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Abstract: The risk of exposure to mycotoxins through the consumption of wheat flours has long
been a concern. A total of 299 wheat flours marketed in Shanghai Province of China were sur-
veyed and analyzed for the co-occurrence of 13 mycotoxins through an ultra-high performance
liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The detection rates
of mycotoxins in wheat flours ranged from 0.7~74.9% and their average contamination levels in
wheat flours (0.2~57.6 µg kg−1) were almost lower than the existing regulations in cereals. However,
their co-contamination rate was as high as 98.1%, especially Fusarium and Alternaria mycotoxins.
Comparative analysis of different types of wheat flours showed that the average contamination levels
in refined wheat flours with low-gluten were lower. Based on these contamination data and the
existing consumption data of Shanghai residents, point evaluation and the Monte Carlo assessment
model were used to preliminarily evaluate the potential dietary exposure risk. The probable daily
intakes of almost all mycotoxins, except for alternariol, were under the health-based guidance values
for 90% of different consumer groups. Health risks of dietary exposure to alternariol should be a
concern and further studied in conjunction with an internal exposure assessment.

Keywords: wheat flours; mycotoxins; contamination characteristics; risk assessment

Key Contribution: We investigated and analyzed the occurrence and co-occurrence of mycotoxins in
wheat flours used for human consumption from Shanghai, China, 2020–2021, through a modified and
validated UPLC-MS/MS method for the simultaneous determination of 13 mycotoxins. The obtained
data were used to compare distribution characteristics of mycotoxins in different types of wheat
flours. The chronic dietary intake risks for Shanghai residents were profiled and the approximate
cumulative exposure risks of major co-contamination patterns in wheat flours were also considered
for the first time.

1. Introduction

Wheat flour, which is primary processing food from wheat, is widely used to produce
staple foods (breads, biscuits, cakes, pastries, pasta, and noodles). It can be divided into
whole wheat flour and refined wheat flour for their differences in processing technology.
Whole wheat flour includes the bran and germ, in addition to the basic endosperm, which
are important sources of dietary fibers, vitamins, minerals, or healthy phytochemicals. The
sales of whole cereal foods exceeded 23.68 billion dollars in China in 2015 [1]. It is also
classified as low-gluten, medium-gluten, and high-gluten wheat flour based on protein
content. This quality difference will affect the viscoelasticity and rheology of the dough,
resulting in the chewiness and gumminess of its derived foods. Recently, organic wheat
flours from special agricultural practice have also received more and more attention [2].
Differences in the choice of various types of wheat flours depend on various requirements
in terms of food composition and quality for consumers.
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Due to differences in climates, resistance, and other factors [3], organic or conven-
tional wheat is still susceptible to mycotoxin contamination by toxigenic fungi, such as
Aspergillus spp., Fusarium spp., Penicillium spp., and Alternaria spp., especially for their
outer layer [4]. Preexisting mycotoxins in wheat grain with spatial localization [5] cannot
be destroyed or eliminated by milling, but can be redistributed in different milling fractions,
such as germ, bran, grits, or flour [6,7]. Multiple factors mentioned above have confound-
ing effects on differences in mycotoxin concentrations in wheat flours [2,8]. Therefore,
wheat flours may be contaminated by individual or multiple mycotoxins concurrently for
some adverse factors during the whole industrial chain from agriculture practices to the
table [9,10]. Mycotoxin contamination of wheat flour in various markets has also been
reported continuously [11,12]. Mycotoxins in terms of deoxynivalenol (DON), ochratoxin
A (OTA), zearalenone (ZEN), fusarenon-X (FUS-X), or neosolaniol (NEO) were detected
in wheat and wheat flours from China [13–16]. DON was frequently detected in wheat
flours marked in Hungary and the metabolic forms of DON were also found in spelt
or durum flour [17]. OTA-contaminated wheat flours of 8% and 11.5% in Lebanon and
Poland were also reported [18,19]. Fumonisins (FBs) were also common in wheat-based
foods [10]. Recently, more focus has been placed on Alternaria mycotoxins (ATs) with
the detection in wheat flour samples, which may be related to growth capacity at low
temperature for Alternaria spp. [20,21]. The contamination rates of DON, alternariol (AOH),
tenuazonic acid (TEA) and FB1 in 54 wheat flour samples from China were 90.7%, 16.7%,
3.7% and 9.3%, respectively [22]. Considering the public health concerns arising from
their acute or chronic toxicity, the maximum levels of DON, ZEN, FB1, and OTA have
already been proposed, not only in cereals and cereal flour, bran and germ intended for
direct human consumption (750, 75, 800, 3 µg kg−1), but also in cereal-based processing
foods and baby foods for infants and young children (200, 20, 200, and 0.5 µg kg−1) in
the European Union [23]. Moreover, the tolerable daily intakes (TDIs) for DON and its
derivatives, ((15-acetyl-deoxynivalenol (15-AcDON), 3-acetyl-deoxynivalenol (3-AcDON),
deoxynivalenol-3-glucoside (D3G)), nivalenol (NIV), ZEN, OTA, and FB1, are 1.0, 0.7, 0.25,
0.01, and 2 µg kg−1 bw day−1, respectively [24–27]. The European Food Safety Author-
ity (EFSA) also released the thresholds of toxicological concern (TTC) for the genotoxic
compounds AOH at 0.0025 µg kg−1 bw day−1 and for the non-genotoxic tentoxin (TEN)
and TEA at 1500 µg kg−1 bw day−1 [28]. The probabilistic dietary risk exposure exceeded
the safe chronic exposure levels at the 95P of DON through the intake of foods made from
contaminated-wheat flours for teenagers in Brazil, which indicate differences in eating
habits and body functions that present various dietary risks [29].

Wheat flours remain the predominant dietary source of mycotoxin exposure in grain
consumption patterns [30]. However, studies on the co-occurrence of Alternaria and Fusar-
ium toxins in wheat flours, their contamination differences between different types of wheat
flour, and the exposure and toxicity of the Alternaria toxin are still limited. Targeted and
continuous surveillance of contamination is necessary to explore contamination patterns,
ensure minimal contamination and early prediction of their dietary exposure risks and
their possible cumulative risks. The first objective of the present study was to survey
and analyze the occurrence and co-occurrence of mycotoxins in wheat flours used for
human consumption from Shanghai, China, 2020–2021, through a modified and validated
UPLC-MS/MS method for the simultaneous determination of multiple mycotoxins (DON,
15-AcDON, 3-AcDON, D3G, NIV, NEO, FUS-X, AOH, TEA, TEN, OTA, ZEN, and FB1).
The investigated data were used to compare distribution characteristics of mycotoxins in
different types of wheat flours and to assess the chronic dietary intake risks for Shanghai
residents in terms of age and gender. In particular, the approximate cumulative exposure risks
of co-occurred mycotoxins in the same sample (>5%) were also considered for the first time.
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2. Results and Discussion
2.1. Method Modification and Validation

The co-occurrence of Alternaria and Fusarium toxins in wheat flours has rarely been
explored, and the method for simultaneous determination has been limited until now.
After optimization, 75% acetonitrile with 1% formic acid and ACQUITY UPLC BEH C18
VanGuard pre-column with ACQUITY UPLC BEH C18 column were finally selected as the
extraction agent and chromatography column with the acceptable extraction recoveries
for most mycotoxins in wheat flour (60~120%) (Figure S1). Analytical parameters in the
modified UPLC-MS/MS method were analyzed and validated. Values for the limit of
detection (LOD) and limit of quantification (LOQ) for 13 mycotoxins were in the range
of 0.08~62.5 µg kg−1 and 0.18~125 µg kg−1, which are far below the available MLs in
foodstuffs. Acceptable linearities (R2 > 0.9) within the tested range were obtained (Table 1).
Mycotoxin recovery in this method of fortified wheat flour samples at three levels ranged
from 67.7% to 120.0% and the intra- and inter-day precisions were less than 20% (1.2~20.0%).
The results of these validation parameters indicated that the modified method could be
applied in the quantitative detection of mycotoxins in wheat flour samples.

Table 1. Overview of the accuracy and precision of the developed LC-MS/MS method.

Mycotoxin Spike
(µg kg−1)

Recovery ± RSD r
(%, n = 6)

Recovery ± RSDR
(%, n = 6)

Linearity
Equation

(R2)

LOD
(µg kg−1)

LOQ
(µg kg−1)

NIV
50 76.4 ± 19.8 85.7 ± 17.5 Y = 1.9X

(0.9891) 7.5 25100 106.4 ± 19.8 96.2 ± 18.5
200 71.5 ± 17.8 110.9 ± 15.2

DON
50 115.0 ± 4.5 73.6 ± 7.4 Y = 17.1X

(0.9258) 1.6 3.1100 109.4 ± 7.1 67.7 ± 5.1
200 105.4 ± 5.9 100.0 ± 6.5

15-AcDON
50 96.1 ± 15.4 119.9 ± 3.6 Y = 36.8X

(0.9971) 1.6 3.1100 109.6 ± 10.1 118.0 ± 5.5
200 91.5 ± 9.5 120.0 ± 1.2

3-AcDON
50 111.9 ± 4.6 114.5 ± 5.9 Y = 27.0X

(0.9949) 3.1 6.2100 111.2 ± 6.1 114.6 ± 2.7
200 116.6 ± 3.3 118.6 ± 3.3

D3G
50 85.4 ± 19.3 119.0 ± 6.6 Y = 9.7X

(0.9956) 3.1 6.2100 98.7 ± 8.1 117.1 ± 5.9
200 81.7 ± 12.7 108.9 ± 14.3

FUS-X
50 105.7 ± 6.3 102.9 ± 9.5 Y = 43.1X

(0.9972) 7.5 25100 109.5 ± 7.2 110.7 ± 5.3
200 80.7 ± 4.4 118.3 ± 5.3

OTA
10 92.2 ± 5.7 113.6 ± 2.6 Y = 1271.2X

(0.9889) 0.3 0.620 108.7 ± 7.0 102.0 ± 12.6
40 83.8 ± 6.3 115.9 ± 9.8

NEO
1 102.0 ± 14.8 119.5 ± 10.4 Y = 529.7X

(0.9850) 0.2 0.52 84.9 ± 18.7 115.8 ± 6.7
4 83.1 ± 16.8 118.7 ± 6.7

ZEN
10 92.3 ± 6.5 85.6 ± 6.7 Y = 530.9X

(0.9976) 0.3 0.620 112.4 ± 5.5 117.4 ± 5.6
40 98.4 ± 3.3 104.5 ± 9.2

AOH
30 82.3 ± 20.0 106.8 ± 9.9 Y = 38.4X

(0.9964) 0.5 1.060 91.8 ± 15.4 115.2 ± 11.4
120 74.6 ± 11.8 118.0 ± 5.1
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Table 1. Cont.

Mycotoxin Spike
(µg kg−1)

Recovery ± RSD r
(%, n = 6)

Recovery ± RSDR
(%, n = 6)

Linearity
Equation

(R2)

LOD
(µg kg−1)

LOQ
(µg kg−1)

TEA
50 95.4 ± 12.8 113.2 ± 7.8 Y = 52.7X

(0.9934) 1.6 3.1100 91.1 ± 8.7 108.3 ± 10.1
200 79.3 ± 10.0 104.3 ± 4.7

TEN
5 99.6 ± 5.8 111.2 ± 6.4 Y = 1875.8X

(0.9844) 0.08 0.210 105.4 ± 4.9 91.2 ± 13.8
20 100.8 ± 4.2 106.2 ± 10.5

FB1

250 109.1 ± 7.4 98.4 ± 14.1 Y = 5.4X
(0.9949) 62.5 125500 107.0 ± 7.9 87.5 ± 19.5

1000 110.1 ± 5.0 105.4 ± 7.2

Low, Middle, and High represent the spiked low, middle, and high concentrations of mycotoxins respectively. RSD
r: intraday precision (repeatability) in mycotoxin-fortified samples; RSDR: inter-day precision (reproducibility) in
mycotoxin-fortified samples.

2.2. Mycotoxins Occurrence in Wheat Flour Samples
2.2.1. Mycotoxin Presence in Wheat Flour Samples

Detailed data on mycotoxin occurrence are shown in Table 2 and Figure 1A. The
contamination levels for mycotoxins in wheat flour samples were lower than the existing
regulations in cereals (95.6~100.0%), except for one sample. Among these mycotoxins,
DON (74.9%), TEA (73.2%), TEN (55.2%), and ZEN (40.1%) had a higher detection rate
in the wheat flours analyzed. The average contamination levels of DON, TEA, and FB1
were higher. The contamination levels of DON (4.4%) or OTA (0.3%) in some samples
exceeded the limits of infant flour-based food. The detection rate and contamination level
for OTA in this study were also lower than those in other results [18,19]. Only one of the
299 samples (1260.0 µg kg−1) exceeded the maximum limit of FB1 in maize and corn-based
foods for direct human consumption, which contains 20% corn flour after further detailed
examination. Exogenous food ingredients, such as corn or buckwheat, have possible effects
on mycotoxin contamination in wheat flour.

Table 2. Concentration levels of mycotoxins in wheat flour samples from Shanghai, China, 2020–2021
(n = 299, µg kg−1).

Mycotoxins MRLs Positive Rate
(%)

Below MRLs
(%) Mean ± SD Range

DON 750 a, 200 b 74.9 100.0, 95.6 57.6 ± 65.3 0.8–371.4
15-Ac DON NF 37.8 ** 12.0 ± 19.8 0.8–140.6
3-Ac DON NF 4.0 ** 1.7 ± 0.8 1.6–10.8

D3G NF 32.1 ** 8.6 ± 15.0 1.6–96.3
FUS-X NF 11.7 ** 8.5 ± 18.8 3.6–191.7
NIV NF 13.7 ** 6.6 ± 9.8 3.8–96.7

AOH NF 18.4 ** 6.6 ± 18.7 0.2–140.8
TEN NF 55.2 ** 0.5 ± 1.2 0.04–14.8
TEA NF 73.2 ** 23.1 ± 27.0 0.8–161.6
ZEN 75 a, 20 b 40.1 100.0, 100.0 0.6 ± 0.7 0.2–5.7
FB1 800 a, 200 b 0.7 99.7, 99.7 35.5 ± 71.1 31.2–1260.4
OTA 3 a, 0.5 b 2.7 100.0, 99.7 0.2 ± 0.06 0.2–1.0
NEO NF 2.3 ** 0.6 ± 0.2 0.1–2.6

MRLs, Maximum Regulation Limits; SD, Standard Deviation; NF, Not Found; **, No Data. a MRLs for DON, ZEN,
FB1, and OTA in cereal flour, maize-based breakfast cereals, or processed cereals as end product marketed for
direct human consumption (EC Regulation No 1881/2006). b MRLs for DON, ZEN, FB1, and OTA in processed
cereal-based foods and baby foods for infants and young children (EC Regulation No 1881/2006).
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Figure 1. Mycotoxins occurrence in wheat flour samples. (A) occurrence of mycotoxins in wheat flour
samples; (B) analytical results of mycotoxin coexistence in 299 wheat flour samples; (C) co-occurrence
of mycotoxins in wheat flour samples (≥200 µg kg−1) contaminated with DONs; and (D) different
combinations of the co-occurrence of mycotoxins in positive wheat flours for DONs (n = 22).

The co-contamination rate of mycotoxins in wheat flours was as high as 98.1%, and
more than half of the samples (57.2%) contained three to four mycotoxins (Figure 1B). The
detailed combination of the co-occurrence of mycotoxins in wheat flours are shown in Table
S1. There were four main contamination patterns: DON+15-AcDON+TEA+TEN (12.0%),
DON + TEA + TEN (8.4%), NIV+DON+D3G+TEA+TEN (5.0%), and AOH+ZEN (5.0%).
Among these samples with a total DON greater than 200, the detection rate of TEA, ZEN,
TEN, NIV, FUS-X, NEO, or AOH in wheat flours was 81.8%, 59.1%, 40.9%, 22.7%, 13.6%,
9.1%, or 4.6%, respectively (Figure 1C,D). The co-contamination of Fusarium and Alternaria
mycotoxin was relatively common, especially for the co-contamination of DON and TEA,
which was also reported as the predominant contaminant pattern in the previous study [22].

2.2.2. Distribution Characteristics and Differences of Mycotoxins in Wheat Flour Samples

We have carried out a comparative analysis for mycotoxin contamination in wheat
flour involving wheat flour refining processing technology and organic agriculture produc-
tion, especially from the perspective of whole vs. refined, low-gluten vs. medium-gluten
vs. high-gluten, and organic vs. conventional wheat flours. The results showed that
the average levels of tested mycotoxins in different types of wheat flours with different
significance, except for NIV, FB1, NEO, and OTA (Figures 2 and S2).
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Figure 2. The distribution characteristics and differences of contamination levels for mycotoxins
in various types of wheat flour samples (* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001):
(A) Occurrence of DONs in different wheat flour samples; (a) low-gluten wheat flours, (b) medium-
gluten wheat flours, (c) high-gluten wheat flours, and (d) whole wheat flours; (B) occurrence of
DON in different wheat flour samples; (a) low-gluten wheat flours, (b) medium-gluten wheat
flours, (c) high-gluten wheat flours, and (d) whole wheat flours; (C) occurrence of TEA in different
wheat flour samples; (a) low-gluten wheat flours, (b) medium-gluten wheat flours, (c) high-gluten
wheat flours, and (d) whole wheat flours; (D) occurrence of ZEN in different wheat flour samples;
(a) low-gluten wheat flours, (b) medium-gluten wheat flours, (c) high-gluten wheat flours, and
(d) whole wheat flours; (E) occurrence of DONs in different wheat flour samples; (f) organic wheat
flours, and (g) conventional wheat flours; and (F) occurrence of ZEN in different wheat flour samples;
(f) organic wheat flours, and (g) conventional wheat flours.

The total amount of DON in refined wheat flours with different protein content
(56.1~80.3 µg kg−1) were significantly lower than that in whole wheat flour (138.4 µg kg−1),
and the average level of DON in whole wheat flours (96.5 µg kg−1) was also higher than
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that in high-gluten wheat flours (43.4 µg kg−1) (Figure 2A,B). The similar contamination
difference was also found for TEA, ZEN, FUS-X, or TEN between whole wheat flour
and refined wheat flour (Figures 2C,D and S2A,B). This distribution characteristic of
DON or ZEN in whole wheat flours and refined wheat flours had also been found in a
previous study, but the levels detected in this study were lower, which may be due to
good management control [1]. Mycotoxin contamination levels in wheat flour were related
to the proportions of different milling fractions because the epidermis, bran or germ of
wheat grain as the natural medium of toxigenic fungi may concentrate mycotoxins. In
other words, mycotoxins in wheat flours could be diminished by removing or adjusting
grinding fractions with a high risk of contamination. Compared to low-gluten wheat flour,
medium-gluten and high-gluten wheat flour had a higher degree and a wider range of
contamination (Figures 2 and S2). The similar patterns of contamination have been found
in wheat flour related foods. Oueslati et al. reported that the contamination levels of
combination (DON + ENB) in the Tunisian whole bread samples were higher than that
in white bread samples [31]. The mycotoxin contamination (DON, TEA, and TEN) in
noodles derived from high- or medium-gluten wheat flours were also found to be more
serious than that in biscuits derived from low-gluten wheat flours [22]. In short, the
monitoring of primary processed wheat flour should be regarded with more concern, even
if contamination levels are below the limits, minimizing health risk as early as possible,
especially for whole wheat flours, medium-gluten, and high-gluten wheat flours.

Meanwhile, there is still a controversy that organic wheat flour, without use of fer-
tilizers and fungicides, contain more mycotoxins than conventional products, thereby
involving another risk for human health because of limited studies on the comparation of
organic and conventional wheat flours [8]. In this study, significant differences were only
found in some mycotoxins and the average level of DON, ZEN, or AOH in organic wheat
flours (135.9, 2.0, or 13.9 µg kg−1) was significantly higher than that in conventional wheat
flours (77.3, 0.5, or 6.2 µg kg−1), while the mean contamination for TEN in organic wheat
flours (0.05 µg kg−1) was exactly the opposite in conventional wheat flours (0.6 µg kg−1)
(Figure 2E,F). DON, NIV, and FUS-X were reported to occur frequently in organic cereals
from Italy [32]. Crop rotation, good agricultural, or harvest practices in terms of the proper
transport and storage conditions was associated with mycotoxins contamination of organic
wheat flours [9]. Therefore, mycotoxin of organic wheat flours was not always higher than
that of conventional wheat flours, which needs further research considering the relationship
of fungi and mycotoxin for variable environmental conditions.

2.3. Risk Assessment and Uncertainty of Ingestion or Exposure

The deterministic and probabilistic assessment of exposure to each group of myco-
toxins through wheat flour consumption for the local population were obtained (Table 3)
by Equations (2) and (3) and are found in Section 4.4. The PDI values from the estimation
of almost all mycotoxins were lower than the available HBGVn. In particular, the PDI
values of AOH in the entire population ranged from 9.00 × 10−3 to 7.88 × 10−2 µg kg−1 bw
day−1, which were higher than the recommended TTC values for AOH at 0.0025 µg kg−1

bw day−1. The %TDI ranking results of assessments were almost the same as AOH >
DONs > FB1 > OTA > TEA > NIV > ZEN > TEN. The %TDI or sum of %TDI from the
single exposure assessment of almost all mycotoxins, except for AOH, were less than 100%
in all populations (Table 3 and Figure 3), indicating that wheat flour consumption for
Shanghai residents contributed little to the exposure risk of mycotoxins. The margin of
exposure values were the ratios of BMDL10 values of 4.7 and 14.5 µg kg−1 bw day−1 to
PDI, respectively, reflecting the nonneoplastic and neoplastic effects of OTA. The results
showed that they both exceeded 200 and 10,000, indicating no health problems (Table S2).
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Table 3. Exposure levels of mycotoxins in wheat flour samples with the upper bound deterministic
and probabilistic estimation for different consumer groups (µg kg−1 bw day−1).

Poulation

Mycotoxins
Deterministic Estimation

Probabilistic Estimation

Median P90

NIV (TDI, 0.7 µg kg−1 bw day−1)
Total population 1.40 × 10−2 1.40 × 10−2 3.04 × 10−2

Adult men 1.49 × 10−2 1.49 × 10−2 3.24 × 10−2

Adult women 1.31 × 10−2 1.31 × 10−2 2.84 × 10−2

7–10-year-old boys 2.52 × 10−2 2.52 × 10−2 5.47 × 10−2

7–10-year-old girls 2.20 × 10−2 2.20 × 10−2 4.78 × 10−2

DONs (TDI, 1 µg kg−1 bw day−1)
Total population 1.18 × 10−1 9.58 × 10−2 2.62× 10−1

Adult men 1.26 × 10−1 1.02× 10−1 2.79× 10−1

Adult women 1.11 × 10−1 8.94 × 10−2 2.45× 10−1

7–10-year-old boys 2.13 × 10−1 1.72× 10−1 4.71× 10−1

7–10-year-old girls 1.86 × 10−1 1.50× 10−1 4.12× 10−1

AOH (TTC, 0.0025 µg kg−1 bw day−1)
Total population 9.64 × 10−3 9.64 × 10−3 4.38 × 10−2

Adult men 1.03 × 10−2 1.03 × 10−2 4.66 × 10−2

Adult women 9.00 × 10−3 9.00 × 10−3 4.09 × 10−2

7–10-year-old boys 1.73 × 10−2 1.73 × 10−2 7.88 × 10−2

7–10-year-old girls 1.51 × 10−2 1.51 × 10−2 6.88 × 10−2

TEN (TTC, 1.5 µg kg−1 bw day−1)
Total population 7.69 × 10−4 5.37 × 10−4 1.65 × 10−3

Adult men 8.18 × 10−4 5.72 × 10−4 1.75 × 10−3

Adult women 7.18 × 10−4 5.01 × 10−4 1.54 × 10−3

7–10-year-old boys 1.38 × 10−3 9.66 × 10−4 2.96 × 10−3

7–10-year-old girls 1.21 × 10−3 8.44 × 10−4 2.59 × 10−3

TEA (TTC, 1.5 µg kg−1 bw day−1)
Total population 3.31 × 10−2 2.60 × 10−2 7.00 × 10−2

Adult men 3.52 × 10−2 2.76 × 10−2 7.45 × 10−2

Adult women 3.08 × 10−2 2.42 × 10−2 6.53 × 10−2

7–10-year-old boys 5.94 × 10−2 4.67 × 10−2 1.26 × 10−1

7–10-year-old girls 5.19 × 10−2 4.08 × 10−2 1.10 × 10−1

FB1 (TDI, 2 µg kg−1 bw day−1)
Total population 9.53 × 10−2 8.95 × 10−2 9.88 × 10−2

Adult men 1.01× 10−1 9.52 × 10−2 1.05 × 10−1

Adult women 8.89 × 10−2 8.35 × 10−2 9.21 × 10−2

7–10-year-old boys 1.71 × 10−1 1.61 × 10−1 1.78 × 10−1

7–10-year-old girls 1.50 × 10−1 1.41 × 10−1 1.55 × 10−1

OTA (TDI, 0.01 µg kg−1 bw day−1)
Total population 4.64 × 10−4 4.58 × 10−4 4.67 × 10−4

Adult men 4.93 × 10−4 4.88 × 10−4 4.97 × 10−4

Total population 4.33 × 10−4 4.28 × 10−4 4.36 × 10−4

7–10-year-old boys 8.34 × 10−4 8.24 × 10−4 8.40 × 10−4

7–10-year-old girls 7.28 × 10−4 7.20 × 10−4 7.33 × 10−4

ZEN (TDI, 0.25 µg kg−1 bw day−1)
Total population 7.88 × 10−4 6.17 × 10−4 1.59 × 10−3

Adult men 8.38 × 10−4 6.57 × 10−4 1.69 × 10−3

Adult women 7.35 × 10−4 5.76 × 10−4 1.48 × 10−3

7–10-year-old boys 1.42 × 10−3 1.11 × 10−3 2.85 × 10−3

7–10-year-old girls 1.24 × 10−3 9.70 × 10−4 2.49 × 10−3
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Figure 3. The health risk of various mycotoxins through wheat flour consumption were described in
the upper bound deterministic and probabilistic estimation (Median and P90) for different consumer
groups from left to right.

Considering mycotoxins co-contamination, the approximate cumulative exposure
risks were also assessed in positive samples contaminated with multiple mycotoxins
concurrently and their incidence greater than 5%. Among these four main contamination
patterns, only the %TDI min or %TDI max from one of patterns (AOH + ZEN) was more
than 100% (Table S3). It is important to note that limited knowledge is available on the
transfer or fate of mycotoxins during food processing and digestion. It is reported that
60~80% of OTA and AFs in wheat flour can be retained after cooking [33]. The fates of
mycotoxins, particularly DON and D3G, in bread making are affected by fermentation or
other complex factors [2,6,34]. Some externally additive food compositions can also affect
the risk of eventual exposure to mycotoxins. Recently, bread enriched with pumpkin extract
and fermented whey individually and in combination were reported to reduce the bio-
accessibilities of mycotoxins and alleviate their associated neurotoxicity [35–37]. Therefore,
the associated health risks of AOH needs to be further studied, in combination with internal
exposure, especially in children. A recent study also pointed to the need to pay attention to
the risks of infant exposure to AOH through cereal-based foods consumption [22].

3. Conclusions

Wheat flour is one of the important dietary sources of mycotoxin exposure and its
safety deserves attention. We inspected 13 mycotoxins in wheat flours marketed in Shang-
hai by UPLC-MS/MS and profiled their external exposure risk. Of the wheat flour samples
with low concentration levels, 95.6~100.0% met the regulations. The average contamination
levels of DON and TEA in wheat flours were higher than other mycotoxins. Of the wheat
flour samples, 57.2% were contaminated simultaneously by three to four mycotoxins. We
found the co-occurrence of Fusarium and Alternaria mycotoxin in wheat flours. Particu-
larly, four main co-contamination patterns in wheat flours were also found in this study,
including DON+15-AcDON+TEA+TEN, DON+TEA+TEN, NIV+DON+D3G+TEA+TEN,
and AOH+ZEN. Lower average contamination levels and fewer types of mycotoxins were
detected in refined flours than whole wheat flours. Combined with the relevant wheat
food consumption data of Shanghai residents, chronic dietary intake risk assessments of
mycotoxins were performed by point evaluation and Monte Carlo assessment model. Di-
etary exposure risks of DONs, ZEN, NIV, TEA, TEN, FB1, and OTA by wheat flours intakes



Toxins 2022, 14, 748 10 of 14

were considered to be acceptable (%TDI < 100%). However, the exposure risk of AOH and
the approximate cumulative exposure risks of AOH and ZEN should be considered and
further studied in conjunction with internal exposure assessments.

4. Materials and Methods
4.1. Materials and Reagents

The ZEN (Z2125), DON (D0156), 3-AcDON (A6166), 15-AcDON (A1556), D3G (32911),
OTA (O1877), AOH (A1312), TEN (35977), NIV (34131), and FB1 (F1147) analytical standards
are Sigma-Aldrich products (St. Louis, MO, USA). The TEA (ab142764) analytical standards
were purchased from Abcam (Cambridge, MA, USA). The FUS-X (10003647) and NEO
(10003640) analytical standards are Romer Lab Biopure™ products (Union, MO, USA).
The certified wheat flour (Fusarium mycotoxins, ERMBC600) as the reference material for
quality control was also obtained from Sigma-Aldrich (St. Louis, MO, USA). HPLC-grade
acetonitrile was purchased from Merck (Darmstadt, Germany). Milli-Q quality water
(Millipore, Billerica, MA, USA) was used throughout the experiments.

4.2. Sampling and Samples for Analysis

Two hundred and ninety-nine wheat flour samples were randomly taken from retail
stores or supermarkets located in different zones of Shanghai from December 2020 to
October 2021. These samples originated from twelve different districts representing central
and suburban Shanghai, including Congming (n = 21), Changning (n = 38), Huangpu
(n = 29), Hongkou (n = 8), Jingan (n = 25), Minhang (n = 47), Pudong (n = 29), Putuo
(n = 30), Qingpu (n = 10), Songjiang (n = 10), Xuhui (n = 46), and Yangpu (n = 6). Of the
samples, 13 out of 299 were bulk wheat flours, while the remaining wheat flour samples
were categorized as whole wheat flours and refined wheat flours according to labels.
According to the labeled varying content of the protein, refined wheat flours involved
low-gluten wheat flours (n = 29), medium-gluten wheat flours (n = 166), and high-gluten
wheat flours (n = 71). Almost all of them were packaged in plastic food containers at
least 500 g/sample. 13 of 299 samples were organic wheat flours after a subdivision of the
collected samples in terms of agricultural practice. The geographic origin, food composition,
and other information about these samples used for humans were also recorded. All the
collected samples were divided and stored in plastic cans at −20 ◦C before analysis.

4.3. Analytical Method and Validation

A total of 13 mycotoxins, including DON, 3-AcDON, 15-AcDON, D3G, NIV, FUS-X,
NEO, ZEN, OTA, FB1, AOH, TEA, and TEN, were simultaneous determined in wheat
flours following the UPLC-MS/MS method reported by previous studies [22,38] with some
modifications. First, more Fusarium toxins and Alternaria toxins were monitored in the
full-scan mode. The extraction recoveries for targeted mycotoxins were compared under
different concentrations of organic reagents after adding 13 mycotoxins simultaneously
in wheat flour samples at middle concentration levels. The equation for calculating their
recoveries, where Ca is the calculated concentration in the mycotoxins-spiked sample,
Cb is the calculated concentration in the non-spiked sample, and CA is the theoretical
concentration of the analyte that was added into the sample.

Recovery (%) = (Ca − Cb)/CA × 100 (1)

In brief, 1.0 g of sample was vortexed vigorously for 5 min using 4 mL acetonitrile:
water (75:25, v/v) with 1% formic acid solution, and then ultrasound-assisted extracted for
40 min. The extraction mixture was centrifuged at 4000 rpm for 5 min. After centrifuga-
tion, 2 mL of the supernatant extract was filtered with 0.22 µm organic filter membrane
and injected into the ultimate 3000 UPLC system (Thermo Fisher Scientific, San Jose, CA,
USA). Mycotoxins were separated by the ACQUITY UPLC BEH C18 VanGuard pre-column
(1.7 µm, 2.1 mm × 5 mm) and ACQUITY UPLC BEH C18 (1.7 µm, 2.1 mm × 100 mm)
column with mobile phase A (water containing 5 mM ammonium acetate) and mobile
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phase B (methanol) gradient elution following: 0–1.0 min, 5–50% B; 1.0–9.0 min, 50–100%
B; 9.0–10.0 min, 100% B; 10.0–11.0 min, 100–5% B; and 11.0–12.0 min, 5% B. The flow rate
was 0.35 mL min−1 and the injection volume was 5 µL. Meanwhile, the TSQ VantageTM
(Thermo Fisher Scientific, San Jose, CA, USA) triple stage quadrupole mass spectrometer
was applied for further multi-mycotoxin determination based on multiple reaction moni-
toring (MRM) using positive and negative electrospray ionization (ESI+/−) mode. Based
on the selected optimal parent ions, the product ion and their optimized collision energies
with argon for each mycotoxin were obtained and summarized in the Table S4. Other
optimized parameters were set as follows: Positive spray voltage at +3.0 kV, negative spray
voltage at −2.5 kV, capillary temperature at 300 ◦C, vaporizer temperature at 250 ◦C, aux
gas pressure is 5 psi, and sheath gas pressure is 40 psi. Their final chromatograms is shown
in the Figure S3. Related parameters of the UPLC-MS/MS method were verified with the
guidelines of the document [39]. Linearity was determined by analyzing each mycotoxin
standard solutions. The values (LOD and LOQ) for mycotoxins were determined by the
signal-to-noise (S/N) ratios of 3:1 and 10:1, respectively, according to the lowest detectable
level for quantitative ion [1,35]. Recovery analysis was conducted using three different
concentrations of 13 mycotoxins to fortify simultaneously wheat flour matrices. The spiked
concentration ranged from 0.13 to 1200 µg kg−1 with six replicates per concentration level
(Table 1). The precision and accuracy of the proposed strategy were checked through intra-
and inter-day analysis, as described in our previous study, and RSD r or RSDR less than
20% was evaluated as acceptable [39,40].

4.4. Dietary Risk Assessment and Characterization

The risk of exposure for ingested mycotoxins through wheat flour consumption was
assessed by the deterministic and probabilistic approach. The probable daily intake (PDI
n, µg kg−1 bw day−1) of each mycotoxin was calculated by their contamination levels
obtained from the analyzed samples combined with the relevant wheat food consumption
data, as indicated in the following equation:

PDI n = (Cn × CA)/BW (2)

For the point evaluation, where Cn is the average content of each mycotoxin n. In
this study, if a contamination value was not detected, which refers to values lower than
LOD values, the substitution values of 0 (lower bound), 1/2 LOD (middle bound) and
LOD (upper bound) were used for mycotoxin exposure assessment. CA is the average
consumption amount of the commodity (g person−1 day−1) and BW is the average body
weight of participants (kg). Wheat and wheat-based products consumption data and the
demographic information were derived from a 2012~2014 Shanghai Food Consumption
Survey (SHFCS) by Fudan University regarding to Shanghai inhabitants (7~60 years old).
The average consumption of participants in 7~10 years old groups was the highest in the
published study [13]. Therefore, the population groups considered in this study were
consistent with a previous study [16]: Total population, adult men, adult women, as well
as typical boys and girls (Table S5).

A more accurate or applicable Monte Carlo simulation was also performed using
@Risk Industrial 7.5 (Palisade, New York, NY, USA) software for probability assessment, in
combination with Microsoft Excel 2016. Mycotoxin contamination data of all analyzed sam-
ples at the above three bounds were input into @RISK software and Cn could be obtained
from the best-fitting distribution for these data. The Anderson-Darling and Kolmogorov-
Smirnov tests were selected to evaluate the goodness-of-fit for each distribution by @Risk
software. Similarly, Cn, CA, and BW were input into @RISK software according to the above
formula for Monte Carlo simulation. The exposure distribution of PDI n with a confidence
interval > 90% were obtained using 10,000 iteration runs. The health risk characterization
of each mycotoxin (%TDI n) was performed by dividing PDI n with their health-based
guidance values (HBGV n) based on the equation shown below:

%TDI n = (PDI n/HBGV n) × 100 (3)
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where HBGV n represents the available TDI n or TTC n. Values of %TDI n higher than a
hundred indicate a possible health risk scenario. Otherwise, there is no significant risk
was observed and a population is not at risk from that exposure. An approximation of
exposure assessment was also performed to evaluate consumer’s exposure in analyzed
samples contaminated with multiple mycotoxins [41]. The Cn, min and Cn, max derived
from multi-mycotoxin contaminated samples. Then, we summed them, and a combined
health risk characterization was proposed as follows:

i

∑
m=1

%TDI n, min =
i

∑
m=1

(Cn, min × CA)/Bw/HBGVn (4)

i

∑
m=1

%TDI n, max =
i

∑
m=1

(Cn, max × CA)/Bw/HBGVn (5)

Conventionally, values of ∑i
m=1 %TDI less than a hundred indicate that the combined

exposure level were considered to be acceptable, and people are unlikely to be exposed at a
toxic level with possible consequences for health.

4.5. Data Analysis

The UPLC-MS raw data were recognized by Thermo Xcalibur Qual Browser 4.0.
Nonparametric statistics were used after the normality and lognormality testing for each
group. Distribution characteristics and differences of mycotoxins in various types of wheat
flour samples were compared and evaluated using the Kruskal-Wallis or Mann-Whitney
test at a significance level of 0.05. All statistical analyses and drawings were performed
using GraphPad Prism 9.0 software.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14110748/s1, Figure S1. The effect of the extractant types
containing 1% formic acid on the recoveries of mycotoxins: (a) 45% Acetonitrile, (b) 55% Acetonitrile,
(c) 65% Acetonitrile, (d) 75% Acetonitrile, (e) 85% Acetonitrile, (f) 95% Acetonitrile. The two dashed
lines represent recoveries of 60% and 120%, respectively; Figure S2. The distribution characteristics
and differences of contamination levels for mycotoxins in various types of wheat flour samples:
(A) occurrence of FUS-X in different wheat flour samples; (a) low-gluten wheat flours, (b) medium-
gluten wheat flours, (c) high-gluten wheat flours, (d) whole wheat flours; (B) occurrence of TEN in
different wheat flour samples; (a) low-gluten wheat flours, (b) medium-gluten wheat flours, (c) high-
gluten wheat flours, (d) whole wheat flours; (C) occurrence of AOH in different wheat flour samples;
(f) organic wheat flours, g) conventional wheat flours; (D) occurrence of TEN in different wheat flour
samples; (f) organic wheat flours, (g) conventional wheat flours; Figure S3. The chromatograms of
13 mycotoxins at middle concentration under optimized chromatographic and mass spectrometry
conditions; Table S1. Different combinations of co-occurrence of mycotoxins in wheat flours marketed
in China; Table S2. The nonneoplastic and neoplastic effects through wheat flours consumption based
on various margin of exposure estimation values of OTA; Table S3. The approximate cumulative
exposure risks of four main contamination patterns of mycotoxins co-occurring in real samples for
the total population; Table S4. Retention time and MS parameters for the analysis of mycotoxins;
Table S5. The average daily intake of wheat and wheat-based products in Shanghai and participants
for average body weight.
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