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Abstract: Aflatoxin B1 (AFB1) is a hazardous mycotoxin that often contaminates animal feed and
may potentially induce severe liver damage if ingested. The liver is the primary organ responsible for
AFB1 detoxification through enzyme-catalyzed xenobiotic metabolism and bile acid (BA)-associated
excretion. In this study, we sought to investigate whether exogenous BA improves hepatic AFB1
detoxification to alleviate AFB1-induced liver injury in broiler chickens. Five-day-old broiler chicks
were randomly assigned to three groups. CON and AFB1 received a basal diet; AFB1 + BA received
a basal diet with 250 mg/kg BA for 20 days. After a 3-day pre-feed, AFB1 and AFB1 + BA were
daily gavaged with 250 µg/kg BW AFB1, while CON received gavage solvent for AFB1 treatment.
Dietary BA supplementation protected chickens from AFB1-induced hepatic inflammation and ox-
idative stress. The hepatic biotransformation of AFB1 to its metabolite AFBO was improved, with
accelerated excretion to the gallbladder and cecum. Accordantly, AFB1-induced down-regulation of
detoxification genes, including cytochrome P450 enzymes, glutathione S-transferases, and the bile
salt export pump, was rescued by BA supplementation. Moreover, liver X receptor α, suppressed by
AFB1, was enhanced in BA-treated broiler chickens. These results indicate that dietary BA supple-
mentation improves hepatic AFB1 detoxification and excretion through LXRα-involved regulation of
xenobiotic enzymes.

Keywords: bile acids; aflatoxin B1; detoxification system; liver X receptor α

Key Contribution: Supplementation of 250 mg/kg bile acids in daily feed benefits broilers with
AFB1-induced hepatic injuries by enhancing the biotransformation and excretion of AFB1.

1. Introduction

Aflatoxin B1 (AFB1) is considered the most recurrent and dangerous mycotoxin,
primarily produced by the fungi Aspergillus flavus and Aspergillus parasitica [1,2]. After
exposure, AFB1 is primarily taken up by hepatocytes from sinusoidal blood [3,4], causing
a range of serious health issues, including hepatotoxicity, genotoxicity, and immunosup-
pression [5]. AFB1 is a major concern for food safety and public health, as it not only
contaminates food crops but also remains as residue in human food derived from various
farm animals, including poultry [1,6,7].

AFB1 is an inert compound, and its toxicity is dependent on bioactivation (phase I)
and detoxification (phase II) pathways. The liver is the primary detoxification organ for
AFB1 [1,2]. AFB1 metabolism in the liver is mainly accomplished by CYP450 enzymes,
which are responsible for various reactions, including O-demethylation, ketone reduction,
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hydroxylation, and epoxidation [8]. AFBO, mainly catalyzed by CYP1A1, CYP1A2, and
CYP2A6 in chicken [9,10], is a primary and highly toxic AFB1 metabolite due to its ability
to react with DNA and proteins, forming harmful adducts. Importantly, a critical pathway
for AFB1 detoxification is the conjugation of AFBO with glutathione (GSH) by glutathione
S-transferases (GSTs) [8,11]. The metabolites of AFB1, including AFBO-GSH, are primarily
excreted into the intestine through bile flow and eventually eliminated from the body [3].

The expression of detoxification enzymes and xenobiotic transporters is regulated by
nuclear factors at the level of transcription [12]. Liver X receptor α (LXRα) is considered
a key transcription factor for the transactivation of detoxification enzymes and xenobi-
otic transporters, as it has been reported that human LXRα bidirectionally transactivates
CYP1A1 and CYP1A2 through two common cis-elements located on the overlapping 5′-
flanking region of these two genes [13], and LXRα agonists activate transcription of the
multidrug resistance-associated protein 2 gene that participates in hepatobiliary excretion
of endogenous and xenobiotic compounds [14].

Bile acids (BAs) are a class of structurally diverse molecules with detergent properties.
They are synthesized from cholesterol within hepatocytes and subsequently discharged
into the duodenum via the biliary system [15]. BAs exert their metabolic regulation,
anti-inflammation, and anti-oxidative stress functions through binding to their receptors,
including the farnesoid X receptor (FXR) [16], the G protein-coupled receptor (TGR5) [17],
or LXRα [18]. BAs are reported to mitigate the toxicity of xenobiotics encompassing
bilirubin [19] and endotoxins [20] in mice and T-2 in chickens [21] by upregulating the
activities of xenobiotic metabolic enzymes or efflux transporters. This study aimed to
reduce aflatoxicosis in broilers, with reported evidence indicating that sea buckthorn
oil [22] and hydrated sodium calcium aluminosilicate [23] through reducingreduce the
residues of AFB1, stimulate hepatic protein synthesis, or enhance immune function in the
liver. However, it remains unknown whether exogenous BAs alleviate AFB1-induced liver
injury in broiler chickens and whether the detoxification effect of BA, if any, involves the
regulation of LXRα and its target genes responsible for hepatic AFB1 biotransformation
and excretion.

Here, we use broiler chickens as a model to investigate whether dietary supplemen-
tation of a compound BA preparation could alleviate AFB1-induced inflammation and
oxidative stress and whether this is associated with LXRα-related regulation of hepatic
detoxification genes, including bioactivation (phase I) and detoxification (phase II) enzymes,
as well as ABC transporters responsible for AFB1 excretion.

2. Results
2.1. Dietary BA Supplementation Alleviates AFB1-Induced Morphological Changes Induced by
AFB1 in the Liver and Gallbladder

No significant differences among the three groups were observed in body weight, liver
weight, or liver weight relative to body weight (Figure S1). Morphological examination
of liver sections revealed more infiltrating immune cells in the AFB1 group, which was
significantly reduced in the AFB1 + BA group (Figure 1A,B). Interestingly, the gall bladder
weight was significantly (p < 0.05) reduced in the AFB1 group, which was significantly
(p < 0.05) restored in the AFB1 + BA group (Figure 1C,D). Moreover, BA supplementation
significantly increased the bile volume as compared with both CON and AFB1 groups
(Figure 1E).

2.2. Dietary BA Supplementation Alleviates AFB1-Induced Hepatic Inflammation and
Oxidative Stress

BA supplementation significantly (p < 0.05) protected against AFB1-induced hepatic
upregulation (p < 0.05) of IL-1β, IFNγ, and iNOS mRNA (Figure 2A). IL-1β concentrations
in serum (Figure 2B) and liver (Figure 2C) showed the same pattern, suggesting the anti-
inflammatory effects of BA supplementation. Additionally, compared to the CON group,
there were no significant differences in T-AOC (Figure 2D) and MDA (Figure 2E), while
AFB1 induced a significant reduction (p < 0.05) in the activities of CAT (Figure 2F) and SOD
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(Figure 2G). Furthermore, the AFB1 + BA group exhibited a significant increase (p < 0.05)
in CAT and SOD activities, with no significant differences in T-AOC and MDA when
compared to the AFB1 group.
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inflammatory cells per unit area. (C) Phenotypic presentation of the gall bladder. (D) Gall bladder 
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inflammatory cells per unit area. (C) Phenotypic presentation of the gall bladder. (D) Gall bladder
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statistically significant when ** p < 0.01.

2.3. Dietary BA Supplementation Promotes the Turnover of AFB1/AFBO and Bile Acids

Compared to the CON group, the AFB1 group exhibited a significant increase (p < 0.05)
in AFB1 levels in serum (Figure 3A) and liver (Figure 3B). In contrast, BA supplementation
significantly reduced (p < 0.05) AFB1 levels in both serum and liver compared to the AFB1
group. Additionally, in comparison to the AFB1 group, the AFB1 + BA group showed
a significant increase (p < 0.05) in AFB1 concentrations in bile (Figure 3C) and cecum
content (Figure 3D), suggesting that BA supplementation promotes the excretion of AFB1.
Interestingly, AFBO displayed a distinct metabolic pattern. Compared to the CON group,
AFBO concentrations significantly increased (p < 0.05) in serum (Figure 3E) but decreased
significantly (p < 0.05) in the liver (Figure 3F) in the AFB1 group. On the contrary, compared
with the AFB1 group, the AFB1 + BA group exhibited a significant decrease (p < 0.05)
in serum and an increase (p < 0.05) in AFBO concentration in the liver. Furthermore,
compared to the AFB1 group, the AFB1 + BA group showed a significant increase (p < 0.05)
in AFBO concentrations in both bile (Figure 3G) and cecum content (Figure 3H) (p < 0.05).
These results suggest that dietary BA supplementation modulates the metabolism and
excretion of AFB1 in the liver. Additionally, serum TBA concentration (Figure 3I) was
not affected by AFB1 or BA. However, TBA concentration was significantly (p < 0.05)
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higher in the liver (Figure 3J) yet significantly lower (p < 0.05) in the bile (Figure 3K)
in the AFB1 group, which were both significantly reversed (p < 0.05) in the AFB1 + BA
group. No differences among groups were detected in TBA concentration or cecum content
(Figure 3L). Regression analyses between AFB1/AFBO and TBA concentrations revealed
significant (p < 0.001) negative correlations in serum (Figure 3M), liver (Figure 3N), and bile
(Figure 3O), respectively. The cecal concentration of AFB1 was not significantly correlated
with TBA concentration, yet a tendency toward positive correlation was observed between
AFBO and TBA in cecum content (r2 = 0.33, p = 0.08, Figure 3P). These results suggest that
dietary BA supplementation may promote AFB1 and AFBO excretion in association with
hepatobiliary TBA efflux in broiler chickens.
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2.4. Dietary BA Supplementation Upregulates Hepatic Expression of Detoxification Enzymes

AFB1 challenge significantly (p < 0.05) downregulated hepatic mRNA expression
of phase I detoxification enzymes such as CYP1A1 (Figure 4A), CYP1A2 (Figure 4B),
and CYP3A4 (Figure 4C) in broiler chickens. Such AFB1-induced downregulation was
significantly (p < 0.05) reversed in the AFB1 + BA group, except for the CYP2A6. Moreover,
BA supplementation significantly (p < 0.05) increased CYP2A6 (Figure 4D) mRNA levels
in the liver. The phase II detoxification enzyme GST was also significantly inhibited
in the liver of AFB1-challenged chickens at the level of both mRNAs (Figure 4E) and
enzyme activity (Figure 4F). BA supplementation significantly alleviated AFB1-induced
repression of GST activity in the liver. Accordantly, hepatic mRNA expression of GSTA2
(Figure 4G) and GSTCD (Figure 4H) was significantly (p < 0.05) increased in the AFB1
+ BA group. Meanwhile, the levels of BSEP mRNA (Figure 4I) and protein (Figure 4J)
were significantly (p < 0.05) reduced in the AFB1 group, which was significantly restored
(p < 0.05) in the AFB1 + BA group. Furthermore, while BA supplementation led to an
increase in the mRNA expression of MDR1, no significant differences were observed
among the three groups in the mRNA or protein expression levels of MRP2, MRP3, and
MRP4 (Figure S2). These results suggest that dietary BA supplementation improves AFB1
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metabolism and excretion in broiler chickens via modulating hepatic expression of genes
encoding detoxification enzymes.
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Figure 3. Effect of BA on the concentrations of AFB1, AFBO, and TBA in broiler chickens. (A) Serum
AFB1 concentration. (B) Hepatic AFB1 concentration. (C) Bile total AFB1 content. (D) Cecum
content AFB1 concentration. (E) Serum AFBO concentration. (F) Hepatic AFBO concentration.
(G) Bile total AFBO content. (H) Cecum content AFBO concentration. (I) Serum TBA concentration.
(J) Hepatic TBA concentration. (K) Bile TBA concentration. (L) Cecum content TBA concentration.
(M) Regression analyses between AFB1/AFBO and TBA concentrations in serum. (N) Regression
analyses between AFB1/AFBO and TBA concentrations in the liver. (O) Regression analyses between
AFB1/AFBO and TBA concentrations in bile. (P) Regression analyses between AFB1/AFBO and
TBA concentrations in cecum content. The differences were considered statistically significant when
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 4. Effect of BA on AFB1-induced hepatic levels of hepatic phase I, II enzymes, and transporters
in broiler chickens. (A) Hepatic mRNA expression of CYP1A1. (B) Hepatic mRNA expression of
CYP1A2. (C) Hepatic mRNA expression of CYP3A4. (D) Hepatic mRNA expression of CYP2A6.
(E) Hepatic mRNA expression of GST. (F) Hepatic GST activity. (G) Hepatic mRNA expression of
GSTA2. (H) Hepatic mRNA expression of GSTCD. (I) Hepatic mRNA expression of BSEP. (J) Hepatic
protein content of BESP. The differences were considered statistically significant when * p < 0.05,
** p < 0.01.

2.5. Dietary BA Supplementation Enhances Hepatic Expression of LXRα

Among five transcription factors reported to modulate hepatic detoxification genes,
LXRα was significantly (p < 0.05) decreased at the level of both mRNA (Figure 5A) and
protein (Figure 5E) in the liver of AFB1-challenged broiler chickens. BA supplementation
protected chickens from AFB1-induced hepatic LXRα downregulation at both mRNA and
protein levels. No significant alterations were determined in the hepatic mRNA expression
of FXR (Figure 5B), RARα (Figure 5C), or RXRα (Figure 5D). Hepatic FXR protein content
(Figure 5F) was significantly (p < 0.05) decreased in the AFB1 group, which was not reversed
by BA supplementation. These results suggest that LXRα may be involved in BA-induced
upregulation of detoxification genes in the liver of broiler chickens.
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Figure 5. Effect of BA on AFB1-induced hepatic nuclear receptors in broiler chickens. (A) Hepatic
mRNA expression of LXRα. (B) Hepatic mRNA expression of FXR. (C) Hepatic mRNA expression of
RARα. (D) Hepatic mRNA expression of RXRα. (E) Hepatic protein content of LXRα. (F) Hepatic
protein content of FXR. The differences were considered statistically significant when * p < 0.05,
** p < 0.01.

3. Discussion

In this study, we provide evidence that dietary supplementation with a compound
BA preparation protected broiler chickens from AFB1-induced hepatotoxicity, including
inflammation and oxidative stress. Quantitative analyses of AFB1 and its toxic metabolite
AFBO in serum, liver, bile, and cecum content implicate improved AFB1 metabolism
and AFB1/AFBO excretion from liver to gall bladder and cecum in BA-supplemented
chickens. Additionally, the detoxification effects of BA compounds are associated with the
upregulation of hepatic xenobiotic genes, including cytochrome P450s, GSTs, and BSEP,
with the possible participation of LXRα-mediated gene regulation.

Oxidative stress and inflammation are common indicators of AFB1 toxicity [5,24].
Chickens show heightened sensitivity to AFB1, as evidenced by a significant increase in
MDA, TNFα, and IFNγ levels in serum or spleen with 74 µg/kg AFB1 supplementation [25].
A similar study demonstrated a significant rise in duodenal MDA levels and a concurrent
reduction in CAT and SOD content when broiler feed was supplemented with 5 mg/kg
AFB1 [26]. In this study, the gavage of 250 µg/kg BW AFB1 to broilers triggered an
inflammatory response and oxidative stress, marked by a reduction in hepatic CAT and
SOD levels, coupled with an increase in the levels of TNFα, IL-1β, IFNγ, and iNOS in
serum or liver. These findings are similar to previous studies [27]. Importantly, BAs
exhibit significant efficacy in alleviating hepatic oxidative stress and inflammation across
various animal models. For example, dietary supplementation with 80 mg/kg BA has
been demonstrated to alleviate hepatic oxidative stress in broiler chickens under heat-
stress conditions [28]. Similar effects have also been confirmed with T-2 toxin, where
dietary supplementation with cholic acid contributes to mitigating oxidative stress and
hepatic inflammatory cell infiltration in chickens [21]. In our study, we provide compelling
evidence that dietary supplementation with BA protects broiler chickens from hepatic
immune cell infiltration, IL-1β production, and oxidative stress induced by sub-chronic
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exposure to AFB1, highlighting the potential detoxification efficacy of BA in a scenario that
closely resembles real conditions in broiler chicken farms.

Diverse mechanisms are reported underlying the mitigation effects of BA on hepatic
oxidative stress and inflammation [16,29]. For example, BA supplementation significantly
enhanced CAT and SOD activities in the liver while reducing MDA levels, thereby alleviat-
ing oxidative stress in largemouth bass exposed to a high-starch diet [30]. In vitro, pretreat-
ment of rat hepatocytes with UDCA enhanced the levels of glutathione, protein thiol, and
gamma-glutamyl-cysteine synthetase, alleviating H2O2-induced oxidative stress [31]. A
recent comparative trial suggests that sheep BAs outperform pig BAs in promoting growth
under heat stress, while pig BAs exhibit greater effectiveness in anti-oxidative stress and
anti-inflammatory effects by elevating the levels of SOD and decreasing the contents of
MDA, IL-1β, and TNFα [32]. In this experiment, BA exhibited effectiveness in alleviating
AFB1-induced oxidative stress and inflammation in broiler chicken livers, correlating with
a reduction in serum and hepatic AFB1 concentrations. Further analysis of AFB1 and AFBO
in bile and cecum content revealed that BAs facilitate the metabolism and clearance of
AFB1 through the hepatobiliary pathway. Similar findings align with previous research on
different animal models and toxins. For instance, intravenous administration of UDCA in
rats promoted the clearance of endotoxins through the hepatobiliary pathway [33]. Also,
dietary supplementation of BA reduced AFB1 concentrations in the hepatopancreas of
white shrimp [34]. Furthermore, supplementing the diet with 1% cholic acid improved
T-2 toxin metabolism in chickens, leading to decreased T-2 levels in plasma and liver and
mitigating T-2 toxin-induced liver inflammation and oxidative stress [21].

The turnover and clearance of xenobiotics are regulated by a series of bioactivation
and detoxification enzymes as well as transporters responsible for hepatobiliary excre-
tion [11,35]. In this study, broilers exposed to AFB1 exhibited disruptions in the expression
of hepatic detoxification enzymes, including a decrease in phase I (CYP1A1, CYP1A2, and
CYP3A4), phase II (GST), and phase III (BSEP). This observation is supported by previous
literature documenting the down-regulation of CYP1A1 [23] and GST expression [34] due
to AFB1 exposure. Notably, there was a significant increase in the expression of hepatic
CYP1A1 and CYP2A6 in response to AFB1 [36,37]. As highlighted in the literature, the
activity of AFB1 metabolic enzymes is influenced by various factors, including different
animal species, age, and organs [11,38]. Additionally, the efflux of AFB1 and its metabo-
lites primarily depends on the hepatobiliary pathway [39]. Our study further revealed a
significant decrease in BSEP expression induced by AFB1. Moreover, we found that BA
supplementation alleviated the AFB1-induced downregulation of genes involved in AFB1
bioactivation (CYP1A1 and CYP1A2), detoxification (GSTA2 and GSTCD), and excretion
(BSEP) in the liver. This finding is in line with previous studies. For example, supplemen-
tation of 250 mg/kg BA compound significantly increased GST activity in AFB1-exposed
white shrimps [34], and the addition of 1% cholic acid to the diet increased expression of
P450 isoenzymes and BSEP in broiler chickens challenged with T-2 toxin [21]. For a deeper
exploration of transcription factors in xenobiotic metabolism, we examined the expression
levels of FXR, RARα, RXRα, and LXRα [40]. AFB1 notably downregulated LXRα gene
expression and both LXRα and FXR protein levels in broiler livers in our study. Previous re-
search has suggested a positive correlation between the expression of hepatic detoxification
enzymes and FXR/LXRα levels [41]. It is noteworthy that the addition of BA to the diet
alleviated the AFB1-induced decrease in LXRα expression. This implies that LXRα may
play a role in regulating the expression of enzymes involved in AFB1 biotransformation
and elimination in broiler chickens. Notably, the BA compound used in our study contains
73.2% hyodeoxycholic acid, recognized as an agonist for LXRα [42]. Additionally, the
precise role of LXRα in the transcriptional regulation of xenobiotic metabolic genes in the
chicken liver, especially in the face of the AFB1 challenge, requires further validation.
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4. Conclusions

In conclusion, we provide evidence that a BA compound derived from porcine bile can
effectively protect broiler chickens from hepatic inflammation induced by the sub-chronic
AFB1 challenge. This is accomplished by transcriptional activation of genes involved in
AFB1 biotransformation, detoxification, and hepatobiliary efflux, thereby promoting the
turnover and clearance of AFB1 and its metabolite AFBO. Our findings suggest that the
BA compound can be used as a reliable and effective strategy for reducing aflatoxicosis in
chickens and possible residues of AFB1 and AFBO in chicken products.

5. Materials and Methods
5.1. Preparation of Bile Acids

The compound BA preparation used in the present study was produced by Shandong
Longchang Animal Health Care Co., Ltd. (Dezhou, China) from porcine bile through a
series of physicochemical methods, including saponification, decolorization, acidification,
purification, and drying. The purity of this BA compound is 96.9%, comprising 73.2%
hyodeoxycholic acid (HDCA), 19.8% chenodeoxycholic acid (CDCA), and 3.9% hyocholic
acid (HCA).

5.2. Birds, Diets, and Experimental Design

One-day-old male Ross 308 broiler chickens (45 chicks) were reared in the experimental
poultry house at Nanjing Agricultural University under standard conditions. After 4 days
of adaptation, the chickens were randomly divided into three treatment groups of three
replicates in each group (n = 15 birds per treatment). The CON and AFB1 groups were fed
a basal diet (Table 1), and the AFB1 + BA group was fed a basal diet supplemented with
250 mg BA/kg feed (Figure 6). After 3 days of pre-feeding, (1) the chickens in the CON
group only received solvent used in the gavage for the AFB1 treatment and diet without BA;
(2) the chickens in the AFB1 group daily received AFB1 only (250 µg/kg BW) by gavage and
diet without BA; and (3) the chickens in the AFB1 + BA groups were daily challenged with
AFB1 (250 µg/kg BW) by gavage and fed a diet containing BA (250 mg BA/kg feed). The
AFB1 solution for gavage administration was freshly prepared daily by being suspended
in a saline:ethanol (95:5) mixture [43]. The doses of BA [44] and AFB1 [45], along with the
intervention’s duration [23], were in accordance with the previous literature. Aflatoxin B1
(#MSS1003, with a purity of 99.4 ± 0.6%) was purchased from Qingdao Pribolab Pte., Ltd.
(Qingdao, China). Water and feed were provided ad libitum. The light regime was 23 L:1
D, and the room temperature started at 35 ◦C for the first 3 days and gradually reduced by
3 ◦C per week until 23 ◦C, with the humidity kept at 50–60% throughout the experiment.
On day 25, all chickens were sacrificed by rapid decapitation. Samples, including blood,
liver, gallbladder, bile, and cecum content, were collected and stored for further analysis.
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Table 1. Ingredients and nutrient composition of the diets for broiler chickens.

Items CON AFB1 AFB1 + BA

Ingredients, %
Wheat 25 25 25

Corn powder 20 20 20
Corn meal 14 14 14

Soybean meal 12 12 12
Rice powder 10 10 10

Corn gluten powder 4 4 4
Feather powder 2 2 2

DDGS 2 2 2
Candy meal 1 1 1

Rapeseed meal 3 3 3
Corn 2 2 2

Soybean oil 0.5 0.5 0.5
Limestone 1.2 1.2 1.2

Calcium hydrogen phosphate 1.4 1.4 1.4
Sodium chloride 0.29 0.29 0.29

Lysine 0.81 0.81 0.81
Methionine 0.13 0.13 0.13
Tryptophan 0.01 0.01 0.01

Choline 0.1 0.1 0.1
Premix 0.56 0.56 0.56

Bile acids, mg/kg 0 0 250
Calculated nutrient composition, %

Metabolizable energy, kcal/kg 3100 3100 3100
Crude protein 21 21 21

Calcium 1.30 1.30 1.30
Available phospholipid 0.80 0.80 0.80

Sodium chloride 0.80 0.80 0.80
Methionine 0.90 0.90 0.90

Lysine 0.60 0.60 0.60
Note: The premix was composed of the following per kg diet: Vitamin A 9000 IU; Vitamin D3, 3600 IU; Vitamin E,
12 IU; Vitamin K3, 3.00 mg; Vitamin B1, 2.00 mg; Vitamin B2, 6.90 mg; Vitamin B6, 2.70 mg; Vitamin B12, 0.02 mg;
D-Biotin, 0.23 mg; Nicotinic acid, 31.20 mg; Folic acid, 1.00 mg; Vitamin B5, 10.80 mg; Choline chloride, 0.30 g; Fe
(as FeSO4), 60.00 mg; Cu (as CuSO4), 12.00 mg; Mn, 90.00 mg; Zn (as ZnSO4), 90.00 mg; I (as KI), 0.80 mg; Se (as
Na2SeO3), 0.30 mg.

5.3. Histological Evaluation of Liver

Five chickens were randomly selected from each group (15 birds per group) for
histological examination. The liver samples were fixed overnight in 4% paraformaldehyde
and then embedded in paraffin. Five-micrometer slices were stained with hematoxylin and
eosin (H&E). Inflammatory infiltrating cells surrounding the portal vein were manually
counted under an optical microscope (Olympus-BX53, Olympus Corporation, Tokyo, Japan)
and quantified following a previously described method [46].

5.4. Determination of Enzymes/Factors Related to Inflammation, Oxidative Stress
and Detoxification

The activities of catalase (CAT, #BC0205), superoxide dismutase (SOD, #BC0175), and
glutathione S-transferase (GST, #BC0350), as well as the total antioxidant capacity (T-AOC,
#BC1315) and malondialdehyde (MDA, #BC0025) concentrations, were determined in liver
lysates using respective kits from Beijing Solarbio Science & Technology Co., Ltd. (Beijing,
China). The serum and hepatic concentrations of interleukin 1β (IL-1β, #MM-36910O1)
were determined by using a commercial ELISA kit from Jiangsu Meimian Industrial Co.,
Ltd. (Nanjing, China) following the manufacturer’s instructions.
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5.5. Determination of Total Bile Acids Concentration

Liver and cecal content were extracted using the method described previously [47].
The resulting extracts, together with the serum and bile samples, were used for determining
the total bile acids (TBA) (#H101T) and cholesterol (CHOL) (#H202) concentrations with an
automatic biochemical analyzer (Hitachi 7020, HITACHI, Tokyo, Japan) by using respective
commercial kits purchased from Meinkang Biotech Co., Ltd. (Ningbo, China).

5.6. Determination of AFB1 and AFBO Concentrations

Liver and cecal content were extracted using the method following the manufacturer’s
protocols as follows: frozen liver and cecal content were smashed and then added to
a 70% methanol solution. The mixture was vigorously oscillated for 3 min and then
filtered. The resulting extracts, together with the serum and bile samples, were used
for determining the contents of AFB1 (#MM-1911O1) and AFBO (#MM-95274O1) with a
full-wavelength microplate reader (Synergy 2, BioTek, Winooski, Vermont, USA) by using
respective commercial ELISA kits purchased from Jiangsu Meimian Industrial Co., Ltd.
(Shanghai, China).

5.7. Quantification of mRNA by Real-Time RT-PCR

Total RNA was extracted from the liver by using TRIzol reagent obtained from Tsingke
Biotech Co., Ltd. (#TSP401, Nanjing, China). A total of 1 µg of total RNA was reverse
transcribed into cDNA by using TransScript Uni All-in-One First-Strand cDNA Synthesis
SuperMix obtained from TransGen Biotech Co., Ltd. (#AU341-02-V2, Nanjing, China). A
total of 1 µL of diluted cDNA (1:20, v:v) was used for real-time PCR with PerfectStart Green
qPCR SuperMix obtained from TransGen Biotech Co., Ltd. (#AQ601-02, Nanjing, China)
using a Quant Studio™ 6 Flex Real-Time PCR System (Applied Biosystems, Wilmington,
Massachusetts, USA). All primers (Table 2) were synthesized by Tsingke Biotech Co., Ltd.
(Nanjing, China). The relative mRNA abundance was calculated with the 2−∆∆CT method
using PPIA as an internal reference (Table 2 and Table S1, and Figure S3).

Table 2. Nucleotide sequences of specific primers.

Target Genes GenBank Accession Primer Sequences (5′ to 3′) PCR Product (bp)

CYP1A1 NM_205147.2 F: TCGTCAACGACCTCTTTGGG
R: CAAGGCAGCGTACATCATGC 77

CYP1A2 NM_205146.3 F: GAGGATCCTGTGTGGTTCCG
R: AACTAAGGGGAAGCGTGGTG 132

CYP3A4 NM_001329508.2 F: CCCTGCAAAGACACTCCGAT
R: CTGGGGCCAAGGAATTGTCA 299

CYP2A6 PMID: 28377720 F: CTGCAGAGAATGGCATGAAG
R: CCTGCAAGACTGCAAGGAA 110

TNFα NM_204267.2 F: CTGAGGCATTTGGAAGCAGC
R: GACAGGGTAGGGGTGAGGAT 208

IL-1β NM_000576.3 F: AACCTCTTCGAGGCACAAGG
R: AGCCATCATTTCACTGGCGA 122

INF-γ NM_205149.2 F: CACTGACAAGTCAAAGCCGC
R: GCATCTCCTCTGAGACTGGC 232

iNOS NM_204961.2 F: CCAGCTGATTGGGTGTGGAT
R: CCTACGGGTCTCATCATGCC 150

GST NM_001001777.2 F: AGGAAACCACGCCTAGAGGA
R: TTTCATCCAGTGTACCGCCT 213

GSTA2 NM_001001776.2 F: GGCGCTGCAGTCAAGCTC
R: TCCTCGAATTCAACCCCAGC 282
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Table 2. Cont.

Target Genes GenBank Accession Primer Sequences (5′ to 3′) PCR Product (bp)

GSTCD XM_015276567.4 F: TCTTGATCGAGCATGGGCTG
R: TAAACTGGGGTGCCCACAAA 111

BSEP XM_052674968.1 F: ACCCAGGTGCAAATAGCCAAT
R: GCACCCAAACACTTCCCATC 77

FXR NM_001396910.1 F: AAAAGCCTAGACTGGGCCAC
R: GCCAACATGCCCATTTGCTT 253

LXRα NM_204542.3 F: CTTCCGCTGGTACTTCCTTTC
R: CAGGAGGCCTTCTTCAAGGT 70

RXRα XM_003642291.5 F: CCCTCTGAACACCAGGTGAC
R: ACAGAATCCAGCAGGAGCAC 280

RARα NM_204536.1 F: TCACCCCCTACGCCTTTTTC
R: AGGATTTGTCCTGGCAGACG 225

PPIA NM_001166326.2 F: GTGACTTTACGCGCCACAAC
R: TTGCTCGTCTTGCCGTCTTT 268

5.8. Total Protein Extraction and Western Blotting

Protein was extracted from a 30 mg frozen liver sample as previously described [48].
The protein concentration was determined using the BCA protein assay kit obtained from
Tsingke Biotech Co., Ltd. (#DQ111-01, Nanjing, China). Protein samples were loaded
on 10% SDS-PAGE gels for electrophoresis. The primary antibodies used in Western
blot analysis for BSEP (#A8467, ABclonal, Wuhan, China, diluted 1:1000), LXRα (#A2141,
ABclonal, Wuhan, China, diluted 1:1000), FXR (#A8320, Wuhan, China, diluted 1:1000),
and GAPDH (#AC001, Wuhan, China, diluted 1:100,000) were purchased from ABclonal
Technology Co., Ltd. (Wuhan, China). β-actin, or GAPDH, was used as the internal control.

5.9. Statistics

All the data are presented as means ± SEM. A one-way ANOVA in IBM SPSS 20.0
software (SPSS Inc., Chicago, IL, USA) was used to test the significance of the differences
among groups, followed by the least squares difference (LSD) for post hoc pairwise com-
parison. The differences were considered statistically significant when * p < 0.05, ** p < 0.01,
and *** p < 0.001.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxins15120694/s1, Figure S1: Effect of BA on the liver parameters
in broiler chickens; Figure S2: Effect of BA on the hepatic efflux transporters in broiler chickens;
Figure S3: The stability analysis of housekeeping genes; Table S1: Raw data for housekeeping genes.
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