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Abstract: Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus
sphaericus are effective and environmentally safe compounds for the control of dipteran insects of
medical importance. They produce crystals that display specific and potent insecticidal activity
against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type
family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that
can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those
toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus
crystals contain one major binary toxin that display an outstanding persistence in field conditions,
which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single
receptor is vulnerable for resistance selection in insects. In this review we present the most recent
data on the mode of action and synergism of these toxins, resistance issues, and examples of their use
worldwide. Data reported in recent years improved our understanding of the mechanism of action
of these toxins, showed that their combined use can enhance their activity and counteract resistance,
and reinforced their relevance for mosquito control programs in the future years.

Keywords: Bti; Lysinibacillus sphaericus; cry toxin; Cyt toxin; binary toxin; receptors

Key Contribution: This review discusses major aspects of the toxins produced by the entomopathogenic
bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus with emphasis on the
novel knowledge about their specific modes of action on the midgut tissue of mosquito larvae,
synergism, and their application in integrated control programs.

1. Entomopathogenic Bacteria Active against Mosquito Larvae

Insects can act as vectors of etiological agents of different diseases and can be a nui-
sance to humans, being responsible for health burdens worldwide [1]. Re-emergent and
emergent diseases, in particular arboviruses, remain a global challenge as recently shown
for the epidemic problems caused by the Zika virus [2]. Microbial larvicides based on
entomopathogen bacteria have been successfully used for controlling mosquito and black-
fly populations, as an alternative to the conventional classes of chemical insecticides, due
to their high effectiveness and environmental safety [3–5]. Bacillus thuringiensis serova-
riety (svar.) israelensis (Bti) de Barjac was the first B. thuringiensis (Bt) bacterial serotype
identified as active against some Diptera larvae [6]. Subsequently, Lysinibacillus sphaericus
(L. sphaericus) Neide strains, with activity against Culicidae larvae were discovered [7].
Since the 1980s, products based on these two bacteria have been considered the most
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successful biological agents for controlling the larvae of mosquitoes and black-flies [5,8–10].
Bti and L. sphaericus are Gram-positive, aerobic, sporulating, and cosmopolitan bacteria
that display high and selective larvicidal activity against Diptera including genera of public
health importance such as Aedes, Anopheles, Culex, and Simulium [5]. In this review we
will focus on describing the recent knowledge regarding to the mechanism of action of the
insecticidal proteins produced by these bacteria and their synergism, and examples of uti-
lization for mosquito control, since another review in this Special Issue will cover bacterial
toxins in the control of dipteran insect pests of medical and agronomic importance [11].

The larvicidal activity of Bti and L. sphaericus is due to the production of crystalline
inclusions during their sporulation phase of growth (Figure 1). These crystals are composed
of protoxins that act on the midgut epithelial cells of the larvae after ingestion, targeting
specific membrane-bound receptors [12,13]. Notably, the selective mode of action of these
toxins is the major feature considered in the actual safety requirements for larvicides
employed for mosquito control. According to the classification of the Insecticide Resistance
Action Committee (https://irac-online.org/, accessed on 20 June 2021), those toxins belong
to the mode of action Group 11 designed as “Microbial Disruptors of Insect Midgut
Membranes”. In order to be active, the insecticidal crystals produced by Bti and L. sphaericus
are required to be ingested by the larvae. Inside the gut, the protoxins are processed into
active toxins that finally bind to midgut receptors, leading to pore formation in the midgut
cell membranes [9,14].

Bti was discovered by Margalit and Goldberg in 1977 [15] and classified by its flagellar
serotyping as H-14 [6], remaining as a reference strain. The full classification of Bacillus
thuringiensis (Bt) serovars and their toxins [16] can be found in http://www.lifesci.sussex.
ac.uk/home/Neil_Crickmore/Bt/ accessed on 18 June 2021. The insecticidal parasporal
crystal produced by Bti is commonly composed of four major protoxins [17] with a selective
spectrum that includes the larvae of Culicidae (mosquitoes), Simuliidae (black-flies), and
Chironomidae (midges) species. The major advantage of Bti is its proven field effectiveness
after more than four decades of use, without records of larvae resistance to the insecticidal
crystal [4,5,18].

The first mosquitocidal strain of L. sphaericus, formerly classified as Bacillus sphaeri-
cus [19], was isolated by Kellen et al. [7], but the first strains studied, such as the Kellen
strain, showed low toxicity. Later, the discovery of additional strains displaying high
larvicidal activity—such as 1593 [20,21], 2362 [22], and C3-41 [21]—led to the development
of commercial larvicides [13]. L. sphaericus isolates were grouped into flagellar serotypes
by DNA homology analysis [13,23], and recent genomic sequencing has also contributed
to their classification [24]. Among the insecticidal factors that were characterized in L.
sphaericus strains, the crystal containing the binary (Bin) protoxin is by far the most impor-
tant. Recently, a novel nomenclature of pesticidal proteins based on their protein structure
named the Bin toxin as “Tpp” toxin pesticidal protein [16], while the Cry mnemonic was
retained for the three domain proteins, and the Cyt mnemonic was retained for the Cyt-
related proteins [16]. The Bin crystal of L. sphaericus has a narrow spectrum of action
compared to the Bti’s crystal, as it only targets Culicidae larvae [5]. Field performance in
breeding sites with organically polluted water is an outstanding feature of Bin crystals, but
insects resistant to the Bin crystal have evolved causing a problem that requires additional
management practices [25–27]. This review aims to present the major features and recent
knowledge of Bti and L. sphaericus mosquitocidal toxins and the opportunities to exploit
them based on novel advances regarding their specific mode of action in the midgut cells
and on the plethora of experiences derived from their field utilization.

https://irac-online.org/
http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/
http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/
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Figure 1. Bacillus thuringiensis svar. israelensis, 4Q-7 acrystalliferous strain, transformed line express-
ing the Binary protoxin crystal from the Lysinibacillus sphaericus 2362 strain. The arrow points to the
crystal. Micrograph kindly provided by Dr. Antônio Pereira-Neves.

2. Toxins and Mode of Action
2.1. Bacillus thuringiensis svar. israelensis (Bti)

A few years after its discovery, Bti-based larvicides were introduced for vector control,
and to date, this biological control strategy remains effective and safe. The multi-toxin
composition of Bti crystal and its complex mode of action play an important role to provide
their selective action associated with the lack of insect resistance to the crystal [3,12]. During
the sporulation phase, this bacterium produces Cry and Cyt insecticidal protoxins that
accumulate in parasporal crystals. The genes that code for those toxins are located in a
128 kb pBtoxis megaplasmid where the main protoxins are Cry4Aa (125 kDa), Cry4Bb
(135 kDa), Cry11Aa (68 kDa), and Cyt1Aa (28 kDa) [17]. Some strains can also produce
lower quantities of additional protoxins such as Cry10Aa (58 kDa) and Cyt2Ba (30 kDa),
which also display toxicity against mosquito larvae [28–30]. The individual Cry and
Cyt proteins from Bti show low toxicity to mosquito larvae, compared to the high toxic
effect displayed by the whole Bti crystal, which results from the synergism among these
proteins [31]. The first major steps described in the Bti’s crystal mode of action are their
ingestion by mosquito larvae, the crystals’ solubilization in the alkaline pH of the midgut
lumen, and the protoxin activation by midgut proteases ending in pore formation into the
midgut cells [32–34]. The ingestion of the crystals is important for the mode of action since
it was observed that larvae treated with soluble toxins did not display mortality [35]. Both
Cry and Cyt are pore-forming toxins that destroy the epithelium midgut cells causing larval
death. The production of different toxins with distinct modes of action is a key feature
since Cry toxins rely on a variety of protein receptors, while Cyt toxins bind directly to
the membrane lipids. Regarding the interaction with receptors, it is worth noting that the
Cyt1Aa toxin acts as a surrogate receptor for the Cry toxins as described below [12,33,36].

2.1.1. Cry Toxins

The Cry4Aa, Cry4Ba, and Cry11Aa toxins are composed of three domains: domain
I is involved in toxin oligomerization and in the pore-formation activity, while domains
II and III are involved in receptor binding [9]. The available crystallographic structures
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of Cry4Ba and Cry4Aa showed their three-domain structure [34,37–42]. The proposed
model of their mode of action is the pore-formation model that was first established for
Cry1A toxins in the midgut of the lepidopteran Manduca sexta and involves the sequential
binding of the toxin to different receptors. First, the monomeric Cry toxin binds with low
affinity to the highly abundant glycosylphosphatidylinositol (GPI)-anchored receptors
such as aminopeptidases (APN) and alkaline phosphatases (ALP); then, the toxin binds to
cadherin (CAD), which is a transmembrane protein, with higher affinity. This interaction
induces the cleavage of the helix α-1 promoting oligomer formation. The Cry oligomers
bind with higher affinity to APN or ALP, and it is proposed that this interaction is needed
to insert the oligomer into the cell membrane, forming pores that cause osmotic shock and
kill the larvae [43–46]. In the case of mosquitoes, the Cyt1Aa toxin may act as an additional
receptor for Cry toxins, promoting their oligomerization and membrane insertion [47], as
summarized in Figure 2. The oligomerization of Cry11Aa and Cry4Ba is an essential step
for their toxicity, and it was shown that helix α-3 of domain I is involved in this step [48,49].
It was also demonstrated that the binding of Cry11Aa to CAD is required for its toxic
action. However, Cry4Ba after proteolytical activation can oligomerize in the absence of
this receptor [50].
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Figure 2. Schematic representation of the mechanism of action of Cry and Cyt toxins from Bacillus
thuringiensis svar. israelensis in mosquito larvae. Crystals ingested by larvae are solubilized in the
alkaline pH of the gut lumen (1). The protoxins are activated into toxins by proteases (2); and the
Cry toxins can interact with a cadherin or with Cyt1Aa, which also act as a receptor (3); promoting
Cry oligomerization (4). This oligomer binds with high affinity to midgut-bound receptors such as
aminopeptidases-APN and alkaline phosphatase-ALP (5) and is inserted into the membrane, forming
pores (6) that breakdown the cells and kill the larvae. Representation of larvae was created with
Biorender.com.

Biorender.com
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The binding interactions of the Cry toxins from Bti with GPI-anchored receptors from
the midgut epithelium are important for their mode of action [51]. For the Cry11Aa toxin,
the receptors described in Ae. aegypti are ALP1, AaeAPN1, AaeAPN2, and AaeCAD [52–59].
A GPI-anchored α-amylase (Aamy1) was also identified as a receptor for the Cry11Aa
toxin in Anopheles albimanus [60]. Another study suggested that Cry11Aa toxicity in Ae.
aegypti also depends on an ATP-binding cassette protein [61], although more studies are
necessary to determine the role of this molecule as a Cry toxin receptor in mosquitoes. The
receptors characterized for the Cry4Ba toxin in Ae. aegypti are the proteins APN (2778, 2783,
and 5808) and ALP (ALP1 and Aa-mALP) [54,62–64]. CAD proteins (AgCAD1 and BT-R3)
were also identified as receptors of the Cry4Ba toxin in Anopheles gambiae [65,66]. The
involvement of ALP in Cry4Aa toxicity was demonstrated when Ae. aegypti larvae with
reduced ALP expression showed increased survival after being exposed to this toxin [67].
Some important regions involved on the binding between Cry toxins and their midgut
receptors were identified [68–71]. It was previously reported that the APN, ALP, and
CAD receptors are located on the epithelial cells from the caeca and posterior midgut, but
a recent work showed that the Cry11Aa toxin also associates with the epithelium from
anterior and medium midgut regions, indicating that other molecules could be involved in
this interaction [35]. After intoxication with Bti toxins, some histopathological effects such
as severe vacuolization of the cytoplasm, microvilli damage, columnar cell fragmentation,
massive degradation of the caeca gut structure, and cell lysis were observed [35,72–74].

2.1.2. Cyt1Aa Toxin

The Cyt1Aa toxin has a single α-β domain that contains two α-helix surrounding a β-
sheet [75]. This toxin interacts directly with phospholipids from the midgut cells; therefore,
its action is independent of the presence of specific protein receptors [36,76,77]. The
localization pattern of the Cyt1Aa toxin on the cell microvilli along the whole larvae midgut
shown by recent studies corroborates its unspecific binding to the cell membrane [35,78].
Two models of action were proposed for Cyt1Aa. The first is the pore formation model
that consists of cation-selective channel formation after toxin oligomerization, leading
to cell lysis and osmotic shock [79–81]. In this model, the two outer α-helices layers of
the Cyt1Aa move and expose the β-sheet structure, allowing the insertion of the β-barrel
region into the cell membrane to form the pore [75,82,83]. It has been shown that the
N-terminal region is responsible for the toxin oligomerization, and the C-terminal region is
involved in the binding of the toxin to the membrane [84]. Specific amino acid residues
and protein regions that affect Cyt1Aa binding, oligomerization, and membrane insertion
have been investigated [75,85–87]. The second model is the detergent-like model, where it
is proposed that the Cyt toxin aggregates nonspecifically on the cell membrane, leading
to lipid bilayer disassembly and cell death [77,88]. The mode of action of the Cyt protein
could be different for distinct target membranes since it was observed that oligomerization
is a key step for Cyt toxicity in Ae. aegypti larvae but not for red blood cells [85]. Therefore,
Cyt toxin insertion by the pore formation model could occur in microvilli membranes,
while a detergent membrane interaction seems to be related to its hemolytic activity [87].

Cyt1Aa is a versatile toxin that can act alone or in synergy with Cry toxins. Nonethe-
less, this toxin presents low individual toxicity to mosquitoes, and its more important
participation in toxicity of Bti seems to be related to its role as a receptor for Cry toxins since
the larvicidal effect provided by the combined action of Cyt and Cry toxins is considerably
higher than that of the toxins alone [36]. Recently, the activation of Cyt1Aa was studied
through serial femtosecond crystallography analysis [89], showing that Cyt can aggregate
on the membrane bilayer and form large pores with a great number of monomers being
detected. These aggregates of the Cyt toxin on the membrane could function as a Cry toxin
receptor, inducing the synergistic effect of these proteins. Cyt1Aa is also involved in the
synergy with the Bin toxin from L. sphaericus [78].
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2.1.3. Synergistic Interaction of Cyt1Aa with Cry and Bin Toxins

The synergy of the Cry and Cyt toxins from Bti was first observed using in vivo assays
analyzing the insecticidal activity against mosquito larvae [90–92]. The higher toxicity of
the whole Bti crystal, compared to the activity of the individual toxins, could be explained
by a synergistic effect of the Cyt and Cry toxins [31]. The molecular basis of this synergy
involves the role of the Cyt1Aa toxin as a surrogate receptor for the Cry toxins inducing their
oligomerization (Figure 2) and binding to the microvilli membrane [12,93]. The Cyt1Aa
toxin is likely to be the most important factor behind the lack of resistance to the whole
Bti crystal. The synergy mechanism of the Cry and Cyt toxins depends on their binding
interaction. The specific binding epitopes on Cyt1Aa, Cry4Ba, and Cry11Aa responsible for
this interaction were identified, and mutations in such sites affected the synergy without
affecting their individual toxicity against Ae. aegypti larvae [47,94–96]. After the binding
of Cyt1Aa to the midgut membrane, this protein interacts with Cry11Aa inducing its
oligomerization [47,94]. Another study showed that the oligomerization of Cyt1Aa is
necessary for its individual toxicity but not for the synergy with Cry11Aa against Ae.
aegypti larvae since Cyt1Aa mutants affected in oligomerization were still able to synergize
with Cry11Aa [86]. The in vivo localization of the Cry11Aa and Cyt1Aa toxins during their
synergistic interaction was analyzed at a nanoscale resolution [35]. These proteins showed
an ordered array in the microvilli, where Cry11Aa was found below Cyt1Aa, facing the cell
cytoplasm. This interaction depends on Cry11Aa toxin oligomerization since the non-toxic
mutant Cry11Aa-E97A, affected in its oligomerization, showed an inverted array when
tested with Cyt1Aa. This dynamic organization pattern in the cell microvilli is consistent
with the model of Cyt1Aa acting as a receptor of Cry11Aa [35]. It was also observed that
Cyt1Aa can interact with other Cry toxins such as Cry2Aa, which is naturally active against
lepidoptera, resulting in a slightly higher toxicity against Cx. p. quinquefasciatus larvae [97].
Other studies have also shown synergy between Cyt1Aa, Cry4Aa, Cry4Ba, and Cry11Aa
against Simulium spp. [98]; Cyt1Aa and Cry10Aa against Ae. aegypti [99]; Cyt1Aa with
Cry4Ba and Cry11Aa against An. albimanus [100]; and Cyt2Ba and Cry10Aa against Ae.
aegypti [28].

Another important feature of Cyt1Aa is its synergy with unrelated toxins such as
the Bin toxin from L. sphaericus. This protein is a heterodimer composed of BinA and
BinB proteins and shows high toxicity against mosquito larvae such as Culex and Anophe-
les, which have specific receptors for the BinB component in the midgut microvilli (see
Section 2.2.1). The Bin toxin is not active against Ae. aegypti larvae, and this refractoriness
is due to the lack of such receptors [101,102]. In vivo synergy of Cyt1Aa with the Bin toxin
was observed against Ae. aegypti and Bin-resistant Cx. p. quinquefasciatus larvae, whose
midgut epithelium lack receptors for the Bin toxin [103–105]. It was suggested that Cyt1Aa
enables the internalization of Bin on resistant larvae. Recently, the analysis of the molecular
mechanism of this synergy showed that it is not based on a specific interaction between the
Bin and Cyt toxins. It was demonstrated that the BinA toxin was internalized on the midgut
cells in the presence of Cyt1Aa, but not in the presence of a mutant Cyt1AaV122E affected
in its oligomerization and pore formation activity, suggesting that the pore formation
activity of Cyt1Aa facilitates the transport of BinA into the midgut cells allowing its toxic
intracellular effect [78]. The large pores formed by Cyt1Aa, observed by Tetreau et al. [89],
could explain how molecules, such as the BinA subunit, could be internalized into the
midgut cells. Therefore, Cyt is an important toxin that can improve the toxicity of other
toxins by distinct mechanisms resulting in high synergistic effects.

2.2. Lysinibacillus sphaericus

L. sphaericus strains have been initially classified according to their mosquitocidal
activity as low, moderate, or highly toxic strains [13]. The most toxic strains are character-
ized by the production of the crystal that contains the binary (Bin) protoxin [106]. Bin is a
heterodimeric protein composed of two subunits, BinA (42 kDa) and BinB (51 kDa). None
of them has individual activity, but they can act in synergy in equimolar concentrations,
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as they are found in the crystals produced by the highly toxic strains [107,108]. Although
other mosquitocidal toxins can also be produced by L. sphaericus [14] (see Section 2.3), the
Bin crystal is the main active ingredient in the commercial products available to date, which
are based on highly toxic strains such as 1593, 2362, and C3-41 [5,109]. The decoding of the
L. sphaericus genome enabled a better understanding of the evolution of toxins produced
by the different strains and their association with the virulence phenotype [110–114]. A
comparative analysis of genomes from high, moderate, low or non-toxic strains, revealed
that the highly toxic strains exhibit strong syntenic relationships and share a “chromo-
some backbone” from a common ancestor, where the number of predicted genes ranged
from ~4470 to 4701 [24,110]. The bin toxin genes, which are present only in a subset of
toxic strains of L. sphaericus, are highly conserved showing high identity levels among the
different serotypes and isolates [112].

The mode of action of crystals containing the Bin protoxin shows similar initial steps
as those described for Bti: crystal ingestion by larvae and the solubilization of crystals
under the midgut alkaline pH condition to release the protoxin that is converted into active
toxin after proteolytic processing [115,116]. Regarding the interaction with the midgut
epithelial cells, the action of the L. sphaericus Bin toxin relies on a high-affinity binding
interaction with a single class of receptors. This last step is completely different from the
complex interaction of the Bti toxins with several midgut receptors [27]. A major feature of
the Bin toxin is its potent and specific larvicidal action combined with excellent persistence
under field conditions. However, the mode of action depending on the interaction of the
toxin with a single receptor protein can be disrupted, generating high levels of resistance.
One important aspect is that the findings on the mode of action of toxins from Bti and Bin
crystals showed that they can be used together to overcome resistance.

2.2.1. Binary Toxin

The binA and binB genes of 1113 bp and 1347 bp encode the BinA and BinB proteins
of 370 and 448 amino acids, respectively, whose sequences display 28% identity and
46% similarity, suggesting a common origin [13,117]. These two proteins are translated
from a single mRNA regulated by a promoter located upstream of the binB gene, whose
transcription starts prior to the end of the bacterial exponential growth and continues
during the stationary phase of growth [118]. The arrangement of the bin toxin genes cluster
in the chromosomal contig is conserved in several L. sphaericus strains [110,112,119,120].
The binary protoxin (Bin), produced in the form of crystalline inclusions, was initially
classified according to four types (Bin1, Bin2, Bin3, and Bin4) based on partial DNA
sequence of the bin genes [120]. The Bin1 toxin is found, for instance, in the IAB59 strain,
while Bin2 was found in the 2362 and 1593 strains, with both proteins being highly toxic and
showing high binding capacity to midgut microvilli of Cx. p. quinquefasciatus larvae [121].
Most studies on the mode of action of the Bin toxin have been analyzed with the Bin1
and Bin2 proteins. Recently, the Bin toxin was classified as a “Beta sheet toxin”, according
to its structure and was grouped in the “Toxin_10 family” [122]. All the proteins from
this family act with their partner proteins to form Binary toxins as the homologous BinA
and BinB molecules [14]. Early studies of the functional domains of bin subunits revealed
that the receptor binding function is performed by the BinB component, whereas binA
is responsible for the toxic activity inside the cell. The optimal toxicity is achieved at
an equimolar concentration of the subunits [40,108,123]. BinA and BinB are monomeric
proteins, either as protoxins or as activated toxins. When activated, they combine and
form a heterodimer [124]. These toxins have two domains: a trefoil domain and a pore
formation domain [117], and no evidence of oligomer formation was detected for their
toxic action [124–126], contrary to the oligomerization that has already been demonstrated
for the Cry toxins [46].

The C-terminal domain of the BinA component (42 kDa) is associated with cell toxic-
ity [127] and might also be involved in the ability to form pores in the intestinal epithelium,
supporting the internalization of the toxin [39,128]. Some specific residues in this subunit
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have been already identified as necessary for BinA toxicity [82,129,130]. The N- and C-
terminal domains play an important role for the BinA–BinB interaction [131–133] that is
needed to promote binding of BinB to the cell receptors and BinA’s entry into the cells.

The N-terminal region of the BinB subunit (51 kDa) is responsible for the interaction
with its receptor located in the intestinal epithelium, and within this segment some residues
are critical for this interaction [41,42,134,135]. Like BinA, the structure of the BinB subunit
has a predominance of β-sheets [117]. The N-terminal domain has two cysteine residues
that are required for toxicity [136]. The C-terminal region of BinB participates in the interac-
tion with the BinA component [39,40,42]. This C-terminal domain has a cluster of aromatic
residues, which are critical for the proper conformation of toxins and insertion into the
membranes [137]. The resolution of the BinA-BinB crystal structure revealed important
molecular events in the toxin’s life cycle that involve structural rearrangements of the
protein triggered by alkaline conditions and proteolytic cleavages [117,138]. These changes
include the detection of pH switches that facilitate the solubilization of the crystal, a het-
erodimeric interface that remains bound after dissolution, carbohydrate binding modules
in BinA that can direct heterodimers to the cell surface, and a proteolytic maturation that
triggers heterodimer dissociation and remodeling [117].

2.2.2. Bin Toxin Interaction with Cell Receptors and Intracellular Action

The action of the Bin protoxin has been mostly studied in insect species belonging
to the Cx. pipiens complex. After protoxin processing, the activated toxin recognizes and
binds to specific receptors located on the midgut epithelium of the larvae [102]. In the most
susceptible species of Cx. pipiens, the binding of the Bin toxin is regionalized in the gastric
caeca and posterior midgut (Figure 3A), while for some Anopheles larvae, which are less
susceptible than Cx. pipiens, the binding pattern in the gut is less defined [40,139,140]. The
binding affinity of Bin to the larvae midgut directly correlated with the in vivo susceptibility
of the species [102,121,141–146]. In Ae. aegypti larvae, which is refractory, the Bin toxin
binding to the midgut cannot be detected (Figure 3B).

The receptors of the Bin toxin, characterized in three major target species, are ortholog
midgut-bound α-glucosidases that were denominated Cpm1 for Cx. p. pipiens and corre-
spond to maltase 1 [147,148], Cqm1 for Cx. p. quinquefasciatus corresponding to maltase
1 [149], and Agm3 for An. gambiae corresponding to maltase 3 [150]. Ae. aegypti has a
gene that encodes an ortholog, Aam1 (corresponding to maltase 1), with 74% identity
shared with Cqm1. Aam1 is also expressed as a membrane protein in the midgut ep-
ithelial cells, but this protein is not able to bind to the Bin toxin, which is the reason for
the larvae refractoriness [101]. Cpm1 was the first receptor characterized showing 97%
and 66% identity with Cqm1 and Agm3, respectively. These α-glucosidases (EC 3.2.1.20)
belong to the large family of α-amylases proteins that have the ability to hydrolyze α-1-4
links between glucose residues of carbohydrates [151]. They display four α-glucosidases
conserved domains and the (α-ß)8 barrel fold for the glycoside hydrolases (GH) from the
GH-13 family, which comprises most mosquito α-glucosidases [152]. The α-glucosidases
from mosquito larvae have been poorly characterized [153]. However, the catalytic activity
of the native or recombinant Cqm1 was demonstrated, indicating its potential ability to
participate in carbohydrate digestion [154–156].

The cpm1, cqm1, and agm3 genes encode proteins of 580 to 588 amino acids that display
the four conserved α-glucosidase domains, showing predicted glycosylation sites and a
signaling sequence for a GPI-anchor at the C-terminal end [147,149,150]. Their expression
as midgut membrane-bound proteins is essential for the binding to the Bin toxin, and gene
mutations that disrupt their expression as GPI-anchored proteins have been recognized as
the most important mechanism that confers resistance to the Bin toxin in mosquitoes (see
Section 4). The expression of Cqm1 recombinant proteins in some cell lines has been used
to demonstrate its capacity to bind to the bin toxin, to mediate the cytopathological effects,
and to assess its catalytic activity [154–158]. Functional assays using such recombinant
proteins showed that the N-terminal region of Cqm1 is required for its binding to the
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Bin toxin [154]. The X-ray crystallographic analysis of Cqm1 revealed three structural
domains [159]. The residues from the domain B adopt the (α-ß)8 barrel fold and the region
implicated in receptor binding was located in the loops of domain A, including also some
residues of domain B [160]. Folding analysis indicated that Cqm1 is found as a stable dimer
anchored in the apical membrane of the midgut cells [156].

Post-binding events are still under investigation, and it was shown that in Cx. p.
quinquefasciatus the BinB subunit binds to the receptor and the BinA subunit is found
inside the midgut cells (Figure 3A). The most commonly observed pathological alterations
reported in the midgut epithelial cells of Bin-treated larvae were the destruction of mi-
crovilli, mitochondrial swelling and damage to the inner membrane, intense cytoplasmic
vacuolization, and breakdown of endoplasmic reticula [161–165]. Damage in the muscular
and neural tissues of the larvae was also reported [164]. The localization studies of Bin
subunits in the treated Cx. p. quinquefasciatus larvae showed that BinB binding to the Cqm1
receptor is a step that is required for the internalization of both BinA and BinB subunits,
which could occur by endocytosis [163,166]. These studies have shown that toxicity is
directly associated with the presence of the BinA subunit inside the cells, which depends
on the interaction of BinB with the receptor [123,166]. However, in cells deprived of Bin
receptors, such as Bin-resistant Cx. p. quinquefasciatus and naturally refractory Ae. aegypti
larvae, the entry of BinA can be mediated by the Cyt1Aa toxin (Figure 3C) and is associated
with increased larvicidal activity [78,167]. The high toxicity of a chimeric BinA-Cyt1Aa
toxin [168] or pegylated-BinA [169] was also reported. Cyt1Aa has the capacity to induce
entry of Bin toxin into the cell, which is due to the ability of Cyt1Aa to form pores in the
apical membrane [78]. Therefore, the internalization of BinA into the midgut cells, either by
the interaction of BinB with the cell receptor, or by an alternative mechanism, is essential to
cause injury and larval death.

Both Bin subunits were found to display the capacity to form pores in culture cells
or artificial membranes [128,134,170–172]. Madin-Darby canine kidney cells expressing
the Cqm1 receptor on the membrane also showed that Bin, after binding to the receptor,
had the ability to form pores and to induce autophagy [173], which is consistent with
cytoplasmatic vacuolization, one of the most prominent alterations resulting from Bin
intoxication [161,162]. The activation of the intrinsic apoptosis pathway by Bin action has
been also investigated, as mitochondria are a major intracellular target of the Bin toxin [165].
A transcriptome analysis comparing untreated and Bin-treated Cx. p. quinquefasciatus larvae
revealed differential expression of transcripts involved in mitochondria mediated apoptosis
and autophagy responses [174]. Another study comparing susceptible and Bin-resistant
larvae revealed an outstanding differential expression of transcripts involved in apoptosis
and DNA metabolism [175]. These data suggest that both apoptosis and induced autophagy
mechanisms could be involved in the larval death caused by the Bin toxin. It has been also
proposed that the intracellular action of BinA could be associated with its ability to bind to
N-glycosylated proteins [176].

2.3. Other Toxins

Other toxins produced by L. sphaericus and Bt strains have been studied but not yet
used in the development of commercial products. In addition to Bti, other Bt strains
can produce mosquitocidal toxins, and they were classified into three groups [177,178].
The Class 1 strains appear to be the highly similar to Bti [178]. This is the case for the
B. thuringiensis svar. morrisoni (serotype 8a:8b) PG-14 strain, which showed high and
selective toxicity against Ae. aegypti and Culex molestus [179,180]. The crystals from this
strain include protoxins immunologically related to those of Bti, including Cry4A, Cry4B,
Cry10A, Cry11A, Cry1Ac, and Cyt1Aa2 [181–183]. The Class 2 strains contain multiple
proteins different from the proteins found in Bti crystals [178], and the most studied
strains are B. thuringiensis svar. jegathesan and B. thuringiensis svar. medellin. To date,
eight protoxins (Cry11Ba, Cry19Aa, Cry24Aa, Cry25Aa, Cry30Ca, Cry60Aa, Cry60Ba, and
Cyt2Bb) have been identified in B. thuringiensis svar. jegathesan [184], and they can be as



Toxins 2021, 13, 523 10 of 37

toxic as Bti to Anopheles stephensi, Ae. aegypti, and Cx. pipiens larvae [177,185]. Two strains
of B. thuringiensis svar. medellin have been characterized [186,187], and one of them showed
high toxicity comparable to Bti, but the crystal contains different polypeptides including
Cry11Bb, Cry29A, Cry30A, CytlAb, and Cyt2Bc [183,188–190]. Cry11Bb is the most toxic
component with an activity comparable to Cry11Ba [191,192], while no mosquitocidal
activity was reported for Cry29A or Cry30A [193]. CytlAb is as hemolytic as CytlAa, but
less active against mosquitoes [190]. Cyt2Bc also has mosquitocidal activity against Ae.
aegypti, An. stephensi, and Cx. p. quinquefasciatus, including larvae resistant to the Bin
toxin [188]. Class 3 includes strains that produce polypeptides different from those found
in Bti but that show low toxicity against mosquito larvae [178]. This group includes some
strains with high activity against other insect orders such as B. thuringiensis svar. kurstaki
(serotype HD-1), which is the most commonly used for controlling lepidopteran larvae.
This strain can produce the Cry2Aa toxin, which has a dual specificity against dipteran
and lepidopteran larvae [194]. Other examples of strains from this class are B. thuringiensis
svar. kyushuensis [195], B. thuringiensis svar. darmstadiensis [196], B. thuringiensis svar.
fukuokaensis [197], B. thuringiensis svar. galleriae [198], B. thuringiensis svar. higo [199], and
B. thuringiensis svar. aizawai [200].
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Figure 3. In vivo localization of the labeled Alexa546-Binary (bin) toxin, administrated alone or with
the Cyt1Aa toxin (unlabeled) in the midgut of mosquito larvae. (A) Culex quinquefasciatus treated
with Bin; (B) Aedes aegypti treated with Bin; (C) Ae. aegypti treated with Bin and Cyt1Aa. Larvae were
treated with toxins, processed for microscopy, nucleus were stained with DAPI and labeled Bin toxin
(red) was observed with a confocal laser scanning microscope. Arrows point to the Bin toxin binding
to cell membrane and internalized into the cell. Figure adapted from [78].

In addition to the Bin toxin, four insecticidal toxins were found in L. sphaericus strains:
mosquitocidal toxins (Mtx), sphaericolysin, S-layer proteins, and Cry48Aa/Cry49Aa [14,201,202].
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The production of Mtx-toxins was identified during the bacterial vegetative stage, and it
was shown that they display low activity because they are subjected to proteolytical degra-
dation [203–205]. In contrast, the Mtxs expressed as recombinant proteins in Escherichia
coli display high activity against dipteran larvae [206,207]. The mixture of recombinant
Mtx and Binary toxins can also display an increased activity and be useful for managing
Bin resistance [208,209]. Sphaericolysin (53 kDa) is a cytolysin whose insecticidal activity
was observed when injected into Blatella germanica and Spodoptera litura. However, no
action against dipterans was reported [210]. The S-layer proteins (120-130 kDa) found
associated with vegetative cells and spores of some L. sphaericus strains (e.g., 2362 and
C7), can contribute to the larvicidal activity against Cx. p. quinquefasciatus [201,202,211].
In addition to these, another promising active ingredient are crystals containing a Binary
protoxin composed of Cry48Aa/Cry49a toxins, which are produced by some Bt strains such
as IAB59 [212]. This is also a two-component toxin formed by Cry48Aa (135 kDa), a typical
three-domain structure toxin from the Cry toxins family, and Cry49Aa (53 kDa), which has
a similarity to other Cry Binary toxins [14,212,213] and has been recently named Tpp49 [16].
The optimal larvicidal activity is only achieved in the presence of an equimolar concentra-
tion of the Cry48Aa and Cry49a subunits [212,214]. However, the production of Cry48Aa
in native strains is low and possibly unstable [212]. If the expression of Cry48Aa/Cry49Aa
is optimized in recombinant bacteria and toxins are administrated in an equimolar concen-
tration, they display high larvicidal activity similar to the Bin toxin [214]. The spectrum
of Cry48Aa/Cry49Aa action seems to be restricted to Cx. p. quinquefasciatus based on a
bioassay screening that included other dipterans species [214]. Some steps of the mode
of action of Cry48Aa/Cry49Aa are similar to Bin and Bti protoxins [212,214–217], and
molecules such as APNs, ALPs, and maltases, in addition to other proteins, were identified
as the toxin ligands in Cx. p. quinquefasciatus larvae [217]. Cry48Aa/Cry49Aa could be
considered an important alternative for mosquito control due to its action against Cx. p.
quinquefasciatus larvae that are resistant to the Bin toxin [212,215]. The continuous search
for novel mosquitocidal toxins with a high and strategic mode of action is essential for the
development of microbial-based products with improved characteristics [122,218].

3. Applications for Mosquito Control

Microbial larvicides based on the insecticidal crystals of Bti and L. sphaericus have been
used for mosquito control since the 1980s [3,5,109]. Bti has been employed to fight mosquito
and black-flies and, even after decades of widespread use, field resistance to Bti crystals
has not been documented (see Section 4). On the other hand, Bti crystals are vulnerable
to abiotic (e.g., photolysis) and biotic factors (e.g., high content of organic matter) that
reduce their residual effect in mosquito habitats [5,219–222]. L. sphaericus-based larvicides
have been mostly used to control Cx. pipiens and Anopheles displaying advantages such as
persistence in water polluted with organic materials and the ability to be recycled in the
cadavers of the mosquito larvae [5,223,224]. However, the use of L. sphaericus larvicides as
the single control agent can lead to the resistance of the mosquito larvae to the Bin toxin
(see Section 4). It is important to highlight that, in the past Bti and L. sphaericus larvicides
were used as single control tools in mosquitoes or black-flies control programs that showed
effectiveness in a range of scenarios while, nowadays, they are used as part of integrated
measures [225]. Here, we show some examples of applications of Bti and/or L. sphaericus
larvicides, considering their use within a scenario of integrated mosquito control in recent
trials (Table 1).

The commercial utilization of Bti took place very soon after its discovery (1977–1982),
being a remarkable example of a successful biotechnological development [226]. Bti was
first used to fight Simulium spp. in the outstanding Onchocerciasis Control Program carried
out in West Africa in 1982 in order to replace organophosphate larvicides that were used un-
til then [227–229]. A program to control the floodwater mosquito, Aedes vexans, a nuisance
pest across a wide area of the Rhine Valley in Germany, was carried out over more than four
decades by the German Mosquito Control Association-KABS [3,18,230]. Since its introduc-
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tion, Bti has also been a key for overcoming the resistance that was developed by Simulium
and Aedes populations to organophosphates [231–235] and to prevent the establishment of
invasive species, such as Aedes albopictus, Aedes japonicus, and Aedes koreicus [236–245]; it is
also a safe control agent for reducing mosquito proliferation in environmentally protected
areas [246–249]. More recently, Bti larvicides have been employed to control other species
and used in combination with other control approaches. For instance, Bti has been used
for Anopheles control in association with “Long Lasting Insecticide Treated Nets” (LLINS)
and “Indoor Residual Spraying” (IRS) [250–257]. The control of mosquito larvae in the
breeding sites located close to houses in malaria-endemic areas has been highly effective
in reducing adult reproduction and disease transmission, as shown by trials performed
in sub-Saharan Africa [4]. The innovative use of Bti includes novel approaches such as its
association with lethal ovitraps to prevent Aedes larvae development [258–260], its use in
“Attractive Toxic Sugar Baits” (ATSB) and sugar patches to target adults [261–263], and its
use in spatial spraying to reach cryptic breeding sites [264–267]. The use of Bti combined
with L. sphaericus is also of crucial importance for the management of Cx. pipiens resistance
to L. sphaericus, as will be discussed below.

The isolation of L. sphaericus strains highly toxic against mosquitoes producing crystals
with the Bin toxin (e.g., 1593, 2362, and C3-41) induced its commercial utilization in several
countries [5,8]. L. sphaericus was first introduced to control Cx. p. pipiens that were a
nuisance pest in the south of France in 1987 [189]. Soon after, the WHO supported field
trials in some countries endemic for filariasis to evaluate its effectiveness in the control
of Cx. p. quinquefasciatus that acted as the main vector in urban areas characterized by
poor sanitation and high mosquito proliferation [18,109,268]. Other applications for vector
control include its use in India against An. stephensi, in China against Anopheles sinensis,
and in Brazil against Anopheles darlingi [189,269–272]. Therefore, L. sphaericus larvicides
have been used for controlling Culex, Anopheles, and other genera in urban or rural areas
from several countries showing outstanding field performances [273–283].

The use of L. sphaericus larvicides can lead to development of mosquito larvae resis-
tance as reported in some field-treated populations of Cx. p. pipiens [26,27]. Nevertheless,
studies aiming to characterize Bin resistance demonstrated that Bti crystals were still active
against these Bin-resistant larvae, as Bti toxins targets different receptors in the midgut
epithelial cells (see Section 2). Given this scenario, approaches to manage or delay Bin resis-
tance based on the association of L. sphaericus and Bti crystals have been developed (Table 1).
The combination of their active ingredients can offer advantages such as an enhanced spec-
trum of action, longer persistence, and a lower risk of resistance selection [246,281,284–286].
The treatment of mosquito breeding sites with Bti and L. sphaericus larvicides in rotation,
integrated or not with LLINs, has been used to reduce the density of anophelines and to
improve malaria control in Africa [252,254,287–290]. Bti and L. sphaericus larvicides used in
rotation along with environmental management practices were adopted to control Cx. p.
quinquefasciatus in São Paulo city, Brazil, without issues of resistance selection [146,291]. In
addition, these larvicides have been mixed and applied together [292,293].

The successful experiences of using Bti in combination with L. sphaericus led to the
development of commercial combined products containing crystals of both bacteria. Some
of them are long-lasting microbial larvicides whose formulations provide a slow release of
the active ingredients over 90 to 180 days [294–296], and they have been used to control
mosquito larvae in a variety of landscapes and purposes (Table 1). In urban areas, such
larvicides have been used in several countries, such as in Italy, Switzerland, and Spain to
control Ae. albopictus [237,239,297]; in Netherlands and USA against Ae. japonicus [240,284];
in the USA against Cx. pipiens and Culex restuans [240,284,298,299]; in Colombia and
Brazil to control Cx. p. quinquefasciatus and Ae. aegypti [281,300]; in Kenya against Cx. p.
quinquefasciatus and An. gambiae [301]; and in Senegal against Anopheles arabiensis [302].
These combined larvicides are viable options for controlling mosquito populations and
interrupting disease transmission, along with other measures [4,294–296,303,304].
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Table 1. Field trials using Bacillus thuringiensis svar. israelensis- (Bti) and Lysinibacillus sphaericus-based larvicides used for
mosquito control in rotation, as a mixture or as combined products.

Larvicide-Scheme Control
Intervention (a) Country Target Species Scenario Outcome Reference

L. sphaericus and Bti
in rotation Larvicides Kenya Anopheles gambiae

Anopheles funestus Rural
Reduction of larval
density and human

biting exposure
[287]

Gambia An. gambiae Rural Reduction of pupal
and larval densities [288]

Tanzania
An. gambiae

Culex
quinquefasciatus

Urban
Reduction of larval

abundance and malaria
transmission

[289]

Cote
d’Ivoire

An. gambiae
An. funestus
Culex spp.

Urban
Reduction of breeding

sites number and
biting rates

[290]

Larvicides,
ITN Kenya

An. gambiae
An. funestus

Anopheles
arabiensis

Urban
Reduction of larval

density and new
malaria infections

[252]

Larvicides, ITN,
and other
measures

Tanzania

An. gambiae
An. funestus

Cx.
quinquefasciatus

Urban Reduction of malaria
infections [253,254]

Larvicides and
environmental
management

Brazil Cx.
quinquefasciatus Urban Reduction of mosquito

density [146,291]

L. sphaericus and Bti
in mixture Larvicides Turkey Culex pipiens Urban Reduction of larval

density [292]

L. sphaericus/Bti-
combined in a
single product

Larvicides USA Culex tarsalis,
Aedes melanimon Sylvatic Reduction of larval and

pupal density [246]

Kenya An. gambiae Rural

Reduction of pupal
density, and indoor-
and outdoor-biting

mosquitoes

[294]

Kenya An. gambiae
An. funestus Rural Reduction of larval

density [295]

Kenya
An. gambiae

Cx.
quinquefasciatus

Urban/peri-
urban

Reduction larval
density [301]

Brazil
Cx.

quinquefasciatus
Aedes aegypti

Urban Reduction of larval
density [281,305]

Spain Aedes albopictus Urban/indoor
catch basins

Reduction of mosquito
emergence [237]

Switzerland Ae. albopictus Urban Entomological data not
available [239]

Larvicides, ITN,
and IRS Kenya

An. gambiae
An. funestus

An. arabiensis
Rural This field trial is

ongoing [296,303]

Larvicides,
and other
measures

Italy Ae. albopictus Urban Reduction off egg
density [297]



Toxins 2021, 13, 523 14 of 37

Table 1. Cont.

Larvicide-Scheme Control
Intervention (a) Country Target Species Scenario Outcome Reference

Larvicides and
source

reduction
Netherlands Aedes japonicus

Peri-
urban/allotment

garden

Reduction of larval
abundance [240]

L. sphaericus/Bti-
combined, Bti, and

Methoprene

Multi-
larvicides Senegal An. arabiensis Urban Reduction of larval

density [302]

L. sphaericus/Bti-
combined, L.

sphaericus, Bti and
Spinosad

USA
Cx. pipiens

Culex restuans
Ae. japonicus

Urban Reduction of
immatures [284]

L. sphaericus/Bti-
combined and
Triflumuron

Colombia
Cx.

quinquefasciatus
Ae. aegypti

Urban Reduction of
immatures [300]

L. sphaericus/Bti-
combined and

Spinosad
USA Cx. pipiens Urban Reduction of larval

density [298]

L. sphaericus/Bti-
combined, L.

sphaericus and
Spinosad

USA Cx. pippiens Urban Reduction of pupae
production [299]

L. sphaericus/
Bti-combined and

L. sphaericus
Brazil Anopheles darlingi

Rural/fish
farming
ponds

Reduction of larval
density [306]

(a) ITN: insecticide treated net; IRS: insecticide residual spray.

4. Resistance Issues

Resistance and safety of larvicidal compounds to mosquito control are prominent
issues and they need to be continuously assessed. This section summarizes results from
studies that have investigated Bti resistance and also the reports of L. sphaericus resistance,
which was already detected. The environmental and human safety issues of the major
insecticidal toxins produced by Bti and L. sphaericus have been studied since the early
characterization of these entomopathogenic bacteria [307–311] and multiple reports have
been published since then. Detailed environmental assessments have been conducted
regarding to Bti applications for several decades under the light of actual regulation for the
use of biocides in Europe [234,312]. In this scope, Bruhl et al. (2020) published a complete
review focused to the description of Bti persistence and its environmental impact, including
direct effects on the non-target organisms and indirect effects related to the food-chain. The
authors presented a detailed analysis and highlight caution regarding to the use of Bti in en-
vironmental protected areas, as well as the need of improved monitoring strategies of such
effects and adoption of alternative control measures for such habitats. Among some critical
issues, we can mention the persistence of Bti spores in the soil and its potential impact in
microbiota. A recent study analyzed the possible impact of multiple Bti applications in the
soil of Riparian wetlands of Switzerland on the population of Bacillus cereus, but no direct
correlation was found [313]. In terms of safety to other organisms, studies assessing the
Bti impact on chironomides, a key element in the food-web chain, showed that the actual
criteria of the biocide regulation used in Europe could be underestimated [314,315]. It is
worth noting that, in some scenarios, chironomides can also be a target species. Some initial
assessments of the combined set of Bti and L. sphaericus crystals on non-targets organisms
have also been investigated [316,317]. To date, Bin crystals and Bti crystals are still consid-
ered as safe compounds that effectively control several dipteran species larvae of medical
importance. However, improved safety assessments should be continuously performed to
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deep our knowledge about their potential ecological implications, in particular, focusing
their use in environmental-sensitive areas.

4.1. Resistance to Bti

To date, there are no reports of insect field resistance to Bti, although Bti based prod-
ucts have been used in multiple mosquito control programs since 1982 [3,227,230,318,319].
The synergistic mode of action of the insecticidal protoxins from Bti crystal is considered
a key factor underlying the lack of resistance development. Assessments of larvae sus-
ceptibility to Bti crystals from several Bti-treated mosquito populations worldwide have
shown lack of resistance to the whole crystal, which is the active ingredient of the available
larvicides (Table 2). The control program for Ae. vexans in the Rhine Valley in Germany is
an example of the long-term utilization of Bti-larvicides without resistance issues [3,319].
The assessment of the Bti susceptibility of non-treated populations has shown a range of
natural variations before the introduction of this microbial larvicide (Table 2). Variations in
the resistance ratios (RR) ranged from 0.8- to 8-fold for Aedes species [231,232,234,320–328],
from 1.5 to 12.5-fold for Cx. p. pipiens [234,329,330], and from 0.8- to 5.9-fold for Anophe-
les [234,303,331]. The range of variations found among the treated populations was similar
to those observed in non-treated samples from the analyzed species (Table 2), reinforcing
the lack of resistance development to Bti crystals [232,322,332–337]. It is worth noting that
two Cx. p. pipiens populations in New York State that showed RRs of 14- and 41-fold are an
exception in this scenario [338], and there was no evidence that the resistance ratios found
were a consequence of Bti treatments.

Attempts to select insect resistance to the whole Bti crystal under laboratory con-
ditions have also failed as RR values were less than three-fold (Table 3), which are not
biologically meaningful, considering the range of variations of Bti susceptibility recorded
for non-treated populations (Table 2) [339–344]. On the other hand, laboratory selection of
resistant populations to a single Bti toxin were reported [53,345–347], which is an expected
consequence since the synergy of the whole set of toxins is lost under such conditions. It is
also worth noting that larvae selected using whole Bti crystals do not display resistance to
the Bti crystal; however, such larvae can display a reduction in susceptibility to some single
Cry toxins, suggesting that monitoring the susceptibility to individual Cry toxins could be
a marker for the analysis of populations subjected to chronic Bti exposure (Table 3). This
was the case in a laboratory colony that was selected for Bti crystals, which still showed
susceptibility to Bti crystals but displayed resistance to Cry4Aa (68-fold), Cry4Ba, and
Cry11Aa (9-fold) toxins [344]. However, another study that evaluated a colony selected for
30 generations with Bti crystal treatment showed that the larvae were still susceptible to
Bti crystals and also to Cry11Aa and Cry4Ba toxins, indicating that reduction in suscep-
tibility to individual toxins might not necessarily occur under chronic Bti exposure [339].
Although Bti displays a low potential for resistance development, the analysis of receptor
expression, proteolytic processing of toxins, immune response, and other pathways are
important factors to be further investigated in order to increase our knowledge on the
mode of action of these proteins [348,349]. The potential impact of Bti exposure on the life
traits of mosquitoes has also been studied (see Section 5).

4.2. Resistance to L. sphaericus (Bin Toxin)

The greatest challenge related to the long-term use of L. sphaericus larvicides is the
emergence of insect resistance to the Bin toxin. The selection of resistant insects depends
on general factors, such as the use of larvicides for long periods of time that increases
the selection pressure as well as on specific factors such as the mode of action of the
Bin toxin itself [8,25,27]. Resistance to the Bin toxin was detected in Cx. p. pipiens and
Cx. p. quinquefasciatus field treated populations and in laboratory-selected colonies, as
summarized in Table 4. The first record was a Cx. p. pipiens population from France that
was subjected to five years of treatment and showed high resistance ratio to the Bin toxin
(RR > 20,000) [350,351]. Other cases of high resistance were recorded in treated populations
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from India, China, Thailand, Tunisia, and USA [25,143,272,351–357]. Selection of Cx. p.
pipiens and Cx. p. quinquefasciatus under laboratory conditions using L. sphaericus strains
also showed that high resistance could be achieved [357,358]. Two laboratory strains were
selected using the IAB59 strain [358–360] that produces Bin and Cry48Aa/Cry49Aa crystals,
and high levels of resistance to Bin were achieved, but only a moderate level of resistance
was detected for the Cry48Aa/Cry49Aa toxin [217].

The resistance to Bin toxin can reach high levels because the major resistance mecha-
nism is associated with the absence or alteration of the toxin receptor, which completely
disrupts the action of this toxin on the cells [102,141,144]. The molecular characterization of
the Bin resistance mechanism showed that such larvae carried alleles of the cqm1 gene with
mutations that prevent expression of the Cqm1 α-glucosidases. Normally, the Cqm1 protein
is located in the midgut epithelium as a GPI-anchored protein [149,157,361–364]. A variety
of missense and nonsense mutations in cqm1 alleles that confer resistance were found, and
most of them cause the production of transcripts coding for truncated proteins without
the GPI anchor; therefore, they are no longer located on the cell membrane (Figure 4). The
exceptions were SPHAE and TUNIS Cx. p. pipiens colonies, whose larvae have functional
Cqm1 receptors, indicating that resistance was due to another mechanism [142,143].

The first allele conferring resistance to the Bin toxin was identified in the Cx. p. quin-
quefasciatus GEO colony (USA), which displayed a high RR of ~100,000 after laboratory
selection with the 2362 strain [357]. The cpm1GEO allele exhibits a point mutation that
generates a premature translation termination codon, which leads to the expression of a
568-amino acid protein without the GPI anchor [157]. The resistance of another Cx. p. quin-
quefasciatus colony (CqRL/C3-41) from China [272] was associated with the cqm1R allele,
which is associated to one deletion that generates a truncated protein due to a premature
stop codon [364]. In the resistant Cx. p. pipiens BP population from France, two alleles
(cpm1BP and cpm1BP–del) were found [350,363]. The cpm1BP allele has a nonsense mutation
that leads to the formation of a premature stop codon and synthesis of a truncated protein
with 395 amino acids lacking the GPI anchor. The cpm1BP–del allele was characterized by
the insertion of a transposon, which leads to a 198 bp deletion. Such transcript encodes
for a protein of 514 amino acids with the GPI anchor, but lacks 66 amino acids, and this
truncated protein was unable to bind to the Bin toxin.

In Cx. p. quinquefasciatus from Recife city, Brazil, four cqm1 alleles conferring resistance
were detected from laboratory-selected colonies or from field samples. The resistance
of the R2362 laboratory-selected colony was associated with two alleles, cqm1REC and
cqm1REC-2, [149,362]. For the IAB59-selected colony, the resistance to the Bin toxin was
associated with homozygous larvae for the cqm1REC allele [359,360]. This allele had a 19-
nucleotide (nt) deletion, which generates a premature stop codon and a truncated protein
without the GPI anchor [149]. The cqm1REC-2 allele has a nonsense mutation that generates
a premature translation termination codon, and the transcripts also code for a truncated
soluble protein [362]. Two colonies formed by homozygous individuals for each allele
(REC and REC-2) were established [362,365]. Field screenings revealed two other alleles,
named cqm1REC-D16 and cqm1REC-D25, which showed deletions of 16- and 25-nt, respectively,
resulting in truncated transcripts [361]. DNA screenings of the cqm1REC and cqm1REC-2
alleles from field populations in Recife, Brazil, without exposure to L. sphaericus, revealed
their presence with frequencies in the order of 10−3 and 10−4, respectively [366,367]. The
finding of L. sphaericus resistance in field populations indicated the need to adopt additional
strategies to avoid the selection of such resistant alleles of the cqm1 gene, particularly
because they can provoke high levels of refractoriness [8,25,27].

On the other hand, it is important to mention that the cqm1 resistance alleles are
recessively inherited; therefore, only homozygous individuals display the resistant pheno-
type [141,142,144,357,359,362,364]. Another important aspect is the lack of cross-resistance
to the Bin toxin by other control agents, which make them viable options to restore the
susceptibility to L. sphaericus. Bti is a suitable candidate since Bin-resistant larvae are still
highly susceptible to Bti crystals [141,358,368,369], and examples of the combination of Bti
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and L. sphaericus crystals were presented in Section 3. Other insecticidal compounds, such
as Spinosad produced by the bacterium Saccharopolyspora spinosa [370], and insect growth
regulators [300] are also compatible with L. sphaericus. The recombinant expression of their
toxins together in Bacilli or other microorganisms has been demonstrated, although they
have not been developed for commercial use [371–374].
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Table 2. Susceptibility of mosquito field populations to Bacillus thuringiensis svar. israelensis.

Species Country No. Populations Status (a) RR (b) Reference

Aedes aegypti Malaysia 4 NT 1.4–2.0 [324]
2 T 2–4 [334]

Brazil 9 NT 1–1.3 [231]
5 T 1–1.7 [231,336]

Cameroon 4 NT 1.1–2.8 [323]
Saudi-Arabia 1 NT 1.2 [320]

Mayotte 1 NT 1.0 [234]
Cape Vert 7 NT 0.8 [326]

Martinique 1 T 1 [232]
Laos 1 NT 0.8 [325]
USA 1 NT 0.8–1.3 [327]

Aedes albopictus Cameroon 3 NT 1.1–1.1 [323]
Malaysia 4 NT 1.2–3.9 [324]

4 T 1.4–1.9 [335]
USA 2 T ∼=1 [332]
Italy 2 T 1.7 [336]

Cameroon 5 NT 0.8–2.8 [328]
Greece 3 NT 1.5 [321]
China 4 NT >5 [375]
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Table 2. Cont.

Species Country No. Populations Status (a) RR (b) Reference

Aedes vexans Germany 3 T ∼=1 [319]
6 T 0.8–1.1 [3]

Aedes rusticus France 3 NT 1.0–5.0 [322]
France 4 T 2.8–7.9 [322]

Culex pipiens pipiens Cyprus 7 NT 12.5 [330]
10 NT >3 [329]

Mayotte 1 NT 1.5 [234]
USA 31 NT 4.0 [330]

2 T 6–33 [338]
Cx. p. pallens China 1 T 6.7 [337]

3 T 0.7–1.0 [376]
Anopheles sinensis China 5 ND 1.7–5.9 [331]
Anopheles gambiae Mayotte 1 NT 1.5 [234]

Kenya 5 NT 0.8–1.5 [305]

(a) NT: nontreated population; T: treated populations; ND: not determined. (b) Resistance ratio at LC50 (LC for larvae from a test colony/LC
for larvae from a reference colony).

Table 3. Selection of Culicine larvae with Bacillus thuringiensis svar. israelensis crystal or toxins under laboratory conditions
that were analyzed for resistance to Bti crystal or individual toxins.

RR (a)

Species Country No. Generations Selection Agent Bti Cry4Aa Cry4Ba Cry11Aa Reference

Aedes
aegypti USA 15 Bti 1.1 __ __ __ [339]

Sri Lanka 15 Bti 1.1 __ __ __ [339]
Brazil 15 Bti 2.0 __ __ __ [339]

30 Bti 1.5 __ 2.7 3.8 [337]
France 18 Bti 2.0 30 14 6 [341]

22 Bti __ 35 11 6 [340]
30 Bti 3.5 68 9 9 [342]

Colombia 54 Cry11Aa __ __ __ 13 [343]
USA 27 Cry11Aa __ 66 13 124 [53]

France 22 Cry11Aa 2.0 6 15 29 [345]
22 Cry4Aa 1.4 65 10 5 [345]
22 Cry4Ba 1.5 3 27 10.4 [345]

5 (b) Bti 0.8 4.4 3.7 1.6 [345]
33 Cry11Aa 1.7 18 36 70 [67]
33 Cry4Aa 1.2 1018 2.7 3.4 [67]
33 Cry4Ba 1.6 34 226 13 [67]

14 (b) All Cry’s 1.4 14 8 5.4 [67]

Culexpipiens USA 28 Bti 2.0 6 14 30 [338]
28 Cry11Aa 43 __ __ __

India 20 Bti 2-3 __ __ __ [377]
Egypt 20 Bti 2.8 __ __ __ [378]

(a) Resistance ratio at LC50 (LC50 for larvae from a test colony/LC50 for larvae from a reference colony). (b) This selected strain was a
composite strain resulting from a mix of adults, in equal amounts, from each Cry selected strain (30% each at the generation 18) and 10% of
adults from a susceptible Bora Bora strain.
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Table 4. Culex pipiens populations or laboratory-selected colonies exposed to Lysinibacillus sphaericus that were investigated
for resistance.

Origin Country Sample/Colony (a) r Alleles RR (b) Inheritance (c) Binding to
Receptors Reference

Field France Port St-Louis ND >20,000 ND ND [349]
SPHAE ND >20,000 R/S Yes [142,143]

BP cpm1BP/cpm1BP-del >10,000 R/S No [348,361]
India Kochi ND 5000 ND No [351]
China RFCq1 ND >20,000 ND ND [272]

Thailand Wat Pikul ND >125,000 ND ND [350]
Tunisia TUNIS ND ~750 R/S Yes [143]
Brazil Coque ND ~10 ND Yes [379]

Recife cqm1REC-D16/cqm1REC-D25 3–6 ND No [359]
USA Chico ND 687 ND ND [353]

Salt Lake ND >20,000 ND ND [354]
Laboratory USA GEO cpm1GEO >100,000 R/A No [157,355]

L-SEL ND 37 ND ND [380]
Brazil R2362 cqm1REC >100,000 R/A No [149,356]

RIAB59 cqm1REC ~40,000 R/A No [356,358]
REC cqm1REC >3425 R No [360,363]

REC-2 cqm1REC-2 >3475 R No [360,363]
China RLCq2/IAB59 cqm1REC >100,000 R/A No [356]

RLCq1/C3-41 cqm1R >100,000 R/A No [272,362]

(a) Culex pipiens quinquefasciatus or Culex pipiens pipiens. (b) Resistance ratio at LC50 (LC for larvae from a test colony/LC for larvae from a
reference colony). (c) Inheritance of resistance: R—Recessive; A—Autosomal; S—Sex-linked. ND: Not Determined.

5. Impact on Life Traits

Mosquitoes can be exposed to a variety of stress factors in the environment, including
insecticides, and they display mechanisms to overcome toxicity caused by such agents.
However, they might be costly and impact life traits [381]. The most critical impact
might occur when insects are selected for resistance, and this phenotype can be associated
with important biological fitness costs, as was widely reported for resistance to chemical
insecticides [382,383]. The fitness reduction may be caused by pleiotropy in the resistance
genes themselves or genes closely linked by a “hitchhiking” effect [384]. The action of
the Bt toxins in pest insects has been extensively assessed, showing that several biological
parameters can be affected [385]. The influence of microbial larvicides on the life traits of
mosquitoes has been scarcely studied, and this section aims to present a summary of the
available data (Table 5).

Some laboratory-selected colonies resistant to L. sphaericus have been investigated. The
first Cx. p. quinquefasciatus colony studied, which displayed a moderate level of resistance
(RR ~ 31- and 37-fold), showed a pronounced reduction in fecundity and fertility [386].
However, analysis of other colonies with higher levels of resistance did not correlate with
critical biological fitness costs associated with those phenotypes. An insect colony highly
resistant to the 2362 strain (RR > 100,000), showed statistically significant lower fecundity
and fertility, but those changes were discrete compared to the susceptible counterparts [387].
Another Cx. p. quinquefasciatus laboratory-selected colony highly resistant (RR ≈ 40,000)
to the L. sphaericus IAB59 strain [360] did not display any significant differences in terms
of fertility, fecundity or pupal weight compared to the susceptible individuals [359]. These
studies indicated that L. sphaericus resistance is not directly associated with the significant
biological fitness cost in the development of resistant individuals, at least under laboratory
conditions. In the case of agricultural insect pests that developed resistance to Bt toxins, there
are reports of discrete impacts on biological fitness costs [388–391], as well as reports showing
high biological fitness costs that could impair the maintenance of the insect colonies [392,393].

In the case of Cx. pipiens’ resistance to L. sphaericus Bin toxin, the resistance is often
associated with the lack of expression of the toxin receptor Cqm1 α-glucosidase (see
Section 4). In two highly resistant colonies, it was observed that the lack of Cqm1 did not
impact the total α-glucosidase activity in the larvae midgut [365]. This study suggested
that the expression of another α-glucosidases, paralogs of the Cqm1 protein in larvae, could
compensate for the lack of Cqm1. This could explain why the Bin resistance associated
with the lack of Cqm1 does not provoke a major biological fitness cost. A similar situation
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was shown for Trichoplusia ni larvae resistant to the Cry1Ac toxin from Bt, which displayed
a reduced expression of the APN1, which is one receptor of this toxin whose biological
function was compensated by the upregulation of APN6 [394]. These studies support
the hypothesis that some resistance alleles are not necessarily linked to crucial adverse
effects on biological fitness [359,395]. Indeed, several Cx. pipiens colonies resistant to the
Bin toxin from L. sphaericus were stably maintained for several years under laboratory
conditions [143,357–359,362,365].

For Bti, such investigation requires a different approach, as there are no reports on
resistance to Bti crystals; therefore, the fitness of mosquitoes associated with this specific
condition has not been investigated. Despite this, the potential effects of Bti exposure
on mosquitoes subjected to a laboratory selection for several generations, or to a short
bioassay exposure time (24 h or 48 h), have been assessed. It was observed that mosquitoes
continuously exposed to Bti, or to individual toxins from Bti, show some level of resistance
to these individual toxins, for instance, an Ae. aegypti strain exposed to Bti for 22 generations
that did not display resistance to Bti but showed low resistance to some individual Bti
toxins (35-fold for Cry4Aa, 11-fold for Cry4Ba) also showed reductions in fertility, in larval
viability and an increased larval development time, while adult size, sex ratio, hatching
time, longevity, and survival were not changed compared to non-treated individuals [342].
Other studies reported both advantages and disadvantages of some biological traits of
Ae. aegypti and Anopheles coluzzii due to the exposure of these larvae to sublethal doses
of Bti [396–398]. Although exposure to Bti crystals does not result in the development of
insect resistance to the crystals, it is still important to investigate other effects that Bti may
induce in the exposed larvae.

In this scope, considering that L. sphaericus and Bti are entomopathogenic bacteria
whose action depends on the ingestion of crystals/spores by larvae, recent studies have
evaluated their impact on the gut microbiota. Indeed, Bti can alter the gut microbiome of
Ae. aegypti since treated larvae were characterized by a lower bacterial diversity, compared
to untreated individuals [399]. The interaction of Bt toxins with the midgut microbiota
and the immune system of the insects was recorded, as reviewed by Li et al. [400]. The
microbiota can play a major role in the antiviral response of mosquitoes, either by secreting
antiviral or proviral molecules or by modulating the immunity response [401–404]. Some
studies have shown alterations in the susceptibility to arbovirus or protozoa in mosquitoes
exposed to sublethal doses of L. sphaericus or Bti [404–407]. Therefore, a broader analysis of
the potential impact of L. sphaericus and Bti on mosquito biology is required to assess the
consequences of their use beyond the issue of resistance onset.

Table 5. Assessment of biological parameters of mosquitos exposed to Lysinibacillus sphaericus- and Bacillus thuringiensis
svar. israelensis-(Bti) based-larvicides.

Larvicide Specie Exposure RR (a) Parameters (b)
Reference

Assessed Altered

L. sphaericus 2362 Culex pipiens
quinquefasciatus 80 generations 37 FC, FR, DT, SR FC, FR [377]

46 generations >100,000 FC, FR, DT, ER FC, FR, DT [379]
L. sphaericus IAB59 Cx.p. quinquefasciatus 72 generations ~40,000 FC, FR, PW None [357]
L. sphaericus 2362 Anopheles dirus 48 h NA SU-Plasmodium yoelii SU-P. yoelii [399]

Bti Culex pipiens pipiens 20 generations 2.7 FC, LN, TBD FC [378]
Aedes aegypti 22 generations 2.0 AS, DT, EV, FC, FR,

LN, SR, HT DT, FR, FC [340]
48 h NA AS, DT, FC, SV AS, DT, FC, [388]

PS-DENV None [388]
24 h NA DT, FC, LN, SR DT, LN, SR [389]

Anopheles coluzzii 48 h NA AS, FC, LN AS, LN [390]
Ae. aegypti 24 h NA SU- CHIKV, DENV SU-DENV [398]

Bt Ae. aegypti 48 h NA SU-DENV, ZIKV None [397]

(a) RR: resistance ratio, NA: not applicable. (b) FC—fecundity, FR—fertility, DT—development time, SR—sex ratio, ER—emergence ratio,
PW—pupal weight, SU—susceptibility, LN—longevity, TBD—time blood digestion, AS—adult size, HM—haematophagy, EV—egg viability,
HT—hatching time, DENV—dengue virus, ZIKV—Zika virus, SV—survival, CHIKV—chikungunya virus, Bt—Bacillus thuringiensis.
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6. Final Remarks

Bti and L. sphaericus crystals remain the most powerful and selective insecticidal
compounds, available to date, with proven field effectiveness for controlling dipteran
species relevant to public health. Recent findings on their mode of action, more specifically
on the mechanism of synergistic action of the toxins from both bacteria and the new
insights of their interaction with the midgut cells, can be exploited in the future to confer
advantages such as broader spectra of action, or to reduce the risk of resistance selection
and to improve the persistence under field conditions. Such advancements allied with
improved operational practices will allow the evolution of the use of these larvicides from
single control agents to their adoption as part of more effective integrated control programs.
In addition to the effectiveness of the toxins currently available, these entomopathogenic
bacteria also represent opportunities to develop new and/or improved toxins able to
display better activities and play an outstanding role in the future of mosquito control.
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