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Abstract: The effects of deoxynivalenol (DON, 50 pg/mL) on the zebrafish liver and intestine were
studied. Differentially expressed genes (DEGs) from mRNA and IncRNA were analyzed by RNA
seq. Gene Ontology (GO) and signaling pathways were studied where the top 30 DEGs of each type
of RNA were involved. The results showed there were 2325 up-regulated and 934 down-regulated
DEGs of IncRNA in the intestinal tract, and 95 up-regulated genes and 211 down-regulated genes
in the liver, respectively. GO functional annotation analysis showed that IncRNA was enriched
in the biological processes, involving the RNA splicing, CSF1-CSF1R complexes, and MAP kinase
activity. DEGs of IncRNA located in the KEGG signal pathways include the C-type lectin receptor
signaling and the NOD-like receptor signaling pathways. Metabolism involves the biosynthesis
check for of indole alkaloids, cancer pathways for human disease, MAPK and Raplsignaling pathways for
updates environmental information processing, necroptosis and focal adhesion for cell processes. The mRNA
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866 up-regulated, 1211 down-regulated genes in the intestine and liver of zebrafish, respectively. This
study provides transcriptome analysis and toxicological investigation of DON in the zebrafish liver
and intestine, offering insights into gene expression patterns and potential detoxification pathways.
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1. Introduction
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the impact of DON on the metabolic pathway in zebrafish intestines and the gene signaling pathways
in both the intestine and liver.
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of DON pollution in East Asia, Nordic Europe, and Central America are the top three in
the world, with 84.8%, 74.2%, and 70.0% detection rates, respectively. Among them, East
Asia, including China, has a median average DON content of 418 pg/kg due to factors
such as climate and geography, higher than the world average of 388 ug/kg [4]. The
individual contamination of DON in China exceeded 96.4%, and the average concentration
of DON in feed samples ranged from 458.0 to 1925.4 pug/kg [5]. Among those regulated
mycotoxins, DON often contaminates grains (wheat, barley, oats, rye, and corn; less so
rice, sorghum, and Triticale) and cereal food and feed. DON is one of the most widely
distributed pollutants in human food and animal feed. In over 25,000 samples collected
from 28 European countries between 2007 and 2014, DON was found in 47% of 4000 feed
samples and in 45% of 1621 unprocessed grains with undetermined end-use [6]. Although
DON is considered a non-carcinogenic compound [7], different countries have set threshold
levels for this toxin in food and feed. For example, in piglet feed, the maximum limits
for Europe, Canada, and the United States are 0.9, 1, and 5 mg/kg feed, respectively [8,9].
At the same time, DON is a serious hazard that not only reduces the yield and quality
of crops but also has cytotoxicity, neurotoxicity, reproductive toxicity, carcinogenicity,
and teratogenicity to animals [10]. People and animals suffer from diarrhea, vomiting,
gastrointestinal inflammation, and other symptoms after ingestion of DON [11].

After mycotoxins are ingested through feed and food, the gastrointestinal tract is
the first target organ. Liu et al. [12] found that the consumption of feed contaminated
with > 1.0 mg/kg DON caused piglet intestinal damage. Meanwhile, the DON-induced
intestinal injury was a further impairment of redox homeostasis and ferroptosis signaling.
WasKiewicz et al. [13] found that small sows could accumulate DON in gastrointestinal
tissue after taking low doses of DON orally over a short period of time. The concentration
range of DON detected in small intestine samples was 7.2 ng/g (in the duodenum) to
18.6 ng/g (in the ileum) and 1.8 ng/g (in the transverse colon) to 23.0 ng/g (in the cecum)
in large intestine samples, and the content range of DON in liver tissues was 6.7 to 8.8 ng/g.
DON can affect the proliferation and vitality of animal and human intestinal epithelial
cells. Ji [14] and other researchers found that the average daily weight gain and average
daily feed intake of piglets fed DON-contaminated feed were significantly reduced, and
the thickness of the smooth muscle layer in the jejunum and ileum and the expression of
smooth muscle cell contraction markers were also reduced, which affected the contractility
of smooth muscle cells and interfered with intestinal motility and growth performance.
DON can also be adjusted by NF-«. B and TOR pathways impair the intestinal immune
function of grass carp juveniles [15]. Wang et al. [16] found that the mixture of AFB;
and DON elicited an additive combined effect on zebrafish embryos. The levels of CAT,
caspase-3, and T4 markedly varied in most single and mixture groups. The expressions
of four genes (cas3, apaf-1, cc-chem, and cyp19a) associated with oxidative stress, cellular
apoptosis, the immune system, and the endocrine system were markedly varied upon the
mixture exposure in comparison to the corresponding single exposure of AFB1 or DON.

Zebrafish (Danio rerio) has been widely used as a common model organism to evaluate
the toxic effects of various mycotoxins on zebrafish embryos and adults due to various
advantages, including easy observation and easy access to embryos [17]. Long term-
feeding of 2.0 ug/kg DON can induce oxidative imbalance in zebrafish liver [18]. The liver
is well known for its digestive and metabolic functions, and research has shown that it has
abundant immune cells and is an important immune organ in living organisms [19]. After
entering the animal body, fungal toxins act on the intestine, which has a certain tolerance
to toxins and can alleviate the damage caused by fungal toxins to the body to a certain
extent [20]. At present, there is no report on the toxicity of DON to adult zebrafish. This
study uses adult zebrafish as an animal model for the first time to conduct intestinal and
liver transcriptome analysis and toxicological study of DON, providing a theoretical basis
for subsequent biological detoxification research.
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2. Results
2.1. Differential Expression Analysis of IncRNA

A map of up-regulated differentially expressed genes of IncRNA and a volcano map of
differentially expressed genes in zebrafish intestine and liver samples are shown in Figure 1.
The number of up-regulated and down-regulated differentially expressed genes of IncRNA
in the intestinal tract of zebrafish was 2325 and 934, respectively. In the liver of zebrafish,
the number of up-regulated genes was 95, and the number of down-regulated genes was
211. The total number of differentially expressed genes of IncRNA in the intestine is 3259,
and the total number in the liver is 306. It can be seen from the Venn diagram in Figure 2
that there are 124 differentially expressed genes of IncRNA shared by the intestine and
liver of zebrafish. In addition to the co-expressed genes, 3135 differentially expressed genes
of IncRNA can only be found in the intestine, and 182 differentially expressed genes of
IncRNA can only be found in the liver. All the numbers are shown in Figure 1.

Volcano Plot

Volcano Plot
30
Regulation 104
e
Up . L T
7 2 Signifiant DEL(259) 3 | | Significant DEL (306)
g } Down: 934 Z i ' Down: 211
‘:: A : NoSignificant ] ' NoSignificant
El g " Up: 2325 T \ " Up: 95
K F 5 .
9 / :
10 # !
1Y t‘ ] 1 .
W . :
o \ §
3 7 ] .
A \ - i
i ) oo »
,‘ A [} r/
0 0
10 0 10 TS0 s 0 5 0
log2 (Fold Change) log2 (Fold Change)

Figure 1. Comparison of sample differences in up-regulated differential expression genes of IncRNA
and volcano map.
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Figure 2. Venn diagram of differential expression genes of IncRNA.

2.2. GO Functional Annotation Analysis of Differentially Expressed Genes

A GO functional annotation analysis of differentially expressed genes was conducted
based on the GO database and included the classifications biological process (BP), cellular
composition (CC), and molecular function (MF). It can be seen from Figures 3 and 4 that,
compared with the blank group, an intestinal difference comparison of the DON solution-
treated zebrafish experimental group showed that IncRNA was enriched in the biological
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process classification and the set of differentially expressed genes included RNA splicing (73,
Figure 3), definitive hemopoiesis (24), and (3-positive regulation of beta amyloid formation
(14); regarding the cell composition classification, the set of differentially expressed genes
mainly included CSF1-CSF1R complexes (6); and for the molecular function classification,
the set of differentially expressed genes mainly included MAP kinase activity (15) rho-
dependent protein serine/Threonine kinase activity (10), JUN kinase activity (8), etc. The
number of differentially expressed genes is listed in Figure 3.

Control-C-VS-Experimental-C Control-~G-VS-Experimental-G
MAP kinase kinase activity- [ 15 o i iy I8
i fine ki v 10 ‘nicotinate: ity - 7
JUN kinase activity - |8 nicotinamide phosphoribosyltransferase activity - | [FEE i
phage I cytokine binding - |5
6 NADPHmllﬁnuxldumdlmmvny- |5
RNA splicing - [N 73 h: ing factor receptor activity - s
RN vitamin D binding - [ 4
positive regulation of beta-amyloid formation - [ 14 calmmo]bmfil!:g-
mmmlplwmmdevelopmcnt | m horene oxygenaseaciviy -
i i core-binding factor complex -
CSF1-CSFIR complex -
BRISC complex -
Ontology 'NAD biosynthetic process - Ontology
cell maturation o )
ol funtion ‘myeloid celldifforentition - [ molecular function
[ gy ifrattin- I cellarcomponent
[ biological process negatv regultionof CD4~posive, lphe-beta T ol ifrentiton - [ | biological process
‘Degative regulation of tight junction assem! .10 positive regulation of CD8~positive, atpha~beta T cell differentiation -
‘regulation of establishment of endothelial barrier - [ 10 posiﬁwmgulnﬁmofmmbﬁmvhunmup«useclmmbindiqg-
negatve regulaion o potin ocalization o lysosome- Mo B  mactophage chemotaxis -
lation of biomineral ti -l ‘positive regulation of macrophage chemotaxis -
Tesponse to methylmercury - [} 9 osteoclast development -
mtnhmleyxﬁdulmmmnmmw s ‘microglia differentiation -
........... s ‘xanthophore differentiation -
viral release from host cell - |1 positive regulation of neural retina development -
‘negative regulation of transposition, RNA-mediated - [}8 ) ) mmmsponsembnmmmmusymm»
regulation of double-strand breakrepair- 8 ~ Degativercgulation of spontaneou us secretion -
vitellogenesis - [17 ﬂ.ummmeuboh.cprm.
‘positive regulation of neursl retina development - [J 6 y blphmylmztxbiohcpme.ew
immune response in brain or nervous system - |6 anterograde dendritic transport of mitochondrion - |
0 20 4 60 8

Figure 3. Sample difference comparison: IncRNA GO enrichment histogram. The vertical axis repre-
sents the enriched GO term, and the horizontal axis represents the number of differentially expressed
genes in the term. Different colors are used to distinguish biological processes, cellular components,
and molecular functions. In the Figure 3, mitogen-activated protein (MAP) kinase kinase activity, Jun
kinase (JUN) activity, Colony-stimulating factor 1-Colony-stimulating factor 1receptor (CSF1-CSF1R)
complexes, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), BRCC36 interacting
with SCC1 (BRISC) complexes, nicotinamide adenine dinucleotide (NAD) biosynthetic processes.

Comparisons of liver differences between the experimental group and the blank
group regarding IncRNA enrichment in the biological process classification of differentially
expressed genes mainly include NAD biosynthetic processes (8), cell development (7),
myelocyte differentiation (7), etc. The classification of cell composition of differentially
expressed genes mainly includes core-binding factor complexes (7), CSF1-CSF1R complexes
(5), and BRISC complexes (4). The classification of the molecular function of differentially
expressed genes mainly includes monooxygenase activity (8), cytokine binding (5), NADPH:
sulfur Oxidoreductase activity (5), etc. The number of differentially expressed genes is
listed in Figure 3.
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Figure 4. Sample difference comparison: IncRNA GO enrichment p value histogram, with the vertical
axis representing the enriched GO term and the horizontal axis representing the log10 (p—value) value.

2.3. KEGG Signal Pathways Analysis

The KEGG signal pathways of the top 30 differentially expressed genes of the IncRNA
of zebrafish intestinal and liver transcriptomes are shown in Figures 5 and 6. The intestinal
samples include five categories: biological system, metabolism, human disease, environ-
mental information processing, and cell processes. On this basis, the liver samples have
one more category of genetic information processing.

Compared with the control group and the blank group, the KEGG signal pathways
where in differentially expressed genes of IncRNA are located include the C—type lectin
receptor signaling pathway, the NOD—like receptor signaling pathway, the chemokine
signaling pathway, and the platelet activation and relax in signaling pathway. Metabolism
involves the biosynthesis of indole alkaloids. Human diseases mainly include cancer path-
ways, i.e., influenza A, pertussis, Proteoglycans in cancer, and hepatitis C. Environmental
information processing mainly includes the MAPK signaling pathway, the Rap1 signaling
pathway, and the ErbB signaling pathway. Cell processes mainly include necroptosis, focal

adhesion, and regulation of the actin cytoskeleton.

Compared with the blank group, the KEGG signaling pathways of the differentially
expressed genes of IncRNA in the liver-sample control group include the NOD-like receptor
signaling pathway, bile secretion, ovarian steroidogenesis, etc., in the biological system
classification. Metabolism mainly includes nicotinate and nicotinamide metabolism, fatty
acid elongation, tyrosine metabolism, and biosynthesis of unsaturated fatty acids. Human
diseases mainly include Cushing’s syndrome, acute myeloid leukemia, toxoplasmosis,
pancreatic cancer, etc. Genetic information processing mainly involves SNARE interactions
in vesicular transport. Environmental information processing mainly includes cytokine—
cytokine receptor interaction, the HIF—1 signaling pathway, and the TGF beta signaling
pathway. Cellular processes mainly involve signaling pathways regulating the pluripotency

of stem cells and adhesive junctions.
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2.4. mRNA Gene Expression Analysis

A map of up-regulated mRNAs of differentially expressed genes and a volcano map of
differentially expressed genes in zebrafish intestine and liver samples are shown in Figure 7.
The number of mRNAs of differentially expressed genes in the intestine of zebrafish was
1939 (Figure 7, the same as below of this section), and the number of down-regulated genes
was 1172. In zebrafish liver, the number of up-regulated genes was 866, and the number of
down-regulated genes was 1211. The total number of mRNAs of differentially expressed
genes in the intestine is 3111, and the total number in the liver is 2077. It can be seen
from the Venn diagram in Figure 8 that there are 480 mRNAs of differentially expressed
genes shared by the intestine and liver of zebrafish. In addition to the co-expressed genes,
2631 mRNAs of differentially expressed genes can only be found in the intestine, and
1597 mRNAs of differentially expressed genes can only be found in the liver.
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Figure 7. Differential comparison of gene expression up-regulation and down—regulation in samples
and differential gene volcano map.
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Figure 8. Differential gene Venn diagram.

2.5. GO Enrichment Analysis of Differential Comparison Gene mRNA

A GO enrichment analysis of differential comparison gene mRNA was carried out. It
can be seen from Figures 9 and 10 that, compared with the blank group, the intestinal differ-
ential comparison gene mRNAs of the experimental group of zebrafish treated with DON
were enriched in the biological process classification and the set of differential genes mainly
included negative regulation of transcription from RNA polymerase II promoter (98), cell
differentiation (87), positive regulation of transcription, DNA templated (81), etc. The set
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(48), iron ion binding (31), etc. The number of differentially expressed genes is listed in
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Figure 10. Sample difference comparison gene GO enrichment p value histogram, with the vertical axis
representing the enriched GO term and the horizontal axis representing the log10 (p—value) value.

Regarding the comparison of liver differences between the experimental group and

the blank group, mRNA enrichment in the biological process classification and the set of
differentially expressed genes mainly include response to estradiol (31), response to insulin
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(29), cellular response to heat (26), response to polycyclic arene (24), determination of
left/right symmetry (21), etc. The set of gene mRNAs in the cell composition classification
and comparison mainly includes cytoplasm (465), axoneme (24), yolk (24), motile cilia (15),
dynein complex (14), etc. The set of mRNAs of the molecular function classification and
difference comparison genes mainly include receptor binding (36), lipid transporter activity
(26), nutrient reservoir activity (26), dynein light chain binding (16), dynein intermediate
chain binding (14), etc.

2.6. KEGG Signal Pathways Analysis

The KEGG signal pathways of the top 30 differential gene mRNA rankings of zebrafish
intestine and liver transcriptomes are shown in Figures 11 and 12. The intestinal samples
include six categories: biological system, metabolism, human disease, genetic information
processing, environmental information processing, and cell processes. On this basis, the
liver samples lack a major category of genetic information processing.
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Control-G-VS-Experimental-G
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Figure 11. Bar chart of KEGG annotation classification with significantly enriched genes for sample
difference comparison; the vertical axis represents the name of the path, and the horizontal axis
represents the number of genes. The advanced glycosylation end products—receptors (AGE—RAGE)
signaling pathway in diabetic complications, forkhead box O (FoxO) signaling pathway.

Compared with the control group and the blank group, the KEGG signal pathways
of the differential gene mRNAs in the intestinal sample include the thyroid hormones
signaling pathway, complement and coagulation cascades, the PPAR signaling pathway,
etc., in the biological system category. The metabolism category includes lysine degrada-
tion, cysteine and methionine metabolism, the Pentose phosphate pathway, etc. Human
diseases mainly include microRNAs in cancer, insulin resistance, the AGE—RAGE signaling
pathway in diabetic complications, etc. Genetic information processing mainly includes
ribosomes, proteasomes, etc. Environmental information processing mainly includes the
FoxO signaling pathway, the HIF—1 signaling pathway, the Hippo signaling pathway of
multiple species, etc. The main cellular processes include the p53 signaling pathway and
ferroptosis, etc.

Compared with the control group and the blank group of liver samples, the KEGG
signal pathways of differential gene mRNAs include the NOD—like receptor signaling
pathway, the C—type lectin receptor signaling pathway, the insulin signaling pathway, etc.,
in the biological system classification. Metabolism mainly includes lysine degradation, argi-
nine and proline metabolism, starch and sucrose metabolism, etc. Human diseases mainly
include pertussis and insulin resistance, etc. Environmental information processing mainly



Toxins 2023, 15, 594

10 of 16

PathwayTerm

Proteasome -

Primary bile acid biosynthesis -

PPAR signaling pahway -

Pentose phosphate pathway -

P53 signaling pathwey -

Nitrogen metabolism -

MicroRNAs in cancer -

Malaris -

Lysine degradation -

Tnsulin resistance -

Tndole alkaloid biosynthesis -

‘Hippo signaling patiway ~ multiple species -
'HIF-1 signaling pathway -

Glyoxylate and dicarboxylate metabolism -
FoxO signaling pathway -

Ferroptosis -

EGFR tyrosine kinase inhibitor resistance -
Cysteine and methionine metabolism -
Complement and coagulation cascades -
Circadian thythm = fly -

Circedien rhythm -

C5-Branched dibasic acid metabolism -
Bacterial secretion system -

Arginine biosynthesis -

AGE-RAGE signaling pathway in diabetic complications -

Control-C-VS-Experimental-C
‘Two=component system -
‘Thyroid hormone signaling pathway -
Styrene degradation -

01

includes the FoxO signaling pathway, the AMPK signaling pathway, two-component sys-
tems, etc. The main cellular processes include necroptosis and biofilm formation, Escherichia
coli, etc.
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Figure 12. Scatter plot of KEGG enrichment in the comparison of sample differences. The vertical
axis represents the path name, the horizontal axis represents the Rich factor, and the size of the dots
represents the number of differentially expressed genes in this path. The colors of the dots correspond
to different Q value ranges. The advanced glycosylation end—product advanced glycosylation end
(AGE—RAGE) signaling pathway in diabetic complications, adenosine 5-monophosphate activated
protein kinase (AMPK) signaling pathway.

3. Discussion

Recent research results indicated that over 70% of the world’s grains are contaminated
with fungal toxins [21,22], typically mixtures [23]. Koletsi et al. [24] summarized the existing
knowledge on the effects of DON on farmed fish species and evaluated the risk of DON
exposure in fish, based on data from in vivo studies. Consumption of DON-contaminated
feeds by fish, even at levels below the European Commission (EC) recommendation limit
(5000 pg/kg), can result in adverse although non-lethal effects on fish such as impaired
feed intake, growth performance, immunity, detoxification capacity, and tissue damage
and oxidative stress. Exposure to high concentrations of DON is associated with diarrhea,
vomiting, increased white blood cells, and gastrointestinal bleeding. Long-term exposure
can affect the growth, immunity, and intestinal barrier function of animals [25-27]. The
toxin interacts with the Peptidyl transferase region of the 60S ribosome subunit to induce
“ribotoxic stress”, resulting in the activation of mitogen-activated protein kinase (MAPK)
and its downstream pathways [25,28].

In this study, zebrafish was used as a model to study the effects of environmental DON
exposure on the liver and intestine. Transcriptome sequencing technology was used to com-
pare gene expression difference between a blank control group and a DON experimental
group (50 pg/mL). In a comparison of IncRNA, the differentially expressed genes before
and after the treatment of DON changed significantly, and DON had a greater impact on
the liver and intestine. Based on the GO database, GO function annotation analysis of
differentially expressed genes was carried out. Compared with the blank group, the intesti-
nal differential comparison of the experimental group of Zebrafish treated with a DON
solution was enriched in the biological process classification and the set of differentially
expressed genes mainly included RNA splicing (73) and deterministic hematopoiesis (24).
This may be because DON inhibits RNA splicing and intestinal deterministic hematopoietic
functions. Yuan [29] et al. showed that DON induces pre-mRNA alternative splicing in
HepG2 cells and inhibits the expression level of splicing factors U2AF1 and SF1. Analysis
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of the liver transcriptome of zebrafish shows that DON treatment triggers liver stress
reactions and changes the expression of multiple genes related to NAD biosynthesis, cell
development, and myelocyte differentiation. DON has strong cytotoxicity, mainly acting
on rapidly growing and dividing cells, so cell development and differentiation are greatly
affected. Ren [30] et al. found that DON can induce the expression of oxidative stress
indicators ROS and malondialdehyde (MDA) in pig spleen lymphocytes, thereby inhibiting
the antioxidant capacity of cells. KEGG signal pathway analysis of the top 30 differential
genes of IncRNA in the intestinal and liver transcriptomes of zebrafish found that the
cancer pathway gene after DON treatment changed the most. After DON entered the body,
its active metabolite could alkylate with genetic material of the body, leading to damage to
the genetic material and abnormal expression of tumor suppressor genes. Huang [31] and
others found that DON has certain carcinogenic effects on mice.

The total number of mRNAs of differentially expressed genes in the intestinal tract
of zebrafish was 3111; the total number in the liver was 2077. The number of mRNAs of
up-regulated differentially expressed genes in the intestinal tract of zebrafish was 1939,
and the number of down-regulated genes was 1172. In zebrafish liver, the number of
up-regulated genes was 866 and the number of down-regulated genes was 1211. GO
enrichment analysis of differentially expressed gene mRNA showed that the greatest
difference in gene expression was found in the cell composition of the intestine, indicating
that DON can affect cell composition in the intestine. Akbari et al. [32] confirmed that the
concentration is as low as 1.39 uM. The monolayer of human Caco-2 can be disintegrated
when exposed to DON for less than 1 h. Therefore, some researchers believe that DON
toxins mainly reduce ion transfer between intestinal cells and disrupt the integrity of
intestinal cells by altering the intestinal TEER (transmembrane epithelial resistance) [33].
Springler et al. [34] found through further research that the effect of DON on TEER is
at least partially mediated by p44/42, and the epithelial cell barrier may be one of the
susceptibility factors leading to inflammatory diseases. Compared with the blank group,
the liver differential comparison mRNA of the experimental group is enriched in the
biological process classification and the set of differential genes include major powerful
protein complexes, lipid transport protein activity, dynein light chain binding, and dynein
intermediate chain binding. ZO-1 (zona occludensl) protein and claudin-4 protein are
two important components of the tight node structure, which play an important role in
forming and maintaining the normal function of the intestinal barrier [28]. Wang et al. [35]
studied weaned piglets and found that the distribution and mean optical density of ZO-1
protein in the intestinal tissue of the DON-treated group decreased. De Walle et al. [36]
found that DON has dual toxicological effects on differentiated Caco-2 (human colon
adenocarcinoma cells), including inhibiting protein synthesis and increasing monolayer
cell permeability, and this toxic effect is likely to be achieved by reducing the synthesis of
claudin-4 protein, an important component of TJ. In the KEGG signal pathways of the top 30
differentially expressed genes in zebrafish intestine and liver transcriptome mRNA, DON
can affect the immune pathway in the liver intestine, leading to an immunosuppressive
effect, and DON can affect the thyroid gland and some other pathways, leading to the
emergence of inflammation. Mao et al. [37] found that DON can induce the activation
of the Caspase-3/GSDME pathway to mediate cell apoptosis and induce the occurrence
of liver inflammation in mice. DON also affects the metabolism of zebrafish, which can
change mRNA expression, protein (enzyme) levels, and cytokines (IL-6, IL-10, and TNF- «).
The number of apoptosis-related genes (Caspase-3) reduces the synthesis of hematopoietic
cell kinase (HCK).

4. Conclusions

This study represents the first investigation into the toxicological effects of DON on
adult zebrafish. By focusing on the intestine and liver of zebrafish and conducting GO
enrichment and KEGG pathway analyses of metabolomes and transcriptomes, we gained
valuable insights into the impact of DON on the metabolic pathway in zebrafish intestines
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and the gene signaling pathways in both the intestine and the liver. Our findings offer a
preliminary understanding of the adverse reactions caused by DON in organisms.

The detoxification of DON presents formidable challenges and complexities. However,
the insights gained from this toxicological assessment of zebrafish can serve as a significant
step for the establishment of zebrafish models in future studies, particularly in investigating
detoxification mechanisms within the intestinal tract and liver. This work contributes to
advancing our knowledge of the toxicological effects of DON and opens avenues for future
research aimed at mitigating its harmful consequences on organisms.

5. Materials and Methods
5.1. Chemicals and Reagents

Deoxynivalenol (DON (> 99.9%)) was purchased from Triple Chemical Corp. Ltd.,
Guelph, ON, Canada. Zebrafish were purchased from Shanghai FishBio Corp. Ltd.,
Shanghai, China. CaCly, MgSO,, NaHCO3, and KC1 (AR) were purchased from Maclean’s
Biochemical Technology Co., Ltd., Shanghai, China. DEPC and Diethyl pyrocarbonate
was purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. TRIzol was
purchased from Invitrogen Co., LTD. Chloroform, ethanol, isopropyl alcohol and isoamyl
alcohol were purchased from Xilong Chemical Co., Ltd., Shanghai, China.

5.2. Pretreatment of Zebrafish

Preparation of standard dilution water: take 25 mL of 11.76 g/L CaCl, solution,
4.93 g/L MgSOy solution, 2.50 g/L NaHCOj solution, and 0.23 g/L KCl solution, mix them,
use ultrapure water to fix the volume to 1 L, and adjust the pH to 7.8 + 0.2.

The average weight of the zebrafish tested was about 0.3 &= 0.1 g, and the body length
was about 3. 5 & 0.3 cm. The zebrafish were fed twice a day for one week in standard
diluted water at 20 to 25 °C. Stop feeding 24 h before the experiment, and do not feed
during the whole toxic exposure period. The standard dilution water was used to prepare
a DON solution with a concentration of 50 ug/mL to feed the zebrafish for 96 h and set
a blank group at the same time. The feeding density of zebrafish was 60 pieces/L DON
solution (the blank group was standard dilution water). After feeding, the zebrafish was
placed in in ice water for euthanasia, the intestines and livers were dissected quickly on ice,
after cleaned them with DEPC water (ultrapure water treated with diethyl pyrocarbonate
and sterilized at high temperature and high pressure), the samples were placed in a 3 mL
cryopreservation tube, then placed the dissected intestines in liquid nitrogen quickly, and
transferred them to a —80 °C for preservation. Every 60 zebrafish livers were divided
into 1 group for liver transcriptome analysis, and 3 replicates were set up in the treatment
group. Dry ice was used to transport the samples to Suzhou GENEWIZ Biotechnology Co.,
Ltd., Suzhou, China. All rearing and treatment were carried out in strict accordance with
rules by the Institutional Animal Care and Use Committee IACUC) of Hangzhou Normal
University (Approval No. HSD 20221204) on 4 December 2022 (Hangzhou, China).

5.3. Extraction and Detection of Total RNA from Samples

The transcriptome sequencing process includes RNA extraction, RNA sample quality
detection, library construction, library purification, library detection, library quantifica-
tion, generation of sequencing clusters, and computer sequencing. The extraction and
purification of total RNA from zebrafish larva samples were completed by TRIzol reagent
method, and the operation steps were carried out according to the kit instructions. The
detailed operations were as follows: (1) Fragmentation of tissue samples, namely, 1.5 mL
of TRIzol lysate was added into 2 mL grinding and crushing tube containing zebrafish
liver or intestinal samples; the Trizol lysate was ground in TissueLyser II grinder (QIAGEN
China (Shanghai) Co., Ltd., Shanghai, China) for 30 s and left at room temperature for
5 min until the samples were fully cracked; (2) Sample extraction and purification: the
fully cracked sample was centrifuged at 4 °C for 5 min at 12,000 x g, then the supernatant
was transferred into a new 1.5 mL RNase-free centrifuge tube, after addition of 300 uL
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chloroform/isoamyl alcohol (24:1, v/v) and mixed upside down, the cracking mixture was
centrifuged at 4 °C and 12,000 x g for 8 min, then the supernatant was transferred into a new
1.5 mL RNase-free centrifuge tube; then 600 pL of isopropyl alcohol was added and mixed
thoroughly, the tube was placed at —20 °C for 2 h, after resting at low temperature, the
sample was centrifuged at 4 °C and 17,500 g for 25 min, the supernatant was discarded af-
ter centrifugation, the precipitate was washed with 900 puL pre-cooled 75% ethanol and the
sample was centrifuged at 4 °C and 17,500 x g for 3 min, the supernatant was discarded and
tube was dried on a super clean workbench (about 5 min), then the sample was dissolved
and precipitated with 100uL DEPC treated water; (3) Total RNA concentration and quality
detection: the concentration of total RNA (the average concentration of all extracted RNA
samples was 609.47 £ 116.82 ng/uL) and the ratio of 285/18S (the average ratio of samples
was 1.93+ 0.11) were measured by Agilent 2100 biochip analyzer (Agilent Technology Co.,
Ltd., Palo Alto, CA, USA) and RNA Integrity Number (RIN; The average RIN value of
the samples was 9.96 £ 0.05, all of which were qualified samples and could be used for
subsequent computer sequencing and analysis).

5.4. Construction of cDNA Library

Total RNA samples were processed based on the rRNA removal method, DNA probes
were used to hybridize rRNA, and DNA/RNA hybridization chains were selectively
digested by RNaseH. Then, the DNA probe was digested by DNase I, and the required
qualified RNA sample was obtained after purification. Fragment the RNA sample obtained
in last step using the interrupt buffer; then, a reverse transcription reaction was performed
with a random N6 primer to synthesize double-stranded DNA; the double-stranded DNA
ends were patched and the 5 ‘end was phosphorylated, forming an “A” sticky end of the 3’
end and connecting a 3 “T” connector; The linked products were amplified by PCR through
specific primers; after thermal denaturation of the PCR amplification product into a single
strand, it was cyclized by a bridge primer, that is, a single strand circular DNA library was
obtained. Then, the computer was sequenced and analyzed.

5.5. High-Throughput RNA-Seq Sequencing and Screening of Differentially Expressed Genes (DEGs)

In this study, high-throughput transcriptome RNA-Seq sequencing was performed by
umina Hiseq (Suzhou GENEWIZ Biotechnology Co., LTD., Suzhou, China). To ensure
the accuracy and repeatability of RNA-Seq sequencing results, the machine samples of each
treatment group were provided with 3 biological replicates, each containing 60 intestinal
or liver samples, and the sequencing and results were analyzed by Genewiz Corporation
(Suzhou GENEWIZ Biotechnology Co., LTD., Suzhou, China) using Illumina technology.

Raw data obtained by GWZHISEQO1 sequencing (Suzhou GENEWIZ Biotechnology
Co., LTD., Suzhou, China) are called Raw Reads. The average output of raw data of all
samples in this paper was 24.13 M. The original sequencing sequence was filtered through
the filtering software SOAPnuke (v1.5.2, https://github.com/BGI-flexlab/SOAPnuke) (ac-
cessed on 27 November 2020) to remove the sequences containing joints, unknown base N
content greater than 10% and low quality, etc, then the filtered sequencing sequences (Clean
Reads) were obtained. The Hierarchical Indexing for Spliced transcripts was performed
using the HISAT2: The Alignment of Transcripts method [38] aligns the filtered sequencing
sequence to the zebrafish reference genome sequence (NCBI GRCz11, NCBI GRCZ11, NCBI
transcripts). (https://www.ncbinlm.nih.gov/assembly/GCF_000002035.6 (accessed on
9 May 2017); then, the filtered sequencing sequence was compared to the zebrafish reference
coding gene set by Bowtie 2 (v 2.2.5) method [39]. Based on the FPKM (the Fragments Per
Kilobase per Million mapped fragments) method as an indicator to measure gene expres-
sion, the expression abundance of sequenced transcripts was calculated and quantified
by RSEM (RNA-Seq by Expectation-Maximization) software package [40]. The DESeq 2
(v 1.4.5) R language package [41] was used to identify and analyze the differentially ex-
pressed genes (DEGs) among each treatment group, and the Fold Change that met the
abundance of gene expression was screened through further calculation and analysis. DEGs
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with twice or more times adjusted p-value (Padj) less than or equal to 0.05 were used for
subsequent gene function annotation and enrichment analysis.

5.6. Gene Ontology (GO) and KEGG Functional Enrichment Analysis

By using the DAVID biological information resources online analytical tools (v 6.8) [42]
in 5.5, the DEGs of screening and Gene Ontology (Gene Ontology, GO) database
(http:/ /www.geneontology.org (accessed on 1 January 2019) for comparative analysis,
the biological functions involved in these DEGs were annotated by GO classification, in-
cluding three categories: biological process, cellular component and molecular function.
After zero-mean normalization of the number of DEGs for each GO term, the bubble map
is drawn by combining the number of z-scores, Padj, and DEGs for further visual analysis
of the results. Meanwhile, Metascape [43] was used to compare the screened DEGs with
the KEGG public database (https://www.kegg.jp/, accessed on 1 January 1995) [44] and
was compared to analyze the enrichment of the signaling pathways or metabolic pathways
involved in these DEGs.

5.7. Differential Expression Analysis of IncRNAs and mRNAs

The FPKMs of all transcripts in each sample were calculated by using StringTie
(version 1.3.1). The differential expression analysis of IncRNAs and mRNAs between two
conditions was performed using the DESeq2 (version 1.10.1) package in the R project. The
transcripts with p < 0.05 and absolute FC > 2.0 were considered DE.

5.8. Data Processing and Analysis

The GO enrichment analysis results screened by DAVID were plotted into bubble
maps using OriginPro 2019b (OriginLab, Northampton, MA, USA) software to more
intuitively show the GO terms that were significantly enriched after exposure treatment.
Metascape was used to conduct KEGG enrichment analysis for up-regulated and down-
regulated DEGs, and the top 30 KEGG pathways for up-regulated and down-regulated
DEGs enrichment were screened out. The enrichment results were mapped using the R
language ggplot2 software package [45].
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