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Section 1 – Further information regarding Principal Component Analysis: 
To perform PCA, the first step would be to calculate the covariance matrix of the dataset. This matrix is 
a square matrix that holds in each of its positions the covariance between each pair of vectors within the 
matrix -thus, the diagonal of this matrix will contain the variances of said vectors. Once the covariance 
matrix has been obtained, the eigenvalues of said matrix can be extracted and sorted out from the highest 
to the lowest value (as they represent how much of the overall variance they explain). At the same time, 
a matrix whose columns are the corresponding eigenvectors of said eigenvalues is extracted. With this 
procedure we can obtain orthonormal vectors, each of which holds information of all the variables. The 
information that they contain is the weight that each of the variables has in said eigenvector. Thus, we 
can obtain a matrix holding in its columns the weight that each of the variables has in each eigenvector, 
with said columns ordered by how much variance of the overall model is each column able to explain. 
These columns are the so-called Principal Components (PCs) of the data, and the number of PCs that 
this matrix has can be chosen and ordered based on how much variability is explained only with said 
columns. The matrix containing these PCs is defined as the Loadings (P) of the PCA model.  

Once P has been defined, the data set (called X from now on) can be projected onto P, rendering another 
matrix defined as Scores (T). Thus, Equation 1 can be defined: 𝑻 = 𝑿𝑷 
And Equation 2 should be satisfied: 𝑿 = 𝑻𝑷𝑻 + 𝑬 

For PT being the transposed matrix of P and E being the matrix resulting from the part of the data that is 
not explained by P. The part of X that P and T can explain will be referred to as the model (𝑿෡) and must 
satisfy Equation 3: 𝑿෡ = 𝑻𝑷𝑻 = 𝑿 − 𝑬 

Thus, X is the original dataset, P is a matrix that contains information about each of the variables in each 
of its columns, T is a matrix that holds information about how X interacts with P, and E is a matrix that 
contains information about the data that the model is not able to explain. 

 

 

 

 

 

 

 

 

Eq. 1 

Eq. 2 

Eq. 3 



Section 2 - Further information regarding k-means clustering modelling: 
k-clustering consists of classifying a given n number of samples by analyzing their Scores and grouping 
them with the cluster that contains the mean that is the closest to said Scores. The measured distances 
were the Euclidean ones, thus Equations 4 and 5 were applied. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑉𝑖𝑝𝑒𝑟𝑖𝑑𝑎𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟ᇱ𝑠 𝑚𝑒𝑎𝑛 =  𝑑௏ = ඩ෍൫ሺ𝑐𝑙𝑢𝑠𝑡𝑒𝑟ᇱ𝑠 𝑚𝑒𝑎𝑛௏௜௣௘௥௜ௗ௔௘ − 𝑠𝑐𝑜𝑟𝑒𝑠௡ሻଶ൯௡
ଵ  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝐸𝑙𝑎𝑝𝑖𝑑𝑎𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟ᇱ𝑠 𝑚𝑒𝑎𝑛 =  𝑑ா = ඩ෍൫ሺ𝑐𝑙𝑢𝑠𝑡𝑒𝑟ᇱ𝑠 𝑚𝑒𝑎𝑛ா௟௔௣௜ௗ௔௘ − 𝑠𝑐𝑜𝑟𝑒𝑠௡ሻଶ൯௡
ଵ  

 If dE < dV the sample is classified as Elapidae. If dV < dE the sample is classified as Viperidae. 

The Bootstrapping step revealed that the appropriate value for the Rep variable was 36, as in 72 of the 
100 iterations all the extracted values -used as samples- were correctly classified. This was the highest 
number of correctly-assigned bootstraps. This leads to the model being created with 7 variables. 

The V1 step revealed that the number of PCs that could be used to correctly assign the first test set was 
every number in between 3 and 7. However, if 𝑿 = 𝑿෡ , there is a high chance of overfitting. Thus, the 
variance explained by the model can be plotted against the number of PCs to choose the number of PCs 
that will explain most of the model of the variance without creating a model that will overfit the data. 
This is called “Scree plot” and it can be found in Fig A.1. 

 

  

 

 

 

 

 

 
 

Figure A.1.- Scree plot of the PCA for Rep = 36. The elbow is marked with a green line. This graph shows the number of PCs that
should be considered to explain most of the variability within the model without overfitting the data. 

Eq. 4 

Eq. 5 



The chosen number of PCs was 4 because the mentioned elbow can be seen at that point of the Scree 
plot, meaning that the explained variance from that point on becomes much smaller –thus, much less 
relevant. 

 

 

Section 3 – 1st Validation of the k-means clustering model: 
The V1 step revealed that the number of PCs that could be used to correctly assign the first test set was 
every number in between 3 and 20. However, if 𝑿 = 𝑿෡ , there is a high chance of overfitting. Thus, the 
eigenvalues can be plotted against their corresponding PC to choose the number of PCs that will explain 
most of the model of the variance without creating a model that will overfit the data. This type of plot is 
defined Scree plot, and the chosen number of PCs is chosen based on the “elbow” that appears, which 
represents the point where the addition of more PCs does not add much to the explanation of the overall 
model. This can be found in Fig A.2. 

 

 

 

 

 

 

 

 

The chosen number of PCs was 10 because the mentioned elbow can be seen at that point of the Scree 
plot, meaning that the explained variance from that point on becomes much smaller –thus, much less 
relevant. 

 

 

 

 

 

Figure A.2.- Scree plot of the PCA for Rep = 20 The elbow is marked with a green line. This graph shows the number of PCs that should be
considered to explain most of the variability within the model without overfitting the data. 



Section 4 – Results of the k-means clustering model: 
As it has been mentioned, a classifier based on k-means clustering with Rep = 36 and no PCs = 4 was 
built. A 2D representation of this model including the Scores projected onto the two first PCs can be 
found in Figure 2. The cluster’s centers have also been included in said image. 2 PCs have been chosen 
for this representation as it is easier to visualize, but the actual subspace is contained in 4 dimensions, as 
they were the ones chosen to describe most of the variance of the model. 

 

At first glance it would seem like both families separate nicely, although the scattering of the Viperidae 
could end up being a problem due to the amorphous distribution of its cluster. It would be interesting to 
also mention how the non-spitting Najas seem to cluster around the bottom of the Elapidae distribution.  

As it can be seen, the 1st PC is the one that better separates both families -as the projection of the scores 
onto this axis would allow for classification of most of the samples. However, by looking at its loadings 
in Figure A.4., it seems like all features affect in a similar way to said component. In said figure we can 
find the values of the value of the Loadings for each PC and variable, divided by the mentioned sum, 
and multiplied by 100 to obtain, in a percentage, the extent to which feature affects each PC. 

Figure A.3.- 2D representation of the scores coming from the k-means model for Rep = 36 and no PCs = 4 of PCs 1 and 2. Red colors come
from Viperidae snakes while blue and white colors come from Elapidae ones.  



 

 

 

 

 

 

 

 
 

 

 

 

 

The most important variables in the PCs are those that generate the most intense change in the variance 
of the PC -or, visually, the values that differ the most from 0. As it can be seen, all of the PCs are 
strongly affected by several features. This means that there is not a “master feature” able to differentiate 
between Elapidae and Viperidae snakes, but rather all of them help in this goal. The 1st PC is the one 
that better separates both families -as the projection of the scores onto this axis would allow for 
classification of most of the samples. However, it seems like all features affect in a similar way to said 
component. When looking at the 2nd PC, it can be seen that it is mostly defined by the first two features 
(175.0 & 193.0 m/z). This component -as shown in Figure 6-, is the one that defines most of the 
variability seen within the Elapidae family, and the same could be said for the Viperidae although to a 
lesser extent. 

 

When looking at the 2nd PC, it can be seen that it is mostly defined by the first two features (175.0 & 
193.0 m/z). This component -as shown in Figure 2-, is the one that defines most of the variability seen 
within the Elapidae family, and the same could be said for the Viperidae although to a lesser extent. The 
autoscaled values of those 7 features has been summarized in a heatmap that is depicted in Figure 3. 

 

 

Figure A.4.- Relative importance of each feature in the PCs obtained from the model for Rep = 36. The higher the percentage, the more
repercussion the variables have in the PCs. The variance explained by every PC becomes smaller the further the PC we investigate. 



 

Taking into account that the first 34 samples correspond to Elapidae snakes and the other half to 
Viperidae, it can be inferred why do we see such clustering in Figure A.3. While Viperidae seems to 
hold considerable amounts of the features 3-7 (from 200 to 450 m/z) the same cannot be said for 
Elapidae, which is mainly defined by only the first two features (from 170 to 200 m/z). This is the 
reason as to why most of the variance seen within the Elapidae family is found in the 2nd Principal 
Component, as it’s the only one that gives importance to those two features. Within the Elapidae, the 
Dendroaspis genus (which has positive values for PCs) seems to be quite similar to the Naja genus, only 
differing in the intensity of the 1st feature (175.0 m/z), which is not as common in Dendroaspis as in 
Najas, and the 2nd feature (193.0 m/z), which is much more common in Dendroaspis compared to 
spitting Najas, but much less common in Dendroaspis compared to non-spitting Najas. Because the non-
spitting Najas don’t hold much intensity for neither of the first two features, they cluster around a value 
of 0 for the 2nd PC.  

In the Figure A.6 the scores for the test-set have also been included. Because of time-related issues and 
the amount of available venom, all the samples in the test-set come from Viperidae snakes. 

Figure A.5.- Heatmap of the autoscaled matrix for the PCA with Rep = 36. 7 Features are considered relevant and, in the graph, a 
correlation between the color and the autoscaled data can be seen (lighter colors mean more signal and darker colors mean less signal). 
The subspecies have also been classified for biological relevance based on their family and genus. 



 

The next graph -Figure A.7.- shows how the model classified the introduced samples by means of the 
classification explained in Table 2 in the A.I. 

 

 

 

 

 

  

 

 

 

 

 

Figure A.6.- 2D representation of the scores coming from the model and from the validation set for Rep = 36 and no PCs = 4 of PCs 1 and 2.
Red colors come from Viperidae snakes while blue and white colors come from Elapidae ones.  

Figure A.7.- Graphical representation of the classification ability of the created model. It did not classify incorrectly any of the species, but
it was also not completely sure about how to classify most of the samples. 

Accuracy of the classification 



 

Section 5 – Representation and analysis of the Loadings of the SVM model: 
 To understand the information held in the PCs, their Loadings are represented. To do this, the 
absolute values of the Loadings of each PC were taken and summed. In Figure A.8.  we can find the 
values of the value of the Loadings for each PC and variable, divided by the mentioned sum, and 
multiplied 100 to obtain, in a percentage, the extent to which feature affects each PC. Only the first 
principal components have been represented because they explain most of the variance (80%) of our 
system. Had the 10 PCs been taken into account, the graph would become too crowded, making it 
difficult to read.  

Table A.3 of the A.I. contains the relative importance of each feature in all the PCs and the variance 
explained by each PC are included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most important variables in the PCs are those that generate the most intense change in the variance 
of the PC -visually, the values that differ the most from 0. As seen for the model with Rep = 36, the first 
Principal Component gives a similar relevance to each of the features, using all of them to define most 
of the variance in the model. However, a deeper analysis of said PC will be presented in the next 
paragraph. As it also happened in the model for Rep = 36, the 2nd PC is mostly defined by the first set of 
features (4 in this case), but they differ in the last feature: while the latter mentioned model included 
feature 7 (445.1960 m/z) inside the 2nd PC, this model leaves one PC (the 5th one) to be mainly defined 

Figure A.8.-  Relative importance of each feature in the PCs from the model for Rep = 20. The higher the percentage, the more
repercussion the variables have in the PCs. The variance explained by every PC becomes smaller the further the PC we investigate. 



by the last feature (971.1695 m/z). In general, it seems like, because this model has 10 PCs and not 4, it 
can distribute better the importance of each feature along the different components, allowing for a better 
explanation of the relevant model variation. 

By looking more closely at the absolute values of the 1st PC for each variable, we could define what the 
classification is mostly based on. To get T, X is projected onto P, meaning that the higher the values of 
P we can find for each variable, the more important they are to classify Elapidae, whereas the lower 
they are, the more important they are to classify Viperidae. This is represented in Figure A.9. 

This graph indicates that, while features 1,2 and 20 (the ones with weights higher than 0) are only ones 
to be considered when classifying a sample as Elapidae, features 6, 7 and 8 (the ones with the lowest 
weights) are essential when classifying a sample as Viperidae and explaining most of its variance.  

 

 

  

 

Figure A.9.- Weight of each of the variables for the 1st Principal Component for Rep = 20. The more the values differ from 0, the more
important that variable it is for defining PC 1. If the weights are higher than 0, they are used for defining Elapidae. If the weights are
smaller than 0, they are used for defining Viperidae 



Section 6 - Thresholds applied on MSConvert: 
 

 Output format: mzXML 

 Binary enconding precision: 32 bits 

 Write index: Check 

 TPP compatibility: Check 

 Subset: 

  Scan time(seconds): 720 - 2520 

  

 Threshold peak filter: 

  Threshold type: Absolute intensity 

  Orientation: Most intense 

  Value: 500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Section 7 - Example of data visualization with the dashboard 
The dashboard in Tableau allows for us to easily modify what we want to see and how we want to see it. 

The representation of the data within the model would look like the example given in Figure A.10 

 
Figure A.10.- Tableau visualization of the dashboard containing information regarding all relevant metabolites for the model in the 
analyzed samples 

But by clicking in the different metabolites we can highlight certain information, as can be seen in 
Figure A.11. 



 
Figure A.11.- Tableau visualization of the dashboard containing information regarding all relevant metabolites for the model in the 
analyzed samples, when one of the metabolites is highlighted. 

 

 

And we can look at each sample or taxon more in-depth by double clicking the sample or taxon we are 
interested in, as it can be seen in Figure A.12 

 



 
Figure A.12.- Tableau visualization of the dashboard containing information regarding all relevant metabolites for the model in the 
analyzed samples, when one of the taxa is highlighted. 


