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Abstract: Daboia (Vipera) palaestinae (Dp), accounts for most envenomations in humans and dogs in
Israel. In humans envenomed by Dp, serum cholesterol concentration (sChol) is inversely correlated
with envenomation severity. This study examined the utility of sChol upon admission in dogs
envenomed by Dp as an envenomation severity and outcome marker. Data upon admission, including
sChol, were retrospectively collected from the medical records of dogs with proven Dp envenomation.
The study included 415 dogs. The mortality rate was 11%. The heart rate upon admission was higher
in non-survivors than in survivors. Signs of bleeding or hematoma and circulatory shock signs were
more frequent among non-survivors compared to survivors. sChol, the platelet count, and serum
albumin concentration (sAlb) were lower, while serum creatinine concentration was higher among
non-survivors. sChol and sAlb were moderately, positively, and significantly correlated. sChol was
significantly, negatively, albeit weakly, correlated with the length of hospitalization and the heart
rate. sChol was lower in dogs admitted >12 h post-envenomation than in those admitted later. In
dogs, sChol upon admission is a potential marker of severity and outcome of Dp envenomation. The
platelet count, sAlb, and sCreat might also be potential markers.

Keywords: snakebite; venom; canine; viper; snake; platelet count; creatinine; albumin; hypocholes-
terolemia

Key Contribution: In dogs, serum cholesterol concentration upon admission is a potential severity
and outcome marker of Daboia palaestinae envenomation. It was lower in dogs presented >12 h
post-envenomation than in those presented earlier and was moderately and positively correlated
with serum albumin concentration. The heart rate, platelet count, serum albumin, and creatinine
concentration upon admission are potential severity and outcome markers of this envenomation.
Considering the “one health medicine” concept, these results strengthen previous findings of a single,
small-scale study in humans envenomated by this viper.

1. Introduction

Daboia (Vipera) palaestinae (Dp) is the most common venomous snake in Israel, account-
ing for several hundred envenomations in humans and domestic animals annually [1–6],
with mortality rates of 0.5–2% in humans [2,3] and 3.7–15% in dogs [4–6]. This viper is
endemic and a leading venomous snakebite agent in the Mediterranean area, including
Western Syria, Northwestern Jordan, Northern and Central Israel, the Palestinian Authority,
and Lebanon [7–13]. Its natural habitat is mostly woodland and scrub, but it is now found
in agricultural rural areas, and even in densely populated regions [14].
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Its venom is a complex mixture of pharmacologically active molecules, divided into
five groups, including viperotoxin, hemorrhagins, angioneurin growth factors, integrin
inhibitors, and L-amino acid oxidases [15–36]. The lethal two-component viperotoxin has
neurotoxic and myotoxic activities, resulting from the synergistic action of two proteins,
an acidic protein endowed with phospholipase A2 (PLA2) activity, and a basic protein
lacking any known enzymatic activity [19]. Phospholipases hydrolyze fatty acids from
glycerophosphatides and are classified into four subtypes, A to D (types C and D are con-
sidered phosphodiesterases). Phospholipases A catalyze the hydrolysis of one ester bond
in 1,2-diacyl-sn-glycero-3-phosphatides and have positional specificity. Those hydrolyzing
the glycerol moiety 1 and 2 position bonds are designated A1 and A2, respectively. Phos-
pholipase B or lysophospholipase catalyzes the hydrolysis of monoacyl-phosphatides [20].

The local and systemic clinical symptoms of Dp envenomation result from the synergis-
tic pharmacological activity of the enzymatic and non-enzymatic venom proteins, inducing
increased capillary permeability, endothelial damage, platelet aggregation and dysfunction,
thromboplastin and thrombin inhibition, factors X and V activation, neutrophilia, leukocy-
tosis, thrombocytopenia, increased fibrinolysis and hypofibrinogenemia, decreased protein
C activity, histamine and kinin release, and several presynaptic neurotoxic effects [4,37–40].

The clinical signs of the envenomation in dogs vary depending on the site [4,5], indi-
vidual patient susceptibility, and the volume of injected venom, which does not necessarily
correlate with prey size [15]. In dogs, the clinical manifestations are mostly local, i.e.,
around the envenomation site, although systemic signs are not uncommon [5]. The most
common local signs, depending on the envenomation site, include swelling and edema,
viper fang penetration marks, hypersalivation, lameness, bleeding tendency, and local
petechiae [5]. Systemic signs include tachypnea, panting, hyperthermia, tachycardia, dysp-
nea, lymphadenomegaly, and mental status abnormalities, ranging from mental dullness to
coma [5,6].

The common hematological abnormalities in envenomed dogs include hemocon-
centration, leukocytosis, and thrombocytopenia [5,6], while frequent serum chemistry
abnormalities include increased muscle enzyme activity (i.e., creatine kinase (CK), lactate
dehydrogenase (LDH), and aspartate transaminase (AST)), hypertriglyceridemia, mild
hyperglycemia, hyperbilirubinemia, hyperglobulinemia, and hypocholesterolemia [5,6].
The risk factors for death of this envenomation in dogs include limb envenomation, noctur-
nal bites, dog body weight < 15 kg, occurrence of severe lethargy, hypothermia, systemic
bleeding, shock, dyspnea or tachycardia upon admission, thrombocytopenia, hemostatic ab-
normalities, and development of venom-induced consumptive coagulopathy (VICC) [4–6].

In humans naturally envenomed by Dp, and in rabbits injected with Dp venom, tran-
sient hypocholesterolemia was noted (dose-dependent in the latter), suggesting that serum
cholesterol concentration (sChol) is inversely correlated with the envenomation severity [7].
We therefore hypothesized that sChol, upon admission, might serve as a surrogate marker
of the severity and prognosis of Dp envenomation in dogs as well, potentially aiding in its
assessment and in therapeutic decision-making. The aims of this study were to determine
the sChol of dogs envenomed by Dp and its associations with clinical and other laboratory
findings upon admission to the hospital, with the envenomation severity, and with death.
The secondary aim was to look for other markers of the severity and outcome of this
envenomation upon admission to the hospital.

2. Results

The study included 415 dogs, with a median age of 60 months (range; 3–276) and a me-
dian body weight of 25.6 kg (range; 1.8–77.0). Most dogs (359/415; 87%) were envenomed
during spring and summer (March to August) (Figure 1). Selected clinical parameters and
laboratory analytes upon admission to the hospital are summarized in Table 1. The death
rate was 11% (47/415).
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Table 1. Selected clinical parameters and laboratory analytes upon admission in 415 dogs presented 
to a veterinary emergency and critical care unit for acute Daboia palestinae envenomation. 

 All Dogs Survivors Non-Survivors 
p 1 p 2 

Analyte RI 
N 

(%) 
Median  
(Range) 

N (%) 
<RI 

N (%) 
>RI N 

Median  
(Range) 

N (%) 
<RI 

N (%) 
>RI N 

Median  
(Range) 

N (%) 
<RI 

N (%) 
>RI 

Rectal temperature 
(°C) 

38–39.2 373 
(90) 

38.8  
(35.4–41.0) 

36  
(10) 

110 
(30) 

332 38.8  
(35.4–41.0) 

30 
(9) 

95 
(29) 

41 38.7  
(37.3–40.1) 

6 
(15) 

15 
(37) 

0.559 0.255 

Respiratory rate 
(breaths/min) 10–40 

369 
(89) 

100  
(16–160) 

1 
(0.3) 

143 
(39) 330 

100  
(16–146) 

0  
(0) 

117 
(36) 39 

60  
(24–160) 

1  
(3) 

26 
(67) 0.853 0.014 

Heart rate (bpm) 60–139 
394 
(95) 

140  
(48–280) 

2 
(0.5) 

266 
(66) 

348 
140  

(50–280) 
1 

(0.3) 
227 
(65) 

46 
180  

(48–240) 
1 

(2) 
39 

(85) 
<0.0001 0.008 

Body weight (Kg) NA 376 
(91) 

25.5  
(1.8–77.0) 

NA NA 332 26.0  
(1.8–71.0) 

NA NA 44 24.0  
(3.0–77.0) 

NA NA 0.468 NA 

Leukocytes (×103/µL) 5.2–13.9 
397 
(96) 

15.1  
(2.8–70.75) 

6  
(2) 

228  
(57) 353 

15.1  
(4.1–70.75) 

3  
(1) 

207  
(59) 44 

14.0  
(2.8–40.2) 

3  
(7) 

21  
(48) 0.855 0.007 

Packed cell volume 
(%) 

37–56 401 
(97) 

53  
(15–77) 

21 
(5) 

135 
(34) 

356 53  
(16–77) 

19 
(5) 

115 
(32) 

45 55  
(15–77) 

2 
(4) 

20 
(44) 

0.203 0.292 

Red blood cells 
(×106/µL) 5.7–8.8 

386 
(93) 

7.8  
(1.16–11.8) 

20  
(5) 

64  
(17) 344 

7.8  
(2.7–10.8) 

16  
(5) 

52  
(15) 42 

8.2  
(1.16–11.8) 

4  
(10) 

12  
(29) 0.505 0.03 

Total plasma protein 
(gr/dL) 

5.4–7.5 
407 
(98) 

6.4  
(2.4–10.5) 

65  
(16) 

44  
(11) 

361 
6.4  

(2.4–10.5) 
52  

(14) 
39  

(11) 
46 

6.0  
(3.0–9.0) 

13  
(28) 

5  
(11) 

0.152 0.057 

Platelets (×103/µL) 143–400 392 
(94) 

174  
(0–1826) 

131  
(33) 

35  
(9) 

348 187  
(0–1826) 

98  
(28) 

35  
(10) 

44 99  
(13–341) 

33  
(75) 

0  
(0) 

<0.0001 <0.0001 

Serum cholesterol 
(mg/dL) 

135–361 415 
(100) 

163.6  
(10.7–
450.7) 

153  
(37) 

3  
(0.7) 

368 166  
(23–450.7) 

128  
(35) 

2  
(0.5) 

47 128  
(10.7–376) 

25  
(53) 

1  
(4.2) 

0.026 0.026 

Serum albumin 
(gr/dL) 

3.0–4.4 390 
(94) 

3.4  
(1.1–5.3) 

108  
(28) 

17  
(4) 

346 3.50  
(1.1–5.3) 

87  
(25) 

14  
(4) 

44 3.19  
(1.3–4.9) 

21  
(48) 

3  
(7) 

0.032 0.003 

Serum creatinine 
(mg/dL) 0.3–1.2 

407 
(98) 

1.07  
(0.3–4.8) NA 

137  
(34) 362 

1.05  
(0.3–4.2) NA 

110  
(30) 45 

1.3  
(0.5–4.8) NA 

27  
(60) <0.0001 <0.0001 

Activated partial 
thromboplastin time 
(sec) 

11–17.4 
347 
(84) 

15.7  
(7.35–100) 

74  
(21) 

192  
(55) 304 

15.7  
(7.35–100) 

69  
(23) 

171  
(43) 43 

15.7  
(8.6–58) 

5  
(12) 

21  
(49) 0.219 0.242 

Figure 1. Seasonal distribution of Daboia plaestinae envenomation in 415 dogs (winter: December–
February; spring: March–May; summer: June–August; autumn: September–November).

Table 1. Selected clinical parameters and laboratory analytes upon admission in 415 dogs presented
to a veterinary emergency and critical care unit for acute Daboia palestinae envenomation.

All Dogs Survivors Non-Survivors

p 1 p 2
Analyte RI N

(%)
Median
(Range)

N
(%)
<RI

N
(%)
>RI

N Median
(Range)

N
(%)
<RI

N
(%)
>RI

N Median
(Range)

N
(%)
<RI

N
(%)
>RI

Rectal
temperature
(◦C)

38–39.2 373
(90)

38.8
(35.4–41.0)

36
(10)

110
(30) 332 38.8

(35.4–41.0)
30
(9)

95
(29) 41 38.7

(37.3–40.1)
6

(15)
15

(37) 0.559 0.255

Respiratory
rate
(breaths/min)

10–40 369
(89)

100
(16–160)

1
(0.3)

143
(39) 330 100

(16–146)
0

(0)
117
(36) 39 60

(24–160)
1

(3)
26

(67) 0.853 0.014

Heart rate
(bpm) 60–139 394

(95)
140

(48–280)
2

(0.5)
266
(66) 348 140

(50–280)
1

(0.3)
227
(65) 46 180

(48–240)
1

(2)
39

(85) <0.0001 0.008

Body weight
(Kg) NA 376

(91)
25.5

(1.8–77.0) NA NA 332 26.0
(1.8–71.0) NA NA 44 24.0

(3.0–77.0) NA NA 0.468 NA

Leukocytes
(×103/µL) 5.2–13.9 397

(96)
15.1

(2.8–70.75)
6

(2)
228
(57) 353 15.1

(4.1–70.75)
3

(1)
207
(59) 44 14.0

(2.8–40.2)
3

(7)
21

(48) 0.855 0.007

Packed cell
volume (%) 37–56 401

(97)
53

(15–77)
21
(5)

135
(34) 356 53

(16–77)
19
(5)

115
(32) 45 55

(15–77)
2

(4)
20

(44) 0.203 0.292

Red blood
cells
(×106/µL)

5.7–8.8 386
(93)

7.8
(1.16–11.8) 20 (5) 64

(17) 344 7.8
(2.7–10.8)

16
(5)

52
(15) 42 8.2

(1.16–11.8)
4

(10)
12

(29) 0.505 0.03

Total plasma
protein
(gr/dL)

5.4–7.5 407
(98)

6.4
(2.4–10.5)

65
(16)

44
(11) 361 6.4

(2.4–10.5)
52

(14)
39

(11) 46 6.0
(3.0–9.0)

13
(28)

5
(11) 0.152 0.057

Platelets
(×103/µL) 143–400 392

(94)
174

(0–1826)
131
(33)

35
(9) 348 187

(0–1826)
98

(28)
35

(10) 44 99
(13–341)

33
(75)

0
(0) <0.0001 <0.0001

Serum
cholesterol
(mg/dL)

135–361 415
(100)

163.6
(10.7–450.7)

153
(37)

3
(0.7) 368 166

(23–450.7)
128
(35)

2
(0.5) 47 128

(10.7–376)
25

(53)
1

(4.2) 0.026 0.026

Serum
albumin
(gr/dL)

3.0–4.4 390
(94)

3.4
(1.1–5.3)

108
(28)

17
(4) 346 3.50

(1.1–5.3)
87

(25)
14
(4) 44 3.19

(1.3–4.9)
21

(48)
3

(7) 0.032 0.003

Serum
creatinine
(mg/dL)

0.3–1.2 407
(98)

1.07
(0.3–4.8) NA 137

(34) 362 1.05
(0.3–4.2) NA 110

(30) 45 1.3
(0.5–4.8) NA 27

(60) <0.0001 <0.0001

Activated
partial throm-
boplastin
time (sec)

11–17.4 347
(84)

15.7
(7.35–100)

74
(21)

192
(55) 304 15.7

(7.35–100)
69

(23)
171
(43) 43 15.7

(8.6–58)
5

(12)
21

(49) 0.219 0.242

Prothrombin
time (sec) 6–8.4 346

(83)
8.6

(5.0–100)
8

(2)
181
(53) 304 8.5

(5.0–100)
7

(2)
155
(51) 42 9.4

(5.7–26.3)
1

(2)
26

(62) 0.099 0.295

RI, reference interval; N, number of available cases or analyses; (%), percent of cases/analyses of all cases/analyses
in the group; NA, not applicable. 1 Groups compared using the Student’s t-test or Mann–Whitney U-test. 2 Groups
compared using the chi-square or Fisher’s exact tests. p < 0.05 is considered significant.

The heart rate (HR) upon admission was associated (p < 0.0001) with survival (median
HR, 140 bpm (range, 50–280) and 180 bpm (range, 48–240) of survivors and non-survivors,
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respectively) (Table 1; Figure 2). The proportion of tachycardia (HR > 139 bpm) was higher
(p = 0.008) among the non-survivors compared to the survivors (Table 1).
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Figure 2. Heart rate of 348 survivors and 46 non-survivors of Daboia palaestinae envenomation upon
admission to the hospital. BPM, beats per minute.

Signs of bleeding or hematoma upon admission were more common (p = 0.003) among
the non-survivors (21/41 dogs; 49%) than among the survivors (74/284 dogs; 26%). The
mentation status upon admission differed significantly between the outcome groups, with
normal mentation noted in 61% and 16% of the survivors and non-survivors, respectively.
Among the non-survivors, severe depression and coma were noted in 44% and 22%,
respectively, compared to 9% and 3% among the survivors, respectively (p < 0.0001).

Circulatory shock upon admission was more common (p < 0.0001) among the non-
survivors (65%) compared to the survivors (27%). There were no significant group dif-
ferences in occurrence of swelling (mild to severe) and lag of time from envenomation to
admission (i.e., <12 h or >12 h post-envenomation).

Upon admission, sChol (reference interval [RI], 135–361 mg/dL) was lower (p = 0.026)
among the non-survivors (median, 128.0 mg/dL; range, 10.7–376.0) than among the
survivors (166.0 mg/dL; range, 23.0–450.7) (Table 1; Figure 3a); hypocholesterolemia
(sChol < 135 mg/dL) was more prevalent (p = 0.026) amongst the non-survivors (Table 1).
The platelet count (RI, 143–400 × 103/µL) was lower (p < 0.0001) among the non-survivors
(median, 99 × 103/µL; range, 13–341 × 103/µL) than among the survivors (median,
187 × 103/µL; range, 0–1826 × 103/µL) (Table 1; Figure 3b); and thrombocytopenia
(platelet count <143 × 103/µL) was more common (p < 0.0001) amongst non-survivors
(Table 1). Serum albumin concentration (sAlb; RI, 3.0–4.4 g/dL) was lower (p = 0.032)
among the non-survivors (median, 3.19 g/dL; range, 1.3–4.9) than among the survivors (me-
dian, 3.5 g/dL; range, 1.1–5.3) (Table 1; Figure 3c); and hypoalbuminemia (sAlb < 3 g/dL)
occurred more frequently among the non-survivors (p = 0.003) (Table 1). Serum creatinine
concentration (sCr) upon admission among the non-survivors (median, 1.3 mg/dL; range,
0.5–4.8) was higher (p < 0.0001) than among the survivors (median, 1.1 mg/dL; range,
0.3–4.2) (Table 1; Figure 3d); and azotemia (sCr > 1.2 mg/dL) was more prevalent amongst
the non-survivors (p < 0.0001) (Table 1).
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sChol and sAlb, upon admission, were moderately, significantly, and positively corre-
lated (rs = 0.557; p < 0.0001). sChol was weakly, significantly, and negatively correlated with
the length of hospitalization (rs = −0.258; p < 0.0001) and HR (rs = −0.146; p = 0.004), and
weakly, significantly, and positively with the platelet count (rs = 0.245; p < 0.0001) and total
plasma protein concentration (TPP) (rs = 0.440; p < 0.0001). sChol was lower (p < 0.0001)
in dogs admitted to the hospital >12 h post-envenomation (median, 110 mg/dL; range,
11–214) than in those presented earlier (median, 172 mg/dL; range, 23–451). Among those
admitted >12 h post-envenomation, hypocholesterolemia occurred in 81% of the dogs,
and all non-survivors admitted >12 h post-envenomation showed hypocholesterolemia
(median sChol, 59 mg/dL; range, 11–124). With every 1 mg/dL decrease in sChol, the risk
ratio of death increased by 1.004 (95% confidence interval, 1.000–1.009).

3. Discussion

Daboia (Vipera) palaestinae envenomation in dogs, a medical emergency associated with
considerable morbidity and mortality, occurs commonly in Israel [4–6]. In this large cohort
of dogs, sChol concentration upon admission was lower among the non-survivors than
among the survivors, and lower in those presented >12 h post-envenomation than in those
presented earlier. In humans, only two studies investigated sChol in snakebite victims;
the severity of Dp envenomation was associated (p < 0.0001) with sChol in 44 human
patients when comparing patients with mild, moderate, and severe clinical envenomation
manifestations (sChol mean {SD}, 175 {49}, 137 {36}, and 96 {40} mg/dL, respectively) [7].
Another study examined sChol within 24 h of admission and with 10-h overnight fasting
in 205 consecutive elapid or viperid snakebite victims. Among the 146 victims classified
with serious envenomation, 116 (79%) had sChol ≤ 150 mg/dL. Overall, among the hypoc-
holesterolemic patients, 116 (78%) sustained serious envenomation. The relative risk of
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moderate to severe envenomation was 2.7-fold in hypocholesterolemic patients compared
to normo- and hypercholesterolemic patients [41].

Crude viper venom contains proteolytic enzymes, phospholipase A2, hyaluronidase,
and phosphoesterases [42], inducing endothelial lesions and capillary leakage [43], possibly
leading to extravasation of plasma and plasma protein and other molecules, thereby
decreasing sChol due to lipoprotein leakage [7]. This pathogenesis might be supported
by the concomitant sAlb decrease and the significant, positive correlation between sAlb
and sChol noted herein. Nevertheless, when rabbits were injected with a low Dp venom
dose [7], a significant decrease in sChol was noted, far in excess of the concomitant change
in sAlb. The authors, therefore, hypothesized that mechanisms other than change in sAlb
possibly play a role in this decrease in sChol during severe Dp envenomation [7].

Low sChol following severe Dp envenomation possibly reflects increased breakdown
of cholesterol (and other lipid fractions), attributable to the direct effect of snake venom
enzymes, most likely of the phospholipase family [41]. This hypothesis is in line with
previous findings, where rabbits injected with isolated Dp venom fractions showed the
greatest sChol decrease when the PLA2-containing one was injected (21%) compared to
injections of the hemorrhagic fraction, containing the proteolytic enzymes (7.5%) and the
non-toxic fraction (0%) [7].

Additionally, low-density lipoprotein (LDL) uptake by macrophages is enhanced
following oxidative modification by PLA2, converting LDL to a form recognized by
macrophages, and greatly enhancing cellular cholesterol-ester uptake and accumula-
tion [44,45]. Similarly, human endothelial cell and hepatoma cell (HepG2) exposure to
PLA2-modified LDL or high-density lipoprotein (HDL) enhanced lipid deposition [46,47].
PLA2-treated LDL binding to human adipocytes is enhanced, suggesting increased affinity
of lipoproteins containing hydrolyzed phospholipid to the HDL/LDL receptor, which
mediates both HDL and LDL binding and cholesterol delivery to adipocytes [48]. These
experimental data suggest that all PLA2-modified lipoprotein classes possibly exhibit in-
creased capacity to transfer cholesterol to vascular macrophages and other nonvascular
tissue cells.

Patients with systemic infectious diseases (e.g., sepsis) or burns might show de-
creased sChol along with decreased HDLC and LDLC concentrations. Moreover, it is
well-documented that serum PLA2 activity is significantly elevated during such diseases,
characteristic of a positive acute-phase protein [49]. Patients with certain chronic diseases
(e.g., metastatic tumors and infections) might display hypocholesterolemia. In these con-
ditions, serum proinflammatory cytokine (e.g., interleukin [IL]-1β, IL-6, tumor necrosis
factor [TNF]-α, and interferon-γ) concentrations increase, and these cytokines possibly act
as PLA2 inducers, which increases the PLA2 secretion rate by hepatocytes and other cells.
Increased serum PLA2 activity has been suggested to lead to increased reticulohistiocytic
system lipoprotein clearance, mainly through the liver, ultimately resulting in hypocholes-
terolemia [49]. This hypothesis is supported by a study where hypercholesterolemic rabbits,
treated by an extracorporeal circuit containing immobilized snake venom PLA2, showed a
significant decrease in sChol. Notably, PLA2-treated LDL was removed from the rabbits’
bloodstream up to 17-fold faster than their native LDL, and the liver was identified as the
primary organ responsible for this enhanced LDL plasma clearance [50].

An alternative hypothesis suggests that cholesterol might be directed to increased
steroidogenesis, as a secondary reaction to snakebite envenomation, leading to decrease in
sChol [41,51].

Interestingly, herein, sChol was lower in dogs admitted to the hospital >12 h post-
envenomation than in those admitted earlier. This was possibly a combination of more
severe and prolonged plasma extravasation due to more progressive tissue damage, along-
side longer snake venom PLA2 impact on cellular cholesterol uptake.

Hypoalbuminemia was also significantly more common amongst the non-survivors
than among survivors. Hypoalbuminemia occurs in dogs, horses, and humans envenomed
by Dp, possibly due to albumin leakage and extravasation secondary to vasculitis and
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capillary damage, especially at the envenomation site [5,7,52]. Additional mechanisms
accounting for this hypoalbuminemia might include systemic inflammation, as albumin is
a negative acute-phase protein [53], and albumin renal loss, as proteinuria occurs in both
dogs and humans envenomed by viperid snakes [54,55].

As previously described in dogs and humans [5,56], in this large cohort, thrombocy-
topenia was significantly more pronounced and common among the non-survivors than
among the survivors. Thrombocytopenia possibly occurs due to extravasation, severe vas-
culitis with bleeding, platelet sequestration in inflamed tissues, and formation of VICC [5].
The prothrombin time (PT) and activated partial thromboplastin time (aPTT) upon admis-
sion were similar among the survivors and non-survivors in this study. Consequently, their
clinical implication and the possible occurrence of VICC upon admission are hard to assess,
as in this study, while repeated clotting times measurement during hospitalization, fib-
rinogen, fibrin/ogen degradation product and D-dimer concentrations, and antithrombin
and protein C activity were not measured in most dogs, upon admission, and later on,
precluding assessment for presence of VICC. In previous studies of Dp envenomation in
dogs, 24 h post-presentation, both the PT and aPTT were prolonged and were significantly
associated with death [5,6].

In this study, sCr upon admission was higher among the non-survivors than among
the survivors. Acute kidney injury (AKI) is associated with snakebites in both dogs and hu-
mans [57,58], primarily caused by the nephrotoxic effects of myoglobinuria and hemoglobin-
uria secondary to rhabdomyolysis, VICC, toxic nephropathy, hemodynamic instability (i.e.,
hypovolemic and distributive shock) with renal ischemia, and ischemic necrosis, mediated
by both vasoconstriction and procoagulant microthrombotic effects [57,58]. Numerous
studies in humans and dogs show that the development of AKI during hospitalization is
associated with increased morbidity and mortality rates, and dogs envenomed by Dp are
no different in that matter [59,60].

The associations of tachycardia, higher HR, bleeding, signs of circulatory shock, and
abnormal mentation status upon admission with death noted in this study are likely
associated with hemodynamic instability, a known risk factor of death in Dp and other
viper envenomations [5,7,61]. Shock in this envenomation possibly occurs due to acute
hypersensitivity reaction (i.e., anaphylaxis) or direct venom actions (e.g., vasculitis, blood
component extravasation, microthrombi, and inflammatory mediators) [5,7,61].

This retrospective study has several inherent limitations. First, the cohort size, al-
though the largest yet, and especially the number of non-survivors, is nevertheless limited,
and this, with some missing data in the medical records, weakened the statistical analy-
ses. Second, this study included dogs admitted to a single teaching hospital over a very
long period, during which improvements in diagnostic and therapeutic modalities have
occurred. This very likely introduced variance and possibly influenced the clinical outcome
of certain individuals. Our results should therefore be applied cautiously to other clinical
settings. During this long study period, several chemistry analyzers with several different
reagents for total sChol measurement were used, which possibly introduced variance.
Nevertheless, all reagents for total cholesterol measurement used herein are based on the
Abell–Levy–Brodie–Kendall (i.e., Abell–Kendall; AK) reference measurement procedure. It
has been shown that this method is precise and stable, and the results of different analyzer
and reagent manufacturers are highly correlated over a long observation period [62]. Third,
five non-survivor dogs showing deterioration, despite ongoing efforts, were euthanized
at their owners’ request, and financial constraints might have influenced this decision,
which possibly affected the outcome group comparisons. Financial constraints possibly
also limited the performance of some laboratory tests upon admission, which contributed
to missing data. Financial constraints always somewhat limit small animal diagnosis and
treatment, and this limitation is unavoidable in the routine clinical setting and is a common
limitation in retrospective studies of dogs.
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4. Conclusions

In dogs envenomed by Dp, sChol upon admission to the hospital is a marker of the
severity and outcome of the envenomation and is lower in dogs presented late (>12 h)
post-envenomation. There is a moderate positive correlation between sChol and sAlb
upon admission. The HR, platelet count, sAlb, and sCr, upon admission, are also potential
markers of the severity and outcome of Dp envenomation. Future studies examining
the trends of change of these markers during hospitalization and their associations with
morbidity and mortality are warranted.

5. Materials and Methods
5.1. Selection of Dogs and Data Collection

The medical records of dogs admitted to the Veterinary Teaching Hospital (HUVTH)
between 1989 and 2020 and diagnosed with Dp envenomation were retrospectively re-
viewed. Envenomation was diagnosed based on ≥2 of the following: (1) envenomation
occurred in geographic areas where Dp is the sole venomous snake; (2) the biting snake was
identified as Dp by dog owners or HUVTH clinicians; (3) characteristic Dp fang penetration
marks were identified by HUVTH clinicians; (4) the clinical signs were of acute onset, and
were typical of Dp envenomation in dogs [5,6], occurring in animals that had been clinically
normal before the envenomation had occurred. sChol was measured upon admission to
the HUVTH in all dogs in this cohort. Dogs treated with Dp antivenom or blood products
prior to the admission to the HUVTH were excluded.

Data collected from the medical records included the signalment, date of admission,
the lag of time from envenomation to admission, the medical history, clinical findings (e.g.,
vital signs, mental status, bleeding evidence, and envenomation site), laboratory findings
upon admission, the number of antivenom units administered per dog, and the length of
hospitalization and the final outcome (i.e., survival to discharge from the hospital, or in-
hospital death, or euthanasia due to clinical deterioration, despite ongoing therapy). Upon
admission to the hospital, emergency clinicians subjectively classified the hemodynamic
status of dogs as in shock or in the absence of shock.

5.2. Collection of Blood and Laboratory Methods

Over the very long observation period of this study, several hematology and chemistry
analyzers were used. Blood samples for complete blood count (CBC) were collected in
potassium-EDTA tubes and analyzed (Minos ST-Vet, Minos, Montpelier, France; Arcus,
Abacus or Abacus Junior Vet, Diatron, Vienna, Austria; Advia 120 or 2120i, Siemens,
Erfurt, Germany) within 30 min from collection. The packed cell volume (PCV) was
measured manually by centrifuging whole blood in heparinized capillaries. Total plasma
protein concentration was measured via refractometry (clinical refractometer, Atago, Tokyo,
Japan). Blood samples for serum chemistry were collected in tubes with no anticoagulant;
and with gel separators, allowed to clot, were centrifuged within 60 min from collection;
and harvested sera were analyzed (Kone Progress Selective Chemistry Analyzer, Kone
Corporation Instrument Group; Espoo, Finland; Maxmat SA PL, Maxmat, Montpellier,
France; Cobas-Mira, Cobas Integra 400 Plus and Cobas 6000, Roche, Mannheim, Germany;
at 37 ◦C) immediately, or stored at 4 ◦C pending analysis, performed within 12 h from
collection. Blood samples for PT and aPTT were collected in 3.2% trisodium citrate tubes
and centrifuged within 15 min from collection. Harvested plasma was then analyzed
immediately (KC 1A micro, Amelung, Lemgo, Germany; ACL-200, ACL-9000 and ACL
Top 300, IL, Milano, Italy).

5.3. Statistical Methods

The distribution pattern of continuous variables was determined using the Shapiro–
Wilk’s test. These variables were compared between 2 groups using the Student’s t-test
or the Mann–Whitney’s U-test, depending on the data distribution pattern. Categorical
variables were compared between groups using the chi-square or Fisher’s exact tests as
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appropriate. Relations between two continuous variables were determined via Pearson or
Spearman correlations, depending on the data distribution pattern. All tests were 2-tailed.
In all, p < 0.05 was considered significant. Analyses were performed using a statistical
software package (SPSS 28.0, IBM, Armonk, NY, USA).
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