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Abstract: Oromandibular dystonia (OMD) induces severe motor impairments, such as masticatory
disturbances, dysphagia, and dysarthria, resulting in a serious decline in quality of life. Non-invasive
brain-imaging techniques such as electroencephalography (EEG) and magnetoencephalography
(MEG) are powerful approaches that can elucidate human cortical activity with high temporal
resolution. Previous studies with EEG and MEG have revealed that movements in the stomatognathic
system are regulated by the bilateral central cortex. Recently, in addition to the standard therapy of
botulinum neurotoxin (BoNT) injection into the affected muscles, bilateral deep brain stimulation
(DBS) has been applied for the treatment of OMD. However, some patients’ OMD symptoms do
not improve sufficiently after DBS, and they require additional BoNT therapy. In this review, we
provide an overview of the unique central spatiotemporal processing mechanisms in these regions
in the bilateral cortex using EEG and MEG, as they relate to the sensorimotor functions of the
stomatognathic system. Increased knowledge regarding the neurophysiological underpinnings of the
stomatognathic system will improve our understanding of OMD and other movement disorders, as
well as aid the development of potential novel approaches such as combination treatment with BoNT
injection and DBS or non-invasive cortical current stimulation therapies.

Keywords: oromandibular dystonia; botulinum neurotoxin; stomatognathic function; deep brain
stimulation; sensorimotor function; magnetoencephalography; electroencephalography; motor func-
tion; globus pallidus

Key Contribution: The uncertain effects of deep brain stimulation (DBS) on oromandibular dys-
tonia may, in part, be explained by the unique characteristics of the bilateral central regulation of
sensorimotor functions in the stomatognathic system. An improved understanding of the central
mechanisms related to stomatognathic functions will promote the development of new approaches,
such as combination treatment with botulinum neurotoxin injection and DBS or non-invasive cortical
current stimulation therapies.

1. Introduction

The stomatognathic system is an anatomic and functional unit comprising the mandible,
maxilla, dental arches, teeth, temporomandibular joint, masticatory muscles, surround-
ing nerves and vessels, and salivary glands. The stomatognathic system plays important
roles in a variety of critical motor functions, including mastication, swallowing, speech
production, and respiration. Focal dystonia in the stomatognathic system induces severe
motor dysfunction that negatively affects quality of life via factors such as masticatory
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disturbances, limited mouth opening, dysphagia, and dysarthria caused by involuntary
movements in the stomatognathic system [1–3].

Dystonia is characterized by sustained or intermittent muscle contractions that pro-
duce involuntary, unwanted, and often repetitive movements, postural changes, or both [4].
Focal dystonia includes blepharospasm (eyelids), cervical dystonia (neck), writer’s cramp,
musician’s cramp (hand and arm), and oromandibular dystonia (OMD) [5]. OMD is a
focal type of dystonia that involves the masticatory, lower facial, lingual, or orbicularis
oris muscles [1–3,6]. Clinically, OMD presents as dystonia during jaw opening or closing,
jaw deviation, jaw protrusion, lingual dystonia, lip dystonia, or a combination of these
abnormal movements [7].

When OMD occurs in conjunction with blepharospasm, it is usually referred to as
Meige syndrome. Meige syndrome, which was first described by Henri Meige in 1910, is
cranial dystonia characterized by the combination of upper and lower cranial involvement
and including blepharospasm and OMD [8]. In Meige’s syndrome, there is progressive
worsening of blepharospasm with the spread of symptoms to involve the oromandibular,
cervical, and limb muscles; however, the symptoms spread earliest and greatest in the
oromandibular muscles [9–11].

A recent multicenter study conducted among Institutions across seven countries found
that OMD had a prevalence of 8.7% among all types of focal dystonia, making it one of
the less prevalent subtypes of this neurological disorder [12]. The overall prevalence of
primary dystonia was calculated as 16.4 per 100,000 cases in a meta-analysis [13], and that
of OMD was estimated at 6.8 per 100,000 cases [14]. Another study reported an estimated
OMD prevalence rate of 0.33 per 100,000 cases [15]. However, most of the studies evaluated
relatively few patients with OMD. A recent epidemiologic study of 144 patients with OMD
reported an estimated prevalence of 9.8 per 100,000 cases, suggesting that OMD is as
common as cervical dystonia or blepharospasm [16].

Botulinum neurotoxin (BoNT) injection represents a standard therapy for focal dys-
tonia, including cases of OMD [3,17]. BoNT is injected into the target muscles exhibiting
disordered movements where it blocks acetylcholine release at the neuromuscular junction
(NMJ). Proper muscle identification, dose selection, and management of patient expecta-
tions are required to ensure that BoNT injection is both safe and effective in patients with
OMD [3], since stomatognathic functions are performed by various bilateral muscles in
the stomatognathic system that differ in size and tension. Moreover, since each muscle of
the stomatognathic system is controlled by the bilateral cortex through the corticobulbar
tract and certain cranial nerves (CNs (CN V, VII, X, XII)), identifying the neurophysiolog-
ical and neuroanatomical basis of sensorimotor functions in the stomatognathic system
remains essential.

In addition to BoNT injection, deep brain stimulation (DBS) represents an optional
therapy for focal dystonia in the limbs [18]. The main target of conventional DBS is
the internal segment of the unilateral globus pallidus (GPi). DBS of the unilateral GPi
improves symptoms of disordered movement on the contralateral side, based on the
principle that unilateral movements in the limbs are regulated by the contralateral sides of
the central regions via the corticospinal tract (Figure 1). However, the application of DBS
for OMD has been limited, and evidence regarding its clinical utility in these patients is
still considered preliminary.

Several case reports from the past two decades have described the use of DBS of the
bilateral Gpi for the treatment of lingual dystonia [19–22]. This bilateral approach is based
on the neurophysiological principle that tongue movements are regulated by the bilateral
central regions through the corticobulbar tract, which differs from the contralateral regula-
tion of the limbs (Figure 1). The uncertain effects of DBS on OMD may, in part, be explained
by the unique characteristics of the bilateral central regulation of sensorimotor functions in
the stomatognathic system. To establish effective treatments targeting the central regions,
including DBS, further research is required to elucidate the neurophysiological basis and
central mechanisms related to stomatognathic functions.
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Recent advances in non-invasive electromagnetic physiological techniques, such as
electroencephalography (EEG) and magnetoencephalography (MEG), have enabled the in-
vestigation of cortical mechanisms in humans with high temporal resolution. In particular,
MEG is advantageous owing to its high spatial resolution given that the magnetic perme-
ability of biological tissues is nearly identical to that of empty space; thus, the magnetic
field is not distorted by the scalp or skull [23].

In this review, we present an overview of the unique central mechanisms of bilat-
eral spatiotemporal processing associated with the sensorimotor functions of the stom-
atognathic system. These mechanisms have been demonstrated in MEG/EEG studies
using multiple parameters for analysis, including somatosensory evoked fields/potentials
(SEFs/SEPs), movement-related cortical fields/potentials (MRCFs/MRCPs), and cortico-
muscular/cortico-kinematic coherence (CMC/CKC). We also discuss the pathophysiolog-
ical characteristics of typical cases of hand dystonia, such as writer’s cramp and OMD,
as demonstrated using EEG and MEG. Finally, we identify current problems and future
directions in OMD treatment.

2. Neural Pathways from the Primary Motor Cortex (M1) to Stomatognathic Systems

In the human primary motor cortex (M1), the cortical representations of various body
parts are organized in the form of the “classical homunculus” [24]. In general, the ho-
munculus resembles an upside-down map of each body part, in which the stomatognathic
systems are closer to the lateral sulcus than the upper and lower extremities. The area of
the M1 that represents the stomatognathic system is widely distributed relative to its actual
size in the body [24], suggesting a rich innervation of these areas.

Anatomically, each muscle of the stomatognathic system receives innervation from
the bilateral M1 through the corticobulbar tract, which terminates in motor neurons within
the CN nuclei (Figure 1). In contrast, the muscles of the upper and lower limbs are
predominantly innervated by the contralateral cortex through the corticospinal tract, which
terminates in motor neurons within the spinal cord (Figure 1). Indeed, a previous study in
patients with epilepsy showed that direct unilateral cortical stimulation of the M1 areas
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for the oral and upper limb muscles induced bilateral oral movements but unilateral limb
movements [24].

The stomatognathic system is composed of various muscles, including the tongue
muscles, orbicularis oris, and masticatory muscles responsible for jaw closing (masseter,
temporalis, and medial pterygoid) and opening (inferior head of lateral pterygoid, an-
terior belly of digastric, geniohyoid, and mylohyoid). All the muscles of the tongue are
innervated by the hypoglossal nerve (CN XII), except for the palatoglossal muscles, which
are innervated by the vagus nerve (CN X). Masticatory muscles are innervated by the
trigeminal nerve (CN V), except for the posterior bellies of the digastric muscles, which are
innervated by the facial nerve (CN VII). The orbicularis oris muscle is innervated by the
facial nerve (CN VII).

Moreover, bilateral innervation contributes to somatosensory sensations in the stom-
atognathic system. Somatosensory information from the tongue is transmitted by the
mandibular branch of the trigeminal nerve (CN V) (anterior two-thirds of the tongue),
glossopharyngeal nerve (CN IX) (posterior one-third of the tongue), and vagus nerve
(posterior part of the tongue root) (CN X). Somatosensory information from the soft palate,
teeth, gingiva, face, and lips is transmitted by the mandibular or maxillary branches of the
trigeminal nerve (CN V). Proprioceptive sensations from the tongue muscle are transmitted
by the hypoglossal nerve (CN XII) and its rich innervation of the related muscle spindles.
Proprioceptive sensations from the masticatory muscles are mainly transmitted by the
trigeminal nerve (CN V) for jaw-closing muscles, as the jaw-closing muscles have many
more muscle spindles than the jaw-opening muscles [25].

3. Bilateral Brain Activation Related to Stomatognathic Functions

A previous study involving non-invasive, whole-head MEG successfully identified the
classical homunculus in the primary somatosensory cortex following tactile stimulation of
multiple points on the human body [26]. Cortical representations of oromandibular areas
are widely distributed in the primary sensorimotor cortex relative to their actual size in the
human body [26]. In this section, we describe in detail the unique central mechanisms of
bilateral spatiotemporal information processing involved in the sensorimotor functions of
the stomatognathic system, as demonstrated using MEG/EEG.

3.1. Movement-Related Cortical Fields and Potentials

In early studies, researchers observed slowly increasing cortical fields over the con-
tralateral hemisphere before the onset of voluntary unilateral movements of a finger, which
they termed MRCFs [27,28]. Cheyne et al. [29] first reported MRCFs associated with repet-
itive tongue protrusion in a patient using a seven-channel MEG system to record from
the left hemisphere. Nakasato et al. [30] demonstrated whole-head MRCFs for tongue
protrusion in five healthy volunteers, using a trigger signal that was detected when the
tip of the tongue reached the anterior region of the palate. They reported that the peak
magnitude of the MRCFs was derived from the areas of the bilateral M1 region representing
the tongue. A recent MEG study investigated the characteristics of bilateral MRCFs before
and after voluntary self-paced tongue movements, using surface electromyography (EMG)
from the tongue [31]. As reported in previous MRCF studies of finger movement [27,28,32],
three components were detected in response to tongue movement: the readiness field (RF),
motor field (MF), and movement-evoked field (MEF). Slowly increasing RF components
were observed bilaterally before the onset of movement, peaking in MFs around the onset
of movement. The MF component appeared after the pre-movement RF component and
originated from part of the primary motor area (M1) representing the tongue. The MEF
component, which appears after movement onset and originates from the bilateral primary
somatosensory area (S1), may reflect proprioceptive feedback from the tongue during vol-
untary tongue movement. These results suggest that the bilateral M1 and S1 are involved
in the preparation and execution of tongue movements [31].
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MRCPs are slowly increasing cortical shifts in negative potentials that occur prior to
voluntary movements, as demonstrated using EEG [33]. In an EEG study of MRCPs related
to jaw movement, a previous study [33] reported a slowly increasing negative potential
originating 1.5–2 s before EMG onset, known as the Bereitschaftspotential (BP) [34,35]. The
BP, also called the readiness potential, is a measure of brain activity in the motor cortex
and supplementary motor area leading up to voluntary muscle movement. The maximum
BP occurred over the vertex region, and the negative slope (NS’) occurred approximately
300–700 ms before EMG onset. The authors reported that BP/NS’ amplitudes at the onset
of movement differed significantly among open, closed, and lateral movements. The
MRCPs at mouth opening and closing were symmetrically distributed, whereas those
at lateral movements were predominant over the hemisphere ipsilateral to the direction
of movement.

In an MEG study of jaw movement in five healthy volunteers [36], RFs were observed
bilaterally, starting around 860 and 600 ms prior to the onset of masseter and digastric
EMGs, respectively, and gradually increasing in magnitude until peaking within 100 ms
before EMG onset. In all participants, the equivalent current dipoles generating the RFs
accompanying jaw-opening movements were located in the bilateral M1 areas representing
the jaw. These results suggest that MRCF/MRCP recordings provide a means for exploring
the spatiotemporal characteristics of the sensorimotor cortex before and after voluntary
movements in the stomatognathic system.

3.2. Cortico-Muscular Coherence and Cortico-Kinematic Coherence during Voluntary Movements

CMC analyses can aid in evaluating oscillatory functional connections between the
motor cortex and corresponding peripheral muscles during sustained muscle contrac-
tion [37,38]. The CMC in the β-frequency band (β-CMC) during the sustained unilateral
movements of a finger mainly represents the descending motor commands from the M1
to the contralateral finger muscle through corticospinal pathways [38]. In our previous
MEG study [39], the CMC of the tongue was detected at two different frequency bands
(the β-band and a low-frequency band at 2–10 Hz) over both hemispheres for each side of
the tongue during isometric tongue protrusion [39,40]. The β-CMC for the tongue mainly
reflects the descending motor commands from each side of the M1 to both sides of the
tongue, with contralateral dominance through hypoglossal motoneuron pools (Figure 2).
Moreover, the somatotopic organization of the tongue and finger regions in the M1 al-
lows for differentiation of the cortical source locations of the β-CMC for the tongue and
finger [39]. In contrast to β-CMC, CMC in the low-frequency band (low-CMC) reflects
oscillatory coupling related to proprioceptive feedback from the tongue muscles to the
bilateral S1 [40]. This pattern of central regulation with oscillatory activity in two frequency
bands is a unique characteristic of stomatognathic functions, since a stable low-CMC is not
detected during finger movements.

CKC methods are used to quantify the coupling between MEG signals and finger
kinematics, which are measured using an accelerometer during repetitive, rhythmic, or
voluntary finger movements [41]. A recent MEG study has demonstrated that CKC data
mainly reflect proprioceptive sensory feedback from the peripheral muscles to S1 [42].
However, applying conventional CKC to stomatognathic systems is difficult, as magnetic
accelerometer devices can easily produce excessive magnetic artefacts due to the short
distance between the brain and stomatognathic systems. To overcome this limitation, a
recent MEG study successfully utilized a deep-learning-assisted motion capture system, in
which the CKC was detected during rhythmic tongue movements at the frequency peaks
of movement or its harmonics, based on signals in the bilateral primary sensorimotor
cortex representing the tongue regions [43]. This combination of CKC and deep learning-
assisted motion capture has the advantage of being noise-, movement-, and risk-free,
particularly in the oral regions, because recording devices are not placed in the orofacial
region. As the tongue muscles and those responsible for closing the jaw are rich in muscle
spindles [25], the CKC approach may help to reveal the central proprioceptive mechanisms
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of the stomatognathic system and the pathophysiology of OMD involving impairments in
proprioceptive pathways.
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3.3. Somatosensory-Evoked Fields and Potentials

Since the first reports of SEFs induced by trigeminal nerve stimulation in the early
1980s [44] and 1990s [45], many MEG studies have sought to assess SEF characteristics in
the tongue [45–48], lips [49,50], palate [51,52], teeth [44], gingiva [49], and lower face [53].

Following tongue stimulation, the initial SEF components occur over the bilateral
hemispheres at 19 ms with electrical stimulation [47] and 15 ms with tactile stimulation [48],
with an anterior current orientation. These timings are consistent with a SEP latency of 16
ms following electrical stimulation of the lip via chronically implanted subdural electrodes
over the lower perirolandic area in patients undergoing epilepsy surgery [54]. However, the
initial component of trigeminal SEF/SEP is not detected stably due to the low amplitude of
this component and is easily masked by excessive stimulation artefacts. Thus, in clinical
settings, a prominent component with a large amplitude at a middle latency ranging from
25 ms to 80 ms, with a posterior current orientation, is often adopted [45,46,49,52,53,55].
Indeed, Previous studies reported that the middle-latency component of the trigeminal SEF
can be used to evaluate sensory disturbances of the tongue and lip caused by injury to the
trigeminal nerve during dental surgery [50,56,57]. Source localization studies involving
MEG with high spatial resolution have revealed that the initial and middle-latency compo-
nents of SEFs stimulated in the stomatognathic system are derived from the bilateral S1,
specifically, the posterior bank of the central sulcus [46–50]. This neurophysiological finding
is consistent with the anatomical principle that the unilateral lingual nerve innervating the
anterior part of the tongue projects to both sides of area 3b in S1 via the trigeminothalamic
tract, with contralateral dominance.

4. Oromandibular Dystonia
4.1. Pathophysiology of OMD

Although the pathogenesis of primary dystonia is still a matter of debate, several
probable explanations have been proposed, including basal ganglia dysfunction, hyperex-
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citability of motor neurons, loss of inhibition, aberrant dopamine signaling, monoaminergic
dysfunction, abnormal plasticity, and abnormal sensory function [58–61]. Most previous
EEG studies of focal dystonia in humans have focused on cortical sensorimotor dysfunction,
especially of the primary sensorimotor cortex and premotor areas, in cases affecting the
hand (e.g., writer’s cramp) [59].

MRCPs associated with hand movements consisted of at least two slow negative
shifts. The early component is the BP, which is maximal at the vertex and symmetrically
distributed over the scalp, whereas the latter component is called NS’, which is largest in
the central area contralateral to the hand movement [62]. The BP represents the activation
of supplementary motor areas (SMAs), while NS’ reflects activities in both the SMA and
M1 [63–65]. However, the precise anatomical representations of the BP and NS’ remain
controversial.

Several EEG studies have reported abnormalities in MRCPs in patients with focal
dystonia [66–68]. Reductions in both NS’ and BP gradients have been observed in patients
with symptomatic dystonia caused by lesions in the basal ganglia and anterior thalamus.
Furthermore, reductions in NS’ amplitude over the contralateral central region have been
observed in patients with writer’s cramp [66,67]. These results suggest impaired activa-
tion of the sensorimotor cortex contralateral to the affected hand immediately before a
voluntary movement. One study also reported abnormalities in the cortical preparatory
processes for voluntary muscle relaxation or motor inhibition in patients with focal hand
dystonia [68]. The BP associated with voluntary muscle relaxation was reduced over the
central region of the affected hemisphere in patients with focal hand dystonia, suggesting
impaired activation of the inhibitory motor systems in the contralateral cortex in these
patients [68]. Moreover, a functional magnetic resonance imaging (fMRI) study reported
smaller activation volumes in the SMA proper and primary sensorimotor cortex during
voluntary muscle contraction and relaxation of the affected (right) hand in patients with
writer’s cramp than in healthy volunteers [69]. Disturbances in sensorimotor integration
have also been documented as a task-specific decrease in the amplitude of contingent
negative variation [70,71], abnormal pre-movement gating of somatosensory input [72],
and abnormal CMC with MEG [73]. Other studies using paired-pulse transcranial magnetic
stimulation have reported impairments in short-interval intracortical inhibition [74] and
surround inhibition [75]. Somatotopic disorganization of the fingers has also been observed
in the S1 contralateral to the affected hand [76]. These findings collectively demonstrate
that focal dystonia of the hand involves impaired cortical inhibition in M1, abnormal
sensorimotor integration, and disorganization of S1 [69,70].

A few EEG studies have also investigated the pathological characteristics of OMD.
A study compared MRCPs associated with mandibular movements in six patients with
OMD and eight healthy controls [35]. In the patient group, MRCP amplitudes over the
central and parietal areas for mouth opening and lateral movements were significantly
reduced compared to those observed in the control group. Moreover, in controls, the
MRCPs at mouth opening and closing were symmetrically distributed, whereas those
at lateral movements were predominant over the hemisphere ipsilateral to the direction
of movement. This laterality was lost in the patient group. These results suggest that
OMD is associated with bilateral impairments in cortical preparatory processing during
jaw movement. A few studies have also investigated OMD pathology using fMRI and
positron emission tomography. One fMRI study reported reduced activation of the primary
sensorimotor cortex and premotor/sensory association cortices during vocalization in
patients with laryngeal dystonia [77]. Analogous to the motor dysfunction observed
in patients with dystonia, reduced primary somatosensory activity has previously been
demonstrated [78,79], supporting the conceptualization of dystonia as a partial sensory
disorder [80,81].
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4.2. Treatment Options for OMD

BoNT injection represents the standard therapy for patients with focal dystonia such
as blepharospasm, cervical dystonia, and OMD [82–84]. When the target muscles, doses,
and patient expectations are appropriately managed, BoNT injection is a safe and effec-
tive approach for the treatment of OMD [3]. Some studies reported the effectiveness
of ultrasound-guided injections in facial muscles to avoid injuring the neural vascular
structures during botulinum toxin injection [85,86].

BoNT is a microbial protein that exists in seven serotypes, designated A through G.
Its ability to block acetylcholine release at the NMJ accounts for its therapeutic effects in
various movement disorders associated with increased muscle tone or muscle overactivity.
BoNT wields these effects by entering nerve endings at the NMJ and cleaving soluble
N-ethylmaleimide-sensitive factor-attachment protein receptors, thereby preventing the
vesicular release of acetylcholine from the synaptic terminal and producing the effects of
muscle relaxation and flaccid paralysis [87,88].

In addition to the effect on the peripheral nervous system, BoNT may also indirectly
influence the functional organization of the central nervous system associated with altered
peripheral inputs [89,90]. Moreover, the central effect of BoNT injection is not limited to the
cortical and subcortical regions of the treated muscles but extends beyond the neural circuits
for the control of the affected body parts [89,91,92]. Further studies with non-invasive
brain-imaging techniques, including MEG and EEG, may help to reveal the bilateral cortical
areas affected by therapy with BoNT injection in patients with OMD.

Other treatments for focal dystonia include invasive approaches, such as DBS, tar-
geting central regions [93–95]. When symptoms cannot be adequately managed through
medication and rehabilitation, DBS is typically employed as a surgical intervention to
treat movement disorders. The main DBS target for dystonia treatment is the internal
segment of the GPi [96], which has proven efficacious in the treatment of generalized,
segmental, and cervical dystonia [97–99]. Although evidence concerning the efficacy of
DBS for other dystonia subtypes remains scarce, DBS targeting the GPi has demonstrated
continued efficacy in patients with Meige syndrome [94,100–102]. A recent meta-analysis
showed that DBS may be useful for treating refractory Meige syndrome [103]. However,
other studies have demonstrated that in some patients with craniocervical and craniofacial
segmental dystonia, DBS is ineffective for improving stomatognathic functions such as
speech and swallowing but is effective for improving blepharospasm [95,104,105]. A recent
study of DBS in 18 patients with dystonia related to KMT2B mutations reported that the
greatest improvements in motor function were observed in patients with trunk and cervical
dystonia, with less clinical impact observed in patients with laryngeal dystonia [106].

Currently, only three published case reports have discussed bilateral GPi-DBS for OMD,
all of which were categorized as lingual dystonia. Chung et al. [20] and Asahi et al. [22]
reported symptomatic improvements in lingual dystonia following bilateral GPi-DBS in
two cases and one case, respectively. In patients with OMD, the unique neuroanatomical
characteristics of bilateral innervation in each side of the stomatognathic system may
complicate the application of conventional DBS compared to that in patients with focal
dystonia of the limbs, as previous studies have reported that sufficient effects are sometimes
difficult to obtain with interventions targeting the unilateral hemisphere. As contralateral
dominance is involved in the control of voluntary movement in the stomatognathic system,
it may be beneficial for future research to explore the most effective stimulation parameters
for bilateral DBS targeting the GPi in patients with OMD. However, some patients’ OMD
symptoms do not improve sufficiently even after DBS, and they require additional BoNT
therapy. A highly individualized injection technique has been developed for lingual
dystonia according to the direction of deviation [107]. An improved understanding of the
central and peripheral mechanisms related to stomatognathic functions may promote the
development of new treatments for OMD, such as the combination of BoNT injection into
the affected muscles as peripheral therapy and DBS as central therapy.
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Several authors have also discussed the use of unique oral appliances (e.g., oral splints)
for OMD treatment [108–113]. Previous research has shown that performing certain sensory
tricks (e.g., pressing the teeth or lips with the fingers; placing cigarettes, chewing gum,
or other objects in the mouth; singing; and humming) may benefit a third of patients
with OMD [109,114,115]. Oral appliances may be particularly useful in cases where they
successfully mimic the patient’s sensory tricks [109,114], as treatment responses in such
patients may be linked to sensory tricks perceived by the brain to be beneficial. Although
the precise mechanism underlying this phenomenon remains unknown, the beneficial effect
of splint use on OMD may be related to the modulation of hyperactive dystonic networks by
altered proprioceptive feedback and antagonist activation [114]. MEG recordings with CKC
and low-CMC analyses are useful for evaluating proprioceptive feedback from muscles
to the cortex during voluntary movements in the stomatognathic system (see Section 3.2).
These approaches may aid in revealing the effects of oral appliance therapy on abnormal
cortical activity related to proprioceptive feedback in patients with OMD.

5. Future Directions

BoNT injection is the standard peripheral therapy for patients with OMD. In addition,
central therapies such as bilateral DBS can be applied, providing substantial relief in patients
with disordered movements. However, the introduction of stimulating electrodes deep
in the brain carries significant risks, including the risk of hemorrhage [116]. Beyond DBS,
recent studies have highlighted the potential of non-invasive cortical current stimulation
therapies such as transcranial direct current stimulation (tDCS) [117,118] and transcranial
alternating-current stimulation (tACS) [119] for patients with limb movement disorders,
although their effectiveness and mechanisms of action are still unclear [120–122]. For
example, a previous study successfully reported the non-invasive application of tACS over
the M1 [119], which induced phase cancellation of the resting tremor rhythm in the upper
limbs of healthy volunteers. In the future, applying tACS over the bilateral M1 in the
stomatognathic system may aid in the treatment of OMD given the bilateral cortical control
of this system. Indeed, in our previous study, tDCS of the bilateral M1 area representing the
tongue region significantly increased the excitability of this region and improved tongue
motor functions compared to the application of tDCS to the unilateral M1 of the tongue
region in healthy volunteers [123].

6. Conclusions

In this review, we provide an overview of the unique central spatiotemporal process-
ing mechanisms in the stomatognathic system. The uncertain effects of DBS on OMD
may, in part, be explained by the unique characteristics of the bilateral central regula-
tion of sensorimotor functions in the stomatognathic system. Further exploration of the
neurophysiological underpinnings of stomatognathic functions will lead to an improved
understanding of the etiology of OMD and may lead to innovative approaches for future
symptomatic and disease-modifying treatments.

7. Methods

This literature review was conducted based on the comprehensive analysis of electronic
medical literature databases (PubMed, Scopus, EMBASE, and Google scholar) prior to
1 September 2022. Search keywords included oromandibular dystonia, orofacial dystonia,
mandibular dystonia, jaw dystonia, lingual dystonia, Meige syndrome, botulinum toxin,
botulinum toxin therapy, deep brain stimulation, transcranial direct current stimulation
(tDCS), and transcranial alternating-current stimulation (tACS) for Sections 1, 4 and 5 of
the manuscript. We also searched the terms trigeminal nerve, lingual nerve, tongue, palate,
face, lip, oromandibular, stomatognathic system, sensory disturbance, sensory abnormality,
electroencephalography (EEG), and magnetoencephalography (MEG) for Sections 1–3 and
Section 5. Each search result was independently reviewed for eligibility by the author
(H.M.). No restriction was placed with respect to the original text language.
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