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Abstract: Aflatoxin B1 (AFB1), a common contaminant in food and feed during storage, does great
harm to human and animal health. Five essential oils (thymol, carvacrol, cinnamaldehyde, eugenol,
and citral) were tested for their inhibition effect against Aspergillus flavus (A. flavus) in broth and
feed. Cinnamaldehyde and citral were proven to be most effective against A. flavus compared
to others and have a synergistic effect when used simultaneously. The broth supplemented with
cinnamaldehyde and citral was inoculated with A. flavus (106 CFU/mL) by using the checkerboard
method, and mold counts and AFB1 production were tested on days 0, 1, 3, and 5. Similarly,
100 g poultry feed supplemented with the mixture of cinnamaldehyde and citral at the ratio 1:1 was
also inoculated with A. flavus, and the same parameters were tested on days 0, 7, 14, and 21. In
poultry feed, cinnamaldehyde and citral significantly reduced mold counts and AFB1 concentrations
(p < 0.05). Results showed that cinnamaldehyde and citral have a positive synergy effect and could
both inhibit at least 90% the fungal growth and aflatoxin B1 production at 40 µg/mL in broth and
poultry feed, and could be an alternative to control aflatoxin contamination in food and feed in future.

Keywords: aflatoxin B1; cinnamaldehyde; citral; inhibition; synergy

Key Contribution: Cinnamaldehyde and citral were proven to have a synergistic effect when used
simultaneously and to be most effective against A. flavus and the production of AFB1 in broth and
feed in the research.

1. Introduction

Aflatoxins (AF) constitute secondary metabolites produced by Aspergillus flavus and
Aspergillus parasitic which contaminate a variety of feed ingredients, including peanuts,
corn, and cottonseed [1]. Aflatoxin B1 (AFB1) is one of the most toxic members of the
aflatoxin family [2]. Previous studies showed that young chicks were especially vulnerable
to AF, which may depress feed conversion efficiency and body weight gain, and ultimately
cause significant economic losses [3,4]. Because of the carcinogenicity of AF, AF residues
in chicken may pose risks to human health [5,6]. AF severely influences the health and
growth performance of animals. Therefore, it is necessary to develop a method by which
to control the production of AF in feed. Essential oils derived from flavorants often have
different capacities to inhibit the growth and toxicity of A. flavus.

Essential oils (EO) are complex mixtures of secondary plant metabolites. Moreover,
because of their antimicrobial effects, essential oils have been widely used as food preserva-
tives. Over the past several decades, some studies have discovered that various essential
oils could also resist fungal growth [7,8]. Kumar [9] reported that the eugenol could inhibit
the growth of A. flavus. Cinnamaldehyde, thymol, carvacrol et al. also have a strong
inhibition to the growth of A. flavus [10–12]. Therefore, for essential oils derived from
plants, it is a safe substitute for antibiotics. The objective of this study was to determine the
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inhibition of five different essential oils to A. flavus and the inhibition of AFB1 production
in broth and poultry feed; in addition, a low concentration of essential oils was studied,
which was not referred to in the previous studies. Low concentrations of essential oil could
not only reduce the harm to animals but reduce the cost of feed industry.

2. Results
2.1. The Inhibition of Different Concentration of Essential Oils against A. flavus

The fungal growth inhibition was assessed by testing absorbance at 600 nm. In
Figure 1, cinnamaldehyde inhibited 94.4% of the four fungal growth types, while other
tested essential oils inhibited 93.7%, 86.9%, 80.1%, 78%, respectively. Consequently, it was
concluded that cinnamaldehyde and citral had the most significant inhibitory effects on the
growth of A. flavus CGMCC 3.2890 at the concentration of 40 µg/mL, and inhibition rate of
cinnamaldehyde was higher compared to carvacrol (p < 0.05) but no significance compared
to other essential oils (p > 0.05).
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Consequently, cinnamaldehyde and citral were screened for further research with
regard to their inhibitory effects on the growth of A. flavus in feed. Representative strain A.
flavus CGMCC 3.2890 was considered for further research.

2.2. MIC Tests and Synergy Effects of the Best Effect of Essential Oils on Fungal Growth in Broth
by Using Checkerboard

The synergy effect of cinnamaldehyde and citral against A. flavus CGMCC 3.2890 was
tested by using the checkerboard method. The modal minimum inhibition concentration
(MIC) results are presented in Table 1. The two essential oils synergistically affected A.
flavus CGMCC 3.2890 as shown in Table 2.

Table 1. Modal MIC results by broth microdilution.

Essential Oils MICs

Cinnamaldehyde 80 ppm
Citral 80 ppm
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Table 2. Synergy method results.

Citral
Cinnamaldehyde

0 1/4 × MIC 1/2 × MIC 1 × MIC 2 × MIC

0 0.439 ± 0.012 0.428 ± 0.022 0.427 ± 0.038 0.377 ± 0.034 0.376 ± 0.027
1/4 × MIC 0.419 ± 0.009 0.401 ± 0.028 0.369 ± 0.029 0.371 ± 0.011 0.371 ± 0.051
1/2 × MIC 0.418 ± 0.025 0.383 ± 0.003 0.425 ± 0.082 0.372 ± 0.028 0.374 ± 0.044

1 × MIC 0.419 ± 0.018 0.392 ± 0.008 0.372 ± 0.022 0.368 ± 0.036 0.375 ± 0.051
2 × MIC 0.406 ± 0.003 0.392 ± 0.053 0.366 ± 0.004 0.377 ± 0.017 0.376 ± 0.032

From the results of Table 2 and the FIC value (FIC = 0.5), it could be concluded that
cinnamaldehyde and citral had the synergy effects when used simultaneously.

2.3. Effects of Essential Oils on Fungal Growth and AFB1 Production in Poultry Feed

Cinnamaldehyde and citral were screened for further research with regard to their
inhibitory effects on the growth of A. flavus in poultry feed on days 0, 7, 14, and 21,
respectively. Representative strain A. flavus CGMCC 3.2890 was considered for further
research in feed. The effects of combination of two essential oils on the growth of A. flavus
CGMCC 3.2890 in feed were shown in Figures 2 and 3, respectively.
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Figure 2. Inhibition rate (IR) of cinnamaldehyde and citral on the growth of A. flavus 3.2890 in feed at
40 µg/mL (CAD40), 80 µg/mL (CAD80), 160 µg/mL (CAD160), and 320 µg/mL (CAD320). Different
small letters in the same row (a, b, c) denote a significant difference (p < 0.05) among values, based on
Tukey’s test.

Figure 2 showed that on day 7 there was no significance among the CAD80, CAD160,
and CAD320 (p > 0.05) with IR almost 100%, but on days 14 and 21, the growth of molds
was significantly decreased at 160 µg/mL (CAD160) and 320 µg/mL (CAD320) compared
to CAD40 treatment, respectively, at the end of the storage period. Therefore, the addition
of cinnamaldehyde and citral could suppress the molds sprouting in feed during the
first week.

Figure 3 showed the inhibitory effect of cinnamaldehyde and citral on AFB1 pro-
duction by A. flavus 3.2890 in feed, where it could be seen that CAD160 and CAD320
treatments could completely inhibit the productions of AFB1 on day 14 and day 21
(p < 0.05) compared to other groups, and CAD40 and CAD80 could reduce the production
of AFB1 to some extent (p < 0.05). However, with the time going, a high concentration
could still totally inhibit fungus growth and AFB1 production on day 21, while the IR of
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low centration decreased, but compared to CT treatment, the low concentration could still
play an important inhibition role to some extent.
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Figure 3. Inhibition rate (IR) of cinnamaldehyde on AFB1 production by A. flavus CGMCC 3.2890 in
feed at 40 µg/mL (CAD40), 80 µg/mL (CAD80), and 160 µg/mL (CAD160). Different small letters in
the same row (a, b, c) denote a significant difference (p < 0.05) among values based on Tukey’s test.

3. Discussion

In this research, a high-concentration treatment could totally inhibit the growth of
fungus and AFB1 production even on day 21, perhaps because the essential oils have killed
the fungus, and the low concentration of essential oils probably just inhibited the fungus. In
line with Mahnoud [13] and López–Malo et al. [14], the results of the present study showed
that the growth of A. flavus CGMCC 3.2890 was inhibited by the five EOs, which was in
accordance with Kumar et al. [9]. However, in the former studies, the concentrations of
inhibition were all high, rarely studying the inhibition capability of low concentrations.
Our research proved that low concentration also has inhibition ability against A. flavus.
Our results showed that the cinnamaldehyde and citral suppressed the growth of A. flavus
at low concentrations. Sun et al. [15] also reported that the germination of A. flavus was
delayed by cinnamaldehyde in PDA medium when administered at 79.29 mg/L, whereas
our concentration was only 40 µg/mL. The reason why cinnamaldehyde had the best
inhibition ability was perhaps related to its special structure, such as aldehyde and phenol,
which could attack the cell membrane or cell wall. Nogueira et al. [16] indicated that
essential oil of Ageratum conyzoides changed the ultra-structure of A. flavus, which was more
evident in the endomembrane system, such as mitochondria, thus inhibiting the growth of
A. flavus. Sun et al. [15] reported that the diameter of the spore size linearly decreased with
the increase of concentration of essential oils. The probable mechanism of cinnamaldehyde
and citral needs further study.

The checkerboard method is a common method by which to evaluate the synergy effect
of different drugs. The results showed that cinnamaldehyde and citral could synergistically
affect A. flavus, which was rarely reported before.

Cinnamaldehyde and citral dose-dependently inhibited AFB1 production in the liquid
medium, which was in accordance with our results in the feed. The mechanism of decreased
AFB1 production by cinnamaldehyde and citral may be related to the downregulation of
the expression of key genes for AFB biosynthesis, such as aflC, nor1 and norA [16].

In the feed industry, essential oil is usually used as an odorant to increase feed intake,
and acidifier product is often used to inhibit fungus, but the dosage of acidifier in feed is
high, which may cause the negative effect on the performance of animals. Consequently,
essential oil could be a good replacement for acidifier. Essential oils could not only inhibit
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the fungus, but have many other positive effects on animal production. Thymol was proven
to increase the polyunsaturated fatty acid in egg yolk [17], perhaps for its antibacterial and
antioxidant properties, which was also proven in other studies [18]. Moreover, essential
oils could be improved by increasing the oleic acid content [19], and thiobarbituric acid
reactive substances (TBARS) values could be lowered and the color parameters could be
increased during storage when using essential oils [20]. Now only rosemary extract and
oregano essential oils are permitted to be used as feed additives, but in the future, more
essential oils would probably be applied as feed additives.

4. Conclusions

AFB1 do great harm to the health of human and animals. The research showed
cinnamaldehyde and citral could be an alternative to control aflatoxin contamination in
food and feed in future.

5. Material and Methods
5.1. Microbial Cultures

The following microbial strain were selected for their relevance in the feed industry: A.
flavus CGMCC 3.2890 was obtained from China General Microbiological Culture Collection
Center (CGMCC). The fungi strain was subcultured in potato dextrose agar (PDA) at
28 ◦C for five days. A spore suspension (approx. 106 CFU/mL) was prepared with potato
dextrose broth (PDB).

5.2. Preparation of Essential Oils

Thymol (Sinopharm Chemical Reagent Co., Ltd., Beijing, China, ≥99.0%), cinnamalde-
hyde (Sinopharm Chemical Reagent Co., Ltd., Beijing, China, ≥99.0%), citral (Sinopharm
Chemical Reagent Co., Ltd., Beijing, China, ≥97.0%), eugenol (Sinopharm Chemical
Reagent Co., Ltd., Beijing, China, ≥98.5%), and carvacrol (J & KCHEMICA, Beijing, China,
≥98.0%) were mixed with potato dextrose broth (PDB) containing ethanol (5%; v/v) and
tween 80 (0.5%; v/v) at 1000 µg/mL, 200 µg/mL, and 40 µg/mL, respectively. PDB solution
was prepared according to the above method (devoid of essential oils) served as the control.

5.3. Screening of Best Effect of Essential Oils on Mold Growth in Broth

The modified micro-plate assay used in this study has already been described in detail by
Gorran et al. [21]. Briefly, EOs at different concentrations (0, 40, 200 and 1000 µg/mL) were
screened for inhibiting A. flavus growth. In 96-well micro-plates (Costar®, 3599, Corning,
NY, USA), 160 µL PDB and 20 µL of different concentrations of EOs were mixed with 20 µL
of four different strains of prepared A. flavus spores (at the concentration of 106 CFU per
well), and shaken overnight at 28 ◦C. The fungal growth was determined by measuring
the absorbance at 600 nm of fungal culture in 96-well micro-plates by using a micro-plate
reader (model 680, BIO-RAD Laboratories, Inc., Hercules, CA, USA) for 24 h and 48 h [22].
All assays were performed in triplicates. The essential oils of best inhibition effect were
chosen for the next trials.

5.4. MIC Tests and Synergy Effects of the Best Effect Essential Oils on Fungal Growth in Broth

The MICs of two essential oils’ best inhibition effects were separately determined by
broth microdilution method by using 96 kits. The MICs were tested in replicates of six.
The MIC was defined as the lowest concentration of completely inhibiting the growth of A.
flavus. The inoculums were approximately 1 × 106 CFU/mL in each well.

The synergy effects of the two essentials were determined by using the checkerboard
method. The concentration range of each essential oil in combination ranged from 1/4 MIC
to 2 MIC. Dilutions of two essential oils were made with a twofold diluter [14]. The initial
inoculum was approximately 1 × 106 CFU/mL. The fungal growth was determined by
measuring the absorbance at 600 nm of fungal culture in 96-well micro-plates by using a
micro-plate reader (model 680, BIO-RAD Laboratories, Inc., Hercules, CA, USA) for 24 h.
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To evaluate the effects of combinations, the fractional inhibition concentration (FIC)
was calculated for each essential oil in each combination [22]. The following formulas were
used to calculate the FIC index. The results were expressed as four situations, including
synergy (FIC ≤ 0.5), additive (0.5 < FIC ≤ 1), indifference (1 < FIC ≤ 4) or antagonism
(FIC > 4). A and B separately stands for the two tested essential oils:

FIC = (MICA + B)/(MICA) + (MICA + B)/(MICB). (1)

5.5. Effects of the Best Effect Essential Oil on Fungal Growth and AFB1 Production in Poultry Feed

Prior to mixing with cinnamaldehyde, broiler feed free of any toxin binder was
sterilized at 121 ◦C for 20 min followed and the moisture of the feed was adjusted to 17%
(on dry basis) with sterile water. Then the feed was inoculated with each mold separately
by using the method described by Yin et al. [23], wherein A. flavus CGMCC 3.2890 was
added to 200-g portions of feed to obtain 5.5 log CFU/g feed, and mixed well. After
inoculation, cinnamaldehyde and citral were added at 0, 40, 80, 160, and 320 mg/kg (CT,
CAD40, CAD80, CAD160, CAD320) feed totally followed by incubation at 28 ◦C in 500 mL
Erlenmeyer flasks, sealed with rubber closures. A 20-g portion of the feed was sampled
on days 0, 7, 14, and 21, of which 10 g was used for mold enumeration and 5 g for AFB1
detection, respectively, to calculate the inhibition rate (IR) of A. flavus CGMCC 3.2890 and
AFB1. Each treatment was repeated three times.

The inhibition rate (IR) of A. flavus CGMCC 3.2890 was calculated according to the
following formula:

IR (%) = (∆ODc − ∆ODx)/∆ODc × 100. (2)

IR means the inhibition rate of A. flavus, ∆ODc means the difference value of the OD
of CT treatment of day (7, 14, 21) and day0, ∆ODx means the difference value of OD of
the treatments (CAD40, CAD80, CAD160, CAD320) on day x (day 7, 14, and 21) and day 0
respectively;

IR of AFB1 was calculated according to the following formula:

IR (%) = (∆AFBc − ∆AFBx)/∆AFBc × 100. (3)

IR means the inhibition rate of AFB1, ∆AFBc means the difference value of the con-
centration of AFB1 of CT treatment on day x (day 7, 14, 21) and day0, ∆AFBx means
the difference value of the concentration of AFB1 of of the treatments (CAD40, CAD80,
CAD160, CAD320) on day x (day 7, 14, 21) and day 0, respectively.

5.6. Determination of Mold Counts

To enumerate A. flavus in the control and treated feed, 10 g portions of feed sam-
ples were added to 100 mL of PBS in sterile glass flasks, and blended in a shaker for
30 min. The feed homogenate was serially diluted (1:10) in PBS, and 0.1 mL aliquots
from appropriate dilutions were surface-plated on duplicate PDA plates, and incubated as
previously described.

5.7. Determination of AFB1 in Feed

The concentrations of AFB1 were determined by using a commercial ELISA Kit (HEM
00496, Huaan Magnech Bio-Tech Co., Ltd., Beijing, China). All the procedures were
performed on the basis of manufacturer’s instructions and the absorbance was determined
by using a micro-plate reader. The AFB1 kit is an indirect competitive enzyme-labeled
immunoassay. The AFB1 antigen is pre-coated on the wells. The pre-coated antigen
competes with the AFB1 antibody (antibody solution) with AFB1 in the sample, anti-AFB1
antibody binds to the AFB1-HRP enzyme conjugate. The substrate solution was pipetted
into the wells to convert the color. The color of unknown samples is compared to the color
of the standards and the AFB1 concentrations of the samples were derived.
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Samples were prepared by weighing out a 5.0-g comminuted sample into a 100-mL
triangular flask with a stopper. A total of 25 mL of 60% methanol solution was added and
blended vigorously for 10 min on a vertex. The sample was transferred to a centrifuge
tube and centrifuged for 5 min at 4000 r/min. A total of 1.0 mL of the top-layer liquid was
transferred to a new tube, and 4.0 mL of deionized water was added and blended for 5 s. A
total of 50 µL of the solution was taken for assay.

5.8. Statistical Analysis

Data from this study was analyzed with one-way ANOVA followed by Tukey’s
multiple range test; data were expressed as the mean ± SE by Tukey’s multiple range test.
Data were expressed as significant if p was less than 0.05. All statistical analyses were
performed by SPSS 25.0 (SPSS Inc., Chicago, IL, USA).
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