 production. [3]

NR, Not reported; ppm, Parts per million.

3. Concluding Remarks

Microbial diseases are problematic, particularly with the emergence of drug resistance; therefore,
researchers are looking for new sources of bioactive candidates. Natural products are considered a
renewable source with fewer complications that could provide a wide number of active compounds.
BV is a complex mixture of proteins, peptides, and low molecular weight components including
melittin, PLA2, apamin, adolapin, and MCDP. BV contains a variety of bioactive components including
melittin, apamin, and PLA2, which play a vital role as antimicrobials through various mechanisms
against bacteria, viruses, and fungi. The synergistic effect of BV and melittin through the combination
of chemotherapy drugs leads to a reduction in dosage, side effects, and greater efficacy of the treatment
strategy against microbial ailments. BV established its role as antimicrobial.

BV and its constituents in combination with antibiotic drugs emerge as a plausible approach to
overcome drug resistance of current antibiotics treatment in a controlled manner. Another promising
and feasible implication is to test BV to combat microbes causing skin diseases. Interestingly, BV
can be useful as a topical agent for encouraging skin regeneration or treatment of certain epidermal
conditions [5,94]. Therefore, BV has contributed to some formulations against bacteria that cause
acne [95,96].
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Therefore, BV and melittin are attractive therapeutic candidates for microbial diseases. However,
using BV and melittin induces extensive hemolysis and toxicity of the cells, a severe side effect that
limits their future development and clinical application. Ongoing research is addressing practical
issues including standardization, toxicity, and stability [97–100].
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