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Abstract: Conotoxins are toxic, disulfide-bond-rich peptides from cone snail venom that target a
wide range of receptors and ion channels with multiple pathophysiological effects. Conotoxins
have extraordinary potential for medical therapeutics that include cancer, microbial infections,
epilepsy, autoimmune diseases, neurological conditions, and cardiovascular disorders. Despite
the potential for these compounds in novel therapeutic treatment development, the process of
identifying and characterizing the toxicities of conotoxins is difficult, costly, and time-consuming.
This challenge requires a series of diverse, complex, and labor-intensive biological, toxicological, and
analytical techniques for effective characterization. While recent attempts, using machine learning
based solely on primary amino acid sequences to predict biological toxins (e.g., conotoxins and
animal venoms), have improved toxin identification, these methods are limited due to peptide
conformational flexibility and the high frequency of cysteines present in toxin sequences. This results
in an enumerable set of disulfide-bridged foldamers with different conformations of the same primary
amino acid sequence that affect function and toxicity levels. Consequently, a given peptide may be
toxic when its cysteine residues form a particular disulfide-bond pattern, while alternative bonding
patterns (isoforms) or its reduced form (free cysteines with no disulfide bridges) may have little
or no toxicological effects. Similarly, the same disulfide-bond pattern may be possible for other
peptide sequences and result in different conformations that all exhibit varying toxicities to the
same receptor or to different receptors. We present here new features, when combined with primary
sequence features to train machine learning algorithms to predict conotoxins, that significantly
increase prediction accuracy.

Keywords: conotoxins; machine learning; collisional cross section; post-translational modifications;
prediction; ion mobility–mass spectrometry

Key Contribution: Improvement of conotoxin prediction through new features.

1. Introduction

Conotoxins are peptides found in the venom of carnivorous aquatic mollusks known
as cone snails that hunt by paralyzing their prey [1]. This happens because conotoxins
interfere with the normal function of various ion channels and signal receptors, ultimately
leading to paralysis and suffocation [1]. Despite the risks to human health posed by these
kinds of toxins, there are limited effective anti-toxins available. The rational development
of novel therapeutics requires topological knowledge of the receptors, binding sites, and
interacting residues for a given toxin [2]. There is increasing interest in peptide-based
toxins for medical use as treatments for cancers [3,4], microbial infections [5], epilepsy,
autoimmune diseases, neurological conditions, and cardiovascular disorders [4,6]. As an

Toxins 2023, 15, 641. https://doi.org/10.3390/toxins15110641 https://www.mdpi.com/journal/toxins

https://doi.org/10.3390/toxins15110641
https://doi.org/10.3390/toxins15110641
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0002-9806-3274
https://orcid.org/0000-0002-5600-5252
https://orcid.org/0000-0001-6020-3828
https://orcid.org/0000-0002-4310-6249
https://orcid.org/0000-0003-0174-9622
https://doi.org/10.3390/toxins15110641
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins15110641?type=check_update&version=1


Toxins 2023, 15, 641 2 of 17

example, the drug Ziconotide (Prialt), used for chronic pain relief, is a synthetic version of
theω-conotoxin MVIIA from the cone snail, Conus magus [7].

Despite recognizing the importance of these dual-use compounds as both dangerous
and potentially therapeutic, our ability to identify, characterize, and determine the toxicities
of conotoxins is difficult, costly, and time-consuming. Overcoming this challenge requires
a series of diverse, complex, and labor-intensive biological, toxicological, and analytical
techniques for effective characterization [8]. Furthermore, with the thousands of new
peptide sequences that are being obtained by transcriptomics and proteomics, traditional
toxicological measurements are too slow. In many cases, the experimental determination of
an individual toxin’s function has become unfeasible and/or impossible because of the time-
consuming nature and high cost of the experiments. Recent attempts using deep learning
or machine learning (ML) (i.e., TOXIFY [9], ToxClassifier [10], ClanTox [11], ToxinPred [12],
PredCSF [13]) to predict the toxicity of peptides (e.g., conotoxins and animal venoms, etc.)
based on primary amino acid sequences have improved the toxicity identification process.
However, these methods are limited due to the inherent conformational heterogeneity
exhibited by peptides, which comes from two primary sources: [1] the innate flexibility of
peptides or peptide backbone and [2] the proportionally high numbers of cysteines. High
cysteine counts allow peptides to adopt multiple conformational permutations that are
stabilized by the disulfide bonds formed between the cysteine pairs. Peptide sequences
locked into different conformations lead to shifts in physiological behavior by providing
different interaction surfaces (i.e., topology). A given peptide may be toxic when its cysteine
residues form a particular disulfide-bond pattern, resulting in a specific conformation.
Alternative disulfide-bonding patterns, such as when the conotoxin peptide is an isoform
(containing alternative cysteine–cysteine disulfide bridges) or is in its reduced form (absence
of any disulfide bridges), may yield little or no toxicological effects for the peptide or may
be highly toxic (Figure 1). For example, the conotoxin AuIB has an IC50 value of 1.2 nM in its
native helical form (Figure 1a), but the IC50 decreases by a factor of 10 (to 0.1 nM) when AuIB
is converted to its ribbon (Figure 1b) isoform [14]. In contrast, the conotoxin GI in its native
form shows a 10-fold greater IC50 compared to its two ribbon isoforms [15]. Consequently,
similar disulfide-bond patterns result in different conformations for different peptide
sequences, which all exhibit varying toxicities from altered binding to the same receptor or
binding to different receptors. Furthermore, while the majority of conotoxins contain post-
translationally modified (PTM) amino acids (e.g., hydroxyproline, pyroglutamic acid, etc.),
all current prediction methods and models exclude these unique residues, categorizing
them as their unmodified residues. This exclusion results in a decrease in the potential
size of a unique dataset and tremendously reduces the effectiveness and accuracy of any
predictions [13,16,17].
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1MXP [18]). (c) Mu conotoxin KIIIA with a disulfide bond pa ern of Cys1-Cys9, Cys2-Cys15, and 
Cys4-Cys16 (PDB: 7SAV [19]). (d) Mu conotoxin KIIIA with a disulfide bond pa ern of Cys1-Cys16, 
Cys2-Cys9, and Cys4-Cys15 (PDB: 7SAW [19]). (e) Kappa conotoxin PVIIA with a disulfide bond 
pa ern of Cys1-Cys16, Cys8-Cys20, and Cys15-Cys26 (PDB: 1AV3 [20]). (f) Omega conotoxin MVIIA 
with a disulfide bond pa ern of Cys1-Cys16, Cys15-Cys25, and Cys8-Cys20 (PDB: 1DW4 [21]). 
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determine how these additional features improve conotoxin prediction accuracy and how 
to include them in building an effective ML-based platform to accurately predict if an 
unknown toxin molecule is a conotoxin. Such a platform will not only accelerate the iden-
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2. Results 
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frogs, wasps, and ants, as well as conantokins and contryphans from cone snails. Toxic 
peptides were categorized as part of the hard-negative dataset with the expectation that 
they may contain similar amino acid compositions (regions) and also share similar bind-
ing sites with conotoxins; thus, they would be more difficult to distinguish from the cono-
toxins. 

In general, three datasets: a positive, an easy-negative, and a hard-negative dataset, 
were constructed for the training and testing of the ML approach (see the methods sec-
tion). These three datasets were initially collected from the Protein Data Bank (PDB) using 
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acid sequences (e,f). (a) Alpha conotoxin AuIB in its native conformation with a disulfide bond
pattern of Cys2-Cys8 and Cys3-Cys15 (PDB: 1MXN [18]). (b) Alpha conotoxin AuIB in its ribbon
(isoform) conformation with a disulfide bond pattern of Cys2-Cys15 and Cys3-Cys8 (PDB: 1MXP [18]).
(c) Mu conotoxin KIIIA with a disulfide bond pattern of Cys1-Cys9, Cys2-Cys15, and Cys4-Cys16
(PDB: 7SAV [19]). (d) Mu conotoxin KIIIA with a disulfide bond pattern of Cys1-Cys16, Cys2-Cys9,
and Cys4-Cys15 (PDB: 7SAW [19]). (e) Kappa conotoxin PVIIA with a disulfide bond pattern of
Cys1-Cys16, Cys8-Cys20, and Cys15-Cys26 (PDB: 1AV3 [20]). (f) Omega conotoxin MVIIA with a
disulfide bond pattern of Cys1-Cys16, Cys15-Cys25, and Cys8-Cys20 (PDB: 1DW4 [21]).

To augment the predictive capability of ML approaches for conotoxin prediction, we
integrated a variety of physiochemical and structural features, including physiochemical
surface properties, secondary structure characteristics, and collisional cross sections (CCSs).
A CCS is an experimental value obtained from ion mobility–mass spectrometry (IM-MS)
experiments or from a computational calculator such as the High-Performance Collision
Cross Section (HPCCS) [22] software. The experimental or computational CCS value is a
function of the size, shape, charge, and polarizability of a molecule. Here, we determine
how these additional features improve conotoxin prediction accuracy and how to include
them in building an effective ML-based platform to accurately predict if an unknown toxin
molecule is a conotoxin. Such a platform will not only accelerate the identification of novel
biochemical threat agents but also benefit the development of biological prophylactics and
therapeutics, detection reagents, and medical countermeasures.

2. Results
2.1. Construction of Datasets

In order to evaluate how new features impact conotoxin prediction accuracy, negative
datasets were separated into easy-negative and hard-negative datasets. The easy-negative
dataset contains peptides (from more than 100 species, including humans, yeast, zebrafish,
mice, eels, chickens, and cattle) that are confirmed to be non-toxic, while the hard-negative
dataset contains toxic peptides from spiders, scorpions, snakes, beetles, frogs, wasps, and
ants, as well as conantokins and contryphans from cone snails. Toxic peptides were catego-
rized as part of the hard-negative dataset with the expectation that they may contain similar
amino acid compositions (regions) and also share similar binding sites with conotoxins;
thus, they would be more difficult to distinguish from the conotoxins.

In general, three datasets: a positive, an easy-negative, and a hard-negative dataset,
were constructed for the training and testing of the ML approach (see the methods section).
These three datasets were initially collected from the Protein Data Bank (PDB) using the
keywords indicated in the methods section. The positive datasets include conotoxins
obtained from the Conoserver, PDB, and the Biological Magnetic Resonance Bank websites.
These conotoxins are from twelve (12) distinct classes, including the alpha, delta, mu, and
omega classes, that target nicotinic acetylcholine receptors (nAChRs), GABA receptors, and
potassium (K+), calcium (Ca2+), and sodium (Na+) ion channel receptors. A distribution
of these classes is shown in Figure S1. We initially constructed small-sized datasets that
include a positive dataset containing 154 conotoxins, an easy-negative dataset containing
180 non-toxic peptides, and a hard-negative dataset containing 178 peptides. To test
how consistently the new features affect conotoxin prediction accuracy, we expanded our
datasets by adding more entries into these small datasets. The extended datasets include a
positive dataset containing a total of 184 conotoxins, an easy-negative dataset containing
317 non-toxic peptides, and a hard-negative dataset containing 560 peptides. All the entries
in these datasets are peptides with lengths equal to or less than 80 residues and with known
three-dimensional structures. Sequences with more than a 90% sequence identity were
removed from the negative datasets. A summary of all the datasets collected and used
for the ML experiments is shown in Table 1. A full list of these datasets along with all the
features extracted is available in File S1.
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Table 1. Number of samples in small and extended datasets used in the machine learning experiments.

Dataset Names Number of Samples Dataset Names Number of Samples

Small positive 154 Extended positive 184

Small easy-negative 180 Extended
easy-negative 560

Small hard-negative 178 Extended
hard-negative 317

2.2. Feature Extraction and Selection

Thirteen features belonging to three general categories (compositional, physiochemical,
and structural) were divided into four groups (P, P2, SS, and CCS) (Figure 2). The compo-
sitional features consist of the peptide amino acid sequence, the frequency of amino acid
occurrence, both of which have been used for standard biomolecular classifications [23–25],
and the number of post-translational modifications (PTMs). Since conotoxins show high
concentrations of PTMs, this is an important feature that has not yet been considered for
improving prediction accuracy. New parameters for some common PTMs are found in
Table S1. The physiochemical features include protein charge, mass, size, relative polarity,
and hydrophobicity as shown in Table S2. The structural features inform peptide folds and
include secondary structure identities, the radius of gyration, disulfide bond counts, and
solvent-accessible surface areas (SASA). Because conotoxin function depends on surface
topological interactions, we hypothesize that by characterizing the chemical surface of
conotoxins, we should see an improvement in classification. Therefore, the SASA of each
residue on the peptide was quantified. In addition, in order to test if an unknown conotoxin
can be quickly and accurately predicted using an experimental parameter such as the
CCS value obtained from an IM-MS experiment, we added the computationally calculated
CCS values to the list of features for ML prediction. Additional details on the features are
included in Supplemental Tables S2 and S3, and a visual aid for the surface characteristics
is shown in Figure S2.
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Figure 2. Features were divided into four groups (P, P2, SS, and CCS), and the effect of each feature
group was evaluated with regard to conotoxin prediction accuracy.

To determine the performance of the feature groups on conotoxin prediction, each
feature group was, either individually or in combination with other feature groups, eval-
uated for efficacy. The features were split into four groups, identified as P, P2, SS, and
CCS, as shown in Figure 2. The feature group P contains the counts for 11 sequence-level
features (aliphatic, aromatic, polar, hydrophobic, charged, positively charged, negatively
charged, tiny, small, large, and total), as well as total charge, mass, dipeptide 0 gap, and
dipeptide 1 gap. Dipeptide 0 and dipeptide 1 are the frequencies of co-occurring residues
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in the sequence as adjacent neighbors or with one residue separating them, respectively.
Most of the current ML models use only the P features to train ML algorithms [26]. The
feature group SS contains the residue counts for each of the defined secondary structures
extracted from the Define Secondary Structure of Proteins DSSP [27,28] program (Table S3),
namely disulfide-bond count, the radius of gyration, and the SASA of the residue types,
including the PTMs. The feature group P2 contains the counts of PTMs and the frequency
of the dipeptide 2 gap, which is the frequency of residues appearing as neighbors with two
residues separating them. The feature group CCS contains the CCS values of all the entries
calculated by the HPCCS program using the corresponding structure files from the PDB. A
list of all feature sets is included in Table S4.

2.3. Effect of Features on Prediction Performance

One common challenge with training ML models on biological samples is that the
dataset sizes are usually small because the available experimental biological data are very
limited. This is especially true for the positive datasets. In contrast, the negative datasets
have considerably more entries due to their diversified sequences and the availability of
more experimental data.

2.3.1. Improved Predicting Power from New Features across All Datasets

In order to determine how the PTMs, structural features, and CCS features affect
classification performance, these features were tested on small and extended datasets
(Table 1) using four different ML classifiers: a Penalized Logistic Regression (PLR) [29], a
Support Vector Machine (SVM) [30], a Random Forest (RF) [31], and XGBoost [32]. Due to
the small positive dataset size, the models were tested using a leave-one-out cross validation
in which the models were trained using all but one entry and then tested with the entry
that was left out, which is then repeated, leaving a different entry out each time [29]. The
best average accuracy (AA) and f1 scores obtained from these four classifiers are shown in
Table 2. The addition of the CCS, P2, and SS features was shown to consistently increase
the classifiers’ AA performance by between 0.08 and 2.8%, with f1 scores increasing by
up to 0.0253 across small and extended datasets, with more impact on the conotoxins
vs. easy + hard-negative datasets, indicating that these features are highly beneficial for
predicting conotoxins.

Table 2. The average accuracy and f1 scores of classification performance across different datasets.

Datasets

Feature Sets

P P + SS + CCS P + P2 P + SS + CCS + P2

AA f1 AA f1 AA f1 AA f1

Small
Datasets

Conotoxins vs.
Easy-negative 0.9457 0.9272 0.9311 0.9236 0.9468 0.9338 0.9422 0.9302

Conotoxins vs.
Hard-negative 0.9376 0.9428 0.9437 0.9392 0.9550 0.9498 0.9489 0.9431

Conotoxins vs. Easy
+ Hard-negative 0.9231 0.8917 0.9237 0.8967 0.9337 0.9045 0.9364 0.9170

Extended
Datasets

Conotoxins vs.
Easy-negative 0.9490 0.9167 0.9504 0.9080 0.9483 0.9290 0.9571 0.9271

Conotoxins vs.
Hard-negative 0.9308 0.9089 0.9292 0.9135 0.9396 0.9200 0.9387 0.9259

Conotoxins vs. Easy
+ Hard-negative 0.9052 0.8824 0.9185 0.8854 0.9314 0.9027 0.9333 0.9035

2.3.2. Conotoxin Prediction Accuracy

Additional detailed testing was evaluated using the extended datasets to reveal the
effect of individual feature sets and different feature set combinations on ML classification
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performance. Three metrics (overall accuracy (OA), average accuracy (AA), and f1 score
(f1)) were used to evaluate the classification performance, as indicated in the methods
section. Higher values for these metrics indicate a better performance of the classifier.

Table 3 shows the performance of the PLR and SVM classifiers (Top) and RF and
XGBoost classifiers (Bottom) for predicting conotoxins against the easy-negative dataset
(non-toxic peptides). The results show that the SS features alone, or in combination with the
CCS feature did not increase the prediction accuracy and f1 score compared to P features
alone. Similarly, the addition of the CCS feature on top of the P features (P + CCS), the
addition of SS features on top of the P2 features (SS + P2), or the addition of the CCS
and SS features on top of the P2 features (CCS + SS + P2) did not significantly affect the
performance of all four classifiers. However, adding the SS features on top of the P feature
set (P + SS) increased all three metrics for the PLR, SVM, and XGBoost classifiers, while
almost no change was observed for the RF classifier. In particular, the OA was increased
by 1.34%, the AA by 2.52%, and the f1 score by 0.0241 for the PLR classifier; the OA by
1.75%, the AA by 1.69%, and the f1 score by 0.0417 for the SVM classifier; and the OA by
1.08%, the AA by 1.37%, and the f1 score by 0.0241 for the XGBoost classifier. Interestingly,
adding the P2 features on top of the P features (P + P2) increased all three metrics for all
four classifiers: PLR, SVM, RF, and XGBoost. Specifically, for the PLR classifier, adding the
P2 feature (P + P2) increased the OA by 2.15%, the AA by 4.1%, and the f1 score by 0.0397,
and these numbers are quite similar for the SVM classifier (the OA increased by 2.15%, the
AA increased by 3.1%, and the f1 score increased by 0.0473). For the XGBoost classifier,
smaller increases were observed, for which the OA increased by 1.21%, the AA increased
by 1.81%, and the f1 score increased by 0.0263, while these numbers are slightly lower for
the RF classifier, for which the OA increased by 0.53%, the AA increased by 0.59%, and the
f1 score increased by 0.0123.

When all the features were combined (P + SS + CCS + P2), the best performance was
obtained across all four classifiers and over all three metrics, with converged numbers of
an OA of ~96%, an AA of ~95%, and an f1 score of ~0.92. The combination of the features
significantly improved the performance of the PLR and SVM classifiers, with an increase in
the OA by 3.36%, the AA by 5.58%, and the f1 score by 0.0668 for the PLR classifier, while
the SVM classifier saw an OA increase of 2.55%, an AA increase of 3.1%, and an f1 score
increase of 0.0579. These increases are slightly smaller for the XGBoost classifier, with an
OA increase of 1.35%, an AA increase of 2.1%, and an f1 score increase of 0.029, while for
the RF classifier, only a slight improvement was observed, with an OA increase of 0.27%,
an AA increase of 0.39%, and an f1 score increase of 0.0059. This result is consistent with
the addition of P2 features on top of the P features (P + P2), where larger improvements
were made for the PLR and SVM classifiers and only a slight improvement was obtained
for the XGBoost classifier, with the least improvement observed for the RF classifier.
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Table 3. The classification performance of different feature sets for the extended conotoxins versus the extended easy-negative dataset (non-toxic peptides).
Performance of the PLR and SVM classifiers (top table) and the RF and XGBoost classifiers (bottom table) is show.

Classifier PLR SVM

Feature Sets OA AA Recall Precision f1 OA AA Recall Precision f1

P 0.9328 0.8978 0.8280 0.8953 0.8603 0.9355 0.9134 0.8735 0.8430 0.8580
SS 0.8884 0.8344 0.6996 0.9070 0.7899 0.8884 0.8344 0.6978 0.9128 0.7909

SS + CCS 0.8925 0.8392 0.7054 0.9186 0.7980 0.8804 0.8252 0.6797 0.9128 0.7792
P + CCS 0.9368 0.9058 0.8453 0.8895 0.8669 0.9341 0.9021 0.8398 0.8837 0.8612
P + SS 0.9462 0.9230 0.8793 0.8895 0.8844 0.9530 0.9303 0.8870 0.9128 0.8997

P + SS + CCS 0.9570 0.9365 0.8977 0.9186 0.9080 0.9476 0.9216 0.8715 0.9070 0.8889
P + P2 0.9543 0.9389 0.9107 0.8895 0.9000 0.9570 0.9444 0.9217 0.8895 0.9053

SS + P2 0.9328 0.8931 0.8081 0.9302 0.8649 0.9368 0.8993 0.8205 0.9302 0.8719
CCS + SS + P2 0.9261 0.8836 0.7910 0.9244 0.8525 0.9328 0.8924 0.8050 0.9360 0.8656

P + SS + CCS + P2 0.9664 0.9536 0.9298 0.9244 0.9271 0.9610 0.9444 0.9133 0.9186 0.9159

Classifier RF XGBoost

Feature Sets OA AA Recall Precision f1 OA AA Recall Precision f1

P 0.9624 0.9540 0.9390 0.8953 0.9167 0.9489 0.9312 0.8988 0.8779 0.8882
SS 0.9355 0.9080 0.8563 0.8663 0.8613 0.9382 0.9130 0.8663 0.8663 0.8663

SS + CCS 0.9435 0.9206 0.8779 0.8779 0.8779 0.9328 0.9030 0.8466 0.8663 0.8563
P + CCS 0.9597 0.9501 0.9329 0.8895 0.9107 0.9462 0.9273 0.8929 0.8721 0.8824
P + SS 0.9610 0.9511 0.9333 0.8953 0.9139 0.9597 0.9449 0.9176 0.9070 0.9123

P + SS + CCS 0.9556 0.9416 0.9162 0.8895 0.9027 0.9543 0.9357 0.9012 0.9012 0.9012
P + P2 0.9677 0.9599 0.9458 0.9128 0.9290 0.9610 0.9493 0.9281 0.9012 0.9145

SS + P2 0.9570 0.9462 0.9268 0.8837 0.9048 0.9530 0.9361 0.9053 0.8895 0.8974
CCS + SS + P2 0.9597 0.9520 0.9383 0.8837 0.9102 0.9503 0.9308 0.8947 0.8895 0.8921

P + SS + CCS + P2 0.9651 0.9579 0.9451 0.9012 0.9226 0.9624 0.9522 0.9337 0.9012 0.9172
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Similar to the predictions of conotoxins against the easy-negative dataset, the addition
of the P2 features on top of the P features (P + P2) increases the overall performance
across the PLR, SVM, RF, and XGBoost classifiers in predicting conotoxins against the
hard-negative dataset (other toxic peptides), as shown in Table 4. When all the features
are combined (P + SS + CCS + P2), the performance again improves over all three metrics
and across all four classifiers when compared to just using P as the only feature. Both the
PLR and SVM classifiers show similar increases of 1.55% for the OA, 2.21% for the AA,
and 0.0255 for the f1 score; and 1.51% for the OA, 2.31% for the AA, and 0.0262 for the f1
score, respectively. The RF classifier shows slight improvement (the OA increases by 1.2%,
the AA by 1.19%, and the f1 score by 0.017), while the XGBoost classifier shows the least
improvement (the OA increases by 0.84%, the AA by 0.89%, and the f1 score by 0.0127).
Notably, the combination of all the features (P + SS + CCS + P2) shows the best performance
for three classifiers: the PLR, SVM, and RF. For the XGBoost classifier, (P + P2) and (P + SS +
CCS + P2) show similar performance. Interestingly, (P + SS) or (P + SS + CCS) show similar
performance for all four (PLR, SVM, RF, and XGBoost) classifiers.

When the easy-negative and hard-negative extended datasets are mixed and tested
together, the addition of the P2 features on top of the P features (P + P2) and the combination
of all the features (P + SS + CCS + P2) improve the predictive performance for all four
classifiers over all three metrics, the OA, AA and f1 score, as shown in Table 5. Overall,
(P + P2) and (P + SS + CCS + P2) show the best performance across all the classifiers. When
all the features are combined (P + SS + CCS + P2), the OA is increased by 1.64%, the AA by
1.56%, and the f1 score by 0.0421 for the PLR classifier. For the SVM classifier, the increases
are 1% for the OA, 0.72% for the AA, and 0.0245 for the f1 score. Similar increases are
obtained for the RF and XGBoost classifiers, with an increase in the OA by 0.62%, the AA
by 1.14%, and the f1 score by 0.0211, and the OA by 0.72%, the AA by 1.05%, and the f1
score by 0.0218, respectively.

2.4. A Comparison of Our Model Performance to Previously Published Models

Overall, the RF classifier has the best performance in predicting conotoxins from
non-toxic or other toxic peptides across multiple datasets. Table 6 shows how our model
performance compares to previously published models (i.e., TOXIFY [9], ToxClassifier [10],
ClanTox [11], ToxinPred [12], PredCSF [13]). When the primary sequence is used as the
only feature, our model outperforms the best-performing published model, ToxinPred,
by 1.74% in OA and 0.1% in Recall. When adding P2 on top of the primary amino acid
sequence feature, our model outperforms ToxinPred by 2.27% in OA and 0.78% in recall.
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Table 4. The classification performance of different feature sets for the extended conotoxins versus the extended hard-negative dataset (other toxic peptides).
Performance of the PLR and SVM classifiers (top table) and the RF and XGBoost classifiers (bottom table) is shown.

Classifier PLR SVM

Feature Sets OA AA Recall Precision f1 OA AA Recall Precision f1

P 0.9159 0.9021 0.8580 0.8978 0.8740 0.9205 0.9033 0.8488 0.9164 0.8786
SS 0.8737 0.8787 0.8946 0.7800 0.8301 0.8716 0.8789 0.9022 0.7727 0.8294

SS + CCS 0.8723 0.8779 0.8958 0.7757 0.8287 0.8694 0.8766 0.8996 0.7690 0.8262
P + CCS 0.9171 0.9059 0.8701 0.8908 0.8770 0.9213 0.9062 0.8582 0.9115 0.8810
P + SS 0.9229 0.9139 0.8856 0.8937 0.8867 0.9225 0.9126 0.8812 0.8954 0.8857

P + SS + CCS 0.9212 0.9118 0.8820 0.8931 0.8843 0.9227 0.9132 0.8829 0.8961 0.8864
P + P2 0.9290 0.9180 0.8831 0.9120 0.8943 0.9344 0.9222 0.8835 0.9260 0.9014

SS + P2 0.9153 0.9161 0.9189 0.8521 0.8819 0.9112 0.9130 0.9190 0.8434 0.8772
CCS + SS + P2 0.9162 0.9166 0.9183 0.8547 0.8831 0.9075 0.9109 0.9217 0.8353 0.8734

P + SS + CCS + P2 0.9314 0.9242 0.9015 0.9035 0.8995 0.9356 0.9264 0.8974 0.9176 0.9048

Classifier RF XGBoost

Feature Sets OA AA Recall Precision f1 OA AA Recall Precision f1

P 0.9386 0.9289 0.8979 0.9237 0.9089 0.9347 0.9256 0.8968 0.9152 0.9031
SS 0.9165 0.9091 0.8859 0.8786 0.8793 0.9129 0.9033 0.8727 0.8790 0.8728

SS + CCS 0.9120 0.9052 0.8835 0.8696 0.8733 0.9125 0.9038 0.8766 0.8754 0.8727
P + CCS 0.9399 0.9305 0.9005 0.9261 0.9103 0.9358 0.9258 0.8941 0.9212 0.9049
P + SS 0.9395 0.9289 0.8951 0.9297 0.9096 0.9339 0.9243 0.8938 0.9158 0.9019

P + SS + CCS 0.9424 0.9315 0.8970 0.9350 0.9135 0.9340 0.9247 0.8954 0.9151 0.9025
P + P2 0.9463 0.9364 0.9051 0.9396 0.9199 0.9440 0.9367 0.9134 0.9265 0.9175

SS + P2 0.9428 0.9344 0.9074 0.9275 0.9154 0.9222 0.9147 0.8908 0.8892 0.8867
CCS + SS + P2 0.9392 0.9314 0.9070 0.9187 0.9104 0.9229 0.9153 0.8910 0.8899 0.8877

P + SS + CCS + P2 0.9506 0.9408 0.9092 0.9467 0.9259 0.9431 0.9345 0.9070 0.9289 0.9158
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Table 5. The classification performance of different feature sets for the extended conotoxins versus the mixed extended negative dataset (easy-negative + hard-
negative or non-toxic + other toxic peptides). Performance of the PLR and SVM classifiers (top table) and of the RF and XGBoost classifiers (bottom table)
is shown.

Classifier PLR SVM

Feature Sets OA AA Recall Precision f1 OA AA Recall Precision f1

P 0.9370 0.9159 0.8848 0.7700 0.8197 0.9403 0.9190 0.8877 0.7805 0.8273
SS 0.8840 0.8916 0.9028 0.5980 0.7166 0.8737 0.8850 0.9017 0.5722 0.6979

SS + CCS 0.8814 0.8899 0.9024 0.5908 0.7113 0.8759 0.8882 0.9063 0.5777 0.7032
P + CCS 0.9436 0.9199 0.8851 0.7963 0.8352 0.9453 0.9228 0.8896 0.8020 0.8402
P + SS 0.9469 0.9253 0.8934 0.8054 0.8444 0.9467 0.9248 0.8925 0.8048 0.8433

P + SS + CCS 0.9437 0.9260 0.8998 0.7901 0.8380 0.9458 0.9292 0.9047 0.7965 0.8443
P + P2 0.9535 0.9276 0.8894 0.8371 0.8599 0.9524 0.9234 0.8808 0.8376 0.8554

SS + P2 0.9191 0.9162 0.9120 0.6919 0.7841 0.9163 0.9195 0.9242 0.6818 0.7821
CCS + SS + P2 0.9201 0.9203 0.9205 0.6949 0.7891 0.9105 0.9182 0.9295 0.6611 0.7705

P + SS + CCS + P2 0.9534 0.9315 0.8992 0.8322 0.8618 0.9503 0.9262 0.8907 0.8242 0.8518

Classifier RF XGBoost

Feature Sets OA AA Recall Precision f1 OA AA Recall Precision f1

P 0.9658 0.9087 0.8248 0.9579 0.8824 0.9611 0.9161 0.8499 0.9078 0.8743
SS 0.9516 0.8771 0.7676 0.9209 0.8324 0.9466 0.8881 0.8020 0.8631 0.8267

SS + CCS 0.9505 0.8718 0.7560 0.9222 0.8274 0.9431 0.8798 0.7866 0.8538 0.8141
P + CCS 0.9670 0.9092 0.8242 0.9667 0.8876 0.9642 0.9214 0.8584 0.9167 0.8836
P + SS 0.9666 0.9064 0.8179 0.9711 0.8844 0.9646 0.9223 0.8600 0.9188 0.8850

P + SS + CCS 0.9659 0.9052 0.8158 0.9665 0.8819 0.9646 0.9224 0.8604 0.9186 0.8854
P + P2 0.9716 0.9188 0.8409 0.9811 0.9027 0.9702 0.9336 0.8798 0.9342 0.9033

SS + P2 0.9673 0.9139 0.8352 0.9585 0.8895 0.9583 0.9051 0.8269 0.9089 0.8621
CCS + SS + P2 0.9664 0.9103 0.8277 0.9588 0.8849 0.9610 0.9137 0.8441 0.9108 0.8730

P + SS + CCS + P2 0.9720 0.9201 0.8438 0.9789 0.9035 0.9683 0.9266 0.8652 0.9363 0.8961
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Table 6. A comparison of our model performance to previously published models.

Method Training Set Acc Recall Types of Features Usage

This paper (RF) See Methods 0.9624 0.9390 Sequence Used to predict conotoxins from
non-toxic peptides

This paper (RF) See Methods 0.9677 0.9458 Sequence and
PTMs

Used to predict conotoxins from
non-toxic peptides

TOXIFY [9] Swiss-Prot-derived 0.8600 0.7600 Sequence Used to predict if a peptide is toxic
ToxClassifier [10] Swiss-Prot-derived 0.7700 0.5600 Sequence Used to predict if a peptide is toxic

ClanTox [11] Swiss-Prot-derived 0.6800 0.5400 Sequence Used to predict if a peptide is toxic
ToxinPred [12] Composite dataset 0.9450 0.9380 Sequence Used to predict if a peptide is toxic
Pred-CSF [13] S2 0.9065 0.8793 Sequence Used to predict conotoxin super families

Comparative table of prediction results from multiple models showing the accuracy and recall of different methods.
Training sets used by the above methods include an S2 dataset, a Swiss-Prot-derived dataset, and a composite
dataset. The S2 dataset is a superfamily training set containing 261 entries with four superfamilies: A (63 samples),
M (48 samples), O (95 samples), and T (55 samples). The Swiss-Prot-derived dataset consists of Swiss-Prot entries,
as described in [9]. The composite dataset consists of small toxins from several different databases, with entries
having more than 35 residues and any non-natural amino acids removed.

3. Discussion

We have demonstrated that, contrary to the current practice of using only the primary
sequence (P) feature, the inclusion of PTM information as well as CCS values, when
coupled with additional structural features, improves the prediction accuracy of conotoxins
against non-toxic and other toxic peptides across varied datasets and across four different
commonly used ML classifiers (PLR, SVM, RF, and XGBoost). In particular, the addition
of these new features improved the PLR classifier significantly, with an overall accuracy
increase of ~93% to ~97%, while the average accuracy increased from ~90% to 95%, and the
f1 score increased from 0.8603 to 0.9271 when predicting conotoxins from non-toxic samples
(the extended easy-negative dataset). The fact that all four classifiers converge to similar
final accuracies and f1 scores indicates that the addition of new features increases both
prediction accuracy and confidence when predicting conotoxins from non-toxic peptides.
Furthermore, the performance of the RF and XGBoost classifiers is slightly better than
the other two classifiers (PLR and SVM, which have similar performance) across different
datasets, suggesting that either the RF or XGBoost classifier can be used successfully to
build the final model for conotoxin prediction. However, the RF classifier seems to be a
better choice due to its consistently higher performance across various datasets.

Our findings also suggest that there are conserved chemical and structural signatures
across conotoxins that distinguish them from non-toxic peptides and other kinds of tox-
ins. The acquisition of new, additional experimental data on isomer conformations of
conotoxins would be helpful to expand the training datasets and to bolster the impact of
CCS and structural features. Our results also imply the existence of similar chemical and
structural signatures in other toxin families and that an ML platform that predicts different
kinds of toxins and their toxicity is feasible. Additionally, traditional structure–function
relationships suggest that such features can also be used for the prediction of receptor
binding partners.

4. Materials and Methods
4.1. Construction of Datasets

Conotoxin data were extracted from the Conoserver [33], Protein Data Bank [34], and
Biological Magnetic Resonance Bank [35] websites. Both easy- and hard-negative datasets
were constructed using peptide samples with lengths equal to or less than 80 residues and
with known three-dimensional structures. The easy-negative dataset includes samples
that are not toxic, while the hard-negative dataset consists of toxic peptides, including
spider, scorpion, and snake toxins. Entries containing post-translational modifications were
included in all the datasets.
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Negative datasets were obtained from the Protein Data Bank using keyword searches.
The easy-negative dataset was built using the search term “NOT toxic”, and the hard-
negative dataset was constructed using the search terms “toxic” and “species NOT conus”,
and entries were limited to peptides with a maximum length of 80 amino acids. Entries
with the keywords “Synthetic”, “Unknown function”, or “De Novo” were all removed
from the datasets. Entries that were conantokins, prions, antifungal, or antimicrobial were
placed in the hard-negative dataset regardless of other identifying tags.

4.2. Feature Extraction

The general workflow for feature extraction from PDB/structure files is shown in
Figure 3. Basically, the amino acid sequence of an entry is extracted from the PDB/structure
file, and the corresponding structural features are then extracted from the PDB/structure
file using the DSSP [28] program.
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The thirteen features extracted from the datasets, belonging to three general categories,
were divided into four groups (P, P2, SS, and CCS), as shown in Figure 2. Within the
compositional category, primary sequence features include amino acid composition, such
as the frequency of occurrence, and the g-gap dipeptide feature to reflect the position
of each amino acid in the sequences. G-gap peptide features count the frequencies of
co-occurring residues in the sequence as neighbors with a g-residue separating them. We
used g = 0, 1, 2 to extract amino acid positional information with adjacent amino acids or
with one or two residues separating them, respectively. Physiochemical features include
the charge, mass, relative size, and relative polarity (aliphatic, aromatic, polar, hydrophobic,
positively charged, negatively charged) of each residue, as previously described [24]. For
non-standard amino acids, the physiochemical features were manually assigned based
on their modifications, i.e., non-polar sidechains modified by the addition of an alcohol
were reassigned as polar, as with hydroxyproline. A similar analysis, as conducted for the
standard amino acids, was performed.
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Structural features include secondary structure information, the area exposed to
solvent within each physiochemical class, the radius of gyration, and CCS values. The
DSSP software (version 3.0.0) [27,28,36,37] was used to calculate the secondary structure
type and solvent-eposed surface area for each amino acid. The software package HPCCS
(version 1.0) [22] was used to calculate CCS values based on the masses and partial charges
determined by pdb2pqr (version 2.1.1) [37,38] for each atom in every input PDB file. For
PTMs, custom parameters were employed based on the amber force field [39]. The Cα
positions were used to calculate the radius of gyration.

4.3. Feature Selection Procedure
4.3.1. F-Score

The goal of the feature selection step is to find the best feature subsets to maximize the
robustness and the performance of the classifiers, and this will be discussed below in more
detailed. Here we use F-score, a variance-based analysis, which measures the classifying
power of the features, where the larger the F-score, the higher its classifying power. For
each feature, the F-score is calculated as follows:

F( f eature) =
variance between classes
variance within classes

4.3.2. Elimination of Highly Correlated Features

Before applying the feature selection protocol to the data, highly correlated features
were removed from the dataset. If this was not carried out, the feature selection method
would fail and select only a group of highly correlated features, which would negatively
affect the classifier’s performance. To address this issue, Pearson correlation coefficients are
computed between features to measure redundancy. If the correlation coefficient between
two features is larger than a preset threshold, the one with the smaller F-score is removed.
The preset threshold is a hyperparameter, whose value is highly dependent on the datasets.
The output of this process produces a smaller, but more independent, set of features, which
improves the classifier’s performance.

4.3.3. Incremental Feature Selection

The incremental feature selection framework [40] was employed to select the optimal
feature subset used to build the classifiers. All features were ranked using the F-score as
described above (Section 4.3.1), and redundant features were removed. All subsets are
formed from a range of features, and an ML method is used to measure their performance
with cross-validation. The simple linear SVM is used since the dataset size is small. The
optimum number of features is the one that produces the highest balanced accuracy.
Since our datasets are imbalanced, with more entries in the negative dataset compared
to the positive dataset, the balanced accuracy, which is the average accuracy weighted
by the classes’ size, is a better metric to evaluate the classifier’s performance than the
overall accuracy.

4.4. Classifiers

In this study, four common ML classifiers: PLR [29], SVM [30], RF [31], and XG-
Boost [32], were employed to evaluate how new features would affect the prediction
accuracy for the conotoxins. Given that our datasets are small, the aim was to keep our
models at low complexity to make the models more robust [41]. A linear kernel was
used for the SVM. As shown in Figure 4, the classifiers were trained using the training
data, meaning their parameters are optimized for the classifiers to fit the training data.
The trained classifier’s performance was then tested on the testing dataset. The trained
classifier, with its optimized parameters, was then used to make predictions on data with
unknown labels.
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4.5. Using Geometric SMOTE to Handle Imbalanced Datasets

When classifying conotoxins against the mixed extended negative datasets (easy-
negative + hard-negative or non-toxic + other toxic peptides), the data were highly imbal-
anced because the sample size of the negative dataset (877 entries) was much larger than the
sample size of known conotoxins (184 entries). Besides using the average accuracy metrics,
for better evaluation, an over-sampling technique called Geometric Synthetic Minority
Oversampling Technique (GSMOTE) [42] was used to correct for this issue. Oversampling
techniques are general approaches that address the imbalanced datasets by generating
artificial data for the minority class. The SMOTE [43] class of methods generates synthetic
samples along the line segments that connect minority class samples, which fills in the gap
between minority class samples and densifies the minority clusters. GSMOTE is a variant
of SMOTE that generates synthetic data, specifically in a geometric region of the minority
samples. In this way, noisy samples from the minority class are added to the data, which
increases the sample size without duplicating the samples in the classes.

4.6. Performance Evaluation

To maintain consistency across multiple datasets, a leave-one-out cross-validation
protocol was used to measure the performance of the classifiers. The metrics used to
measure the classification performance were the overall accuracy (OA), average accuracy
(AA), precision (Pr), recall (Re), and f1 score [44], which are defined as follows:

OA =
TP0 + TP1

N
where N − total number of samples
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AA =
(Sn0 + Sn1)

2

Pr =
TPi

TPi + FPi
i = 0, 1

Re =
TPi

TPi + FNi
i = 0, 1

f1 =
2 × Pr × Re

Pr + Re

where TPi and FNi are the true positives and false negatives for the ith class.

4.7. Machine Learning Pipeline

An overall ML pipeline is shown in Figure 4 and illustrates how the dataset was
used to train and cross-validate a classifier. The three main steps in our pipeline (feature
selection, classifier training, and prediction) were used on the testing data as indicated. For
consistency, only the leave-one-out cross-validation (LOOCV) protocol was implemented
throughout all the classifying tasks. The feature selection and redundant feature removal
steps were implemented on each of the training datasets. For imbalanced datasets, the
oversampling step was also applied to the training set.

The optimal number of features was determined using the incremental feature selec-
tion framework. Each classifier also had some hyperparameters that needed to be tuned.
For the SVM and PLR, only the regularization parameters were tuned, and these parameters
were automatically determined through the cross-validation within the training process.
The trained classifier was then applied and tested against samples to predict their label
as a conotoxin or not. The overall performance was evaluated using the OA, AA, and f1
score metrics.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/toxins15110641/s1. Figure S1: Distribution of conotoxin classes;
Figure S2: Solvent exposure; Table S1: HPCCS parameters for common post-translational modifi-
cations found in conotoxins; Table S2: List of physiochemical classes (left) and amino acids within
each class (right); Table S3: DSSP secondary structure definitions; Table S4: Feature sets; File S1: Six
datasets used in this study along with all features extracted.
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