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Abstract: OnabotulinumtoxinA (BonT-A) reduces migraine frequency in a considerable portion
of patients with migraine. So far, predictive characteristics of response are lacking. Here, we
applied machine learning (ML) algorithms to identify clinical characteristics able to predict treatment
response. We collected demographic and clinical data of patients with chronic migraine (CM) or high-
frequency episodic migraine (HFEM) treated with BoNT-A at our clinic in the last 5 years. Patients
received BoNT-A according to the PREEMPT (Phase III Research Evaluating Migraine Prophylaxis
Therapy) paradigm and were classified according to the monthly migraine days reduction in the
12 weeks after the fourth BoNT-A cycle, as compared to baseline. Data were used as input features
to run ML algorithms. Of the 212 patients enrolled, 35 qualified as excellent responders to BoNT-
A administration and 38 as nonresponders. None of the anamnestic characteristics were able to
discriminate responders from nonresponders in the CM group. Nevertheless, a pattern of four features
(age at onset of migraine, opioid use, anxiety subscore at the hospital anxiety and depression scale
(HADS-a) and Migraine Disability Assessment (MIDAS) score correctly predicted response in HFEM.
Our findings suggest that routine anamnestic features acquired in real-life settings cannot accurately
predict BoNT-A response in migraine and call for a more complex modality of patient profiling.

Keywords: migraine; machine learning; onabotulinumtoxinA; predictors of efficacy

Key Contribution: OnabotulinumtoxinA is effective in migraine prevention, but not in the totality of
patients. To date, predictors of response are lacking, and doctors can only apply the trial-and-error
approach. ML is a powerful tool to identify potential predictors of response in large datasets. Here,
we identify a signal for a subtype of migraine patients and set the basis for a more complex analysis
that will include multimodal parameters (e.g., circulating biomarkers or MRI studies).

1. Introduction

According to the Global Disease Burden study (GDB), migraine is one of the most
disabling neurological conditions in young adults, affecting 14% of the population world-
wide [1]. Migraine is classified as chronic (CM) when a headache is present for at least
15 days/month [2]. For when the number of headache days is less than 15 per month,
two additional subtypes have been identified for clinical and research purposes: low-
to-moderate frequency (up to 6–7 headache days/month) and high-frequency episodic
migraine (HFEM) (when the monthly headache days are between 8 and 14) [3]. HFEM is
considered a subtype of migraine with a high risk of transformation into CM. Therefore,
it appears crucial to focus on preventive treatments that target this condition to reduce
migraine frequency and prevent a negative evolution [4].

CM is the most debilitating subtype of migraine [5]. Its treatment currently presents
a medical challenge. To date, only onabotulinumtoxinA (BoNT-A), antibodies and small
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molecules against the Calcitonin Gene-Related Peptide (CGRP) and topiramate are specifi-
cally approved for the prophylaxis of CM. BoNT-A inhibits CGRP, P substance and gluta-
mate release as well as transient receptor potential ankyrin 1 (TRPA1) and transient receptor
potential vanilloid 1 (TRPV1) translocation, thus switching off peripheral sensitization
and, consequently, central sensitization [6]. It was approved by the FDA in 2010 and
it is currently administered according to the PREEMPT (Phase III Research Evaluating
Migraine Prophylaxis Therapy) protocol, with additional injections in the “follow-the-pain”
extension. BoNT-A has also been proved to be effective in reducing the burden of disease
in subjects with HFEM when administered according to the PREMPT paradigm in a recent
pilot study [7]. A sponsored, larger, multicentric, controlled study is now ongoing to
confirm the signal detected in this study (ClinicalTrials.gov Identifier: NCT05028569).

Nevertheless, not all patients adequately respond to BoNT-A injections. Several
studies have investigated the possible predictors of treatment responsiveness using clinical,
anamnestic, molecular, or imaging features, but they brought only limited evidence [8]. A
recent large multicentric study evaluated the rate of excellent responders to BoNT-A and
explored the predictors of such responses according to different definitions of efficacy [9].
For example, the factors which were independently associated with an excellent response
to BoNT-A, based on the percentage of migraine days reduction, included the presence
at baseline of medication overuse and a higher excellent response rate already after the
first and the second injection. Females were less likely to present fewer than four monthly
headache days.

Unfortunately, most features highlighted as predictors were not replicated in different
datasets. Ideally, to be successfully applied in clinical practice, a biomarker should be
easily available for analysis (e.g., economically and biologically) and should have a clear
cause–effect relationship with the investigated outcome. Overall, there are still no strong
single factors correlated with the response to preventive treatment in migraine. Therefore,
identifying these features with different approaches is crucial in migraine management, as
it could allow targeted therapy, improve patients’ life quality, and diminish healthcare costs,
which are all relevant findings when planning treatment strategies in clinical practice.

A machine learning (ML) algorithm is a type of computer program designed to
automatically improve its performance by learning from data. Machine learning algorithms
use statistical models to identify patterns and relationships in data and use these patterns
to make predictions or decisions [10]. There are three types of machine learning algorithms:
supervised learning (trained on labelled data), unsupervised learning (trained on unlabeled
data), and reinforcement learning (which learns by interacting with the environment).
Machine learning algorithms are used in various fields of medicine, including image and
speech recognition, natural language processing, and predictive analytics [11]. These
machine learning predictive algorithms are being increasingly used in medicine to assist
with diagnosis, treatment, and prognosis, as already described in the literature in different
areas of application—Alzheimer’s disease, psychiatric disorders, multiple sclerosis, stroke,
etc. [12]. When it comes to migraine, some studies applied ML to the setting of correctly
classifying primary headache disorders [12–16], whereas only a few of them have focused
on predicting treatment response to antibodies against the CGRP [17]. Not only that, but
ML could also be applied to extract prognostic information from demographic, clinical and
biochemical data to predict the risk to develop medication overuse headache [18].

The primary aim of this single-center, retrospective, real-life study was to detect
clinical/anamnestic features able to predict treatment responsiveness in migraine patients
undergoing BoNT-A administration for migraine prevention using machine learning algorithms.

2. Results
2.1. Population Analysed

Two hundred thirty-nine subjects started BoNT-A treatment at IRCCS Mondino Foun-
dation between January 2016 and March 2021. The patients’ disposition is illustrated in
Figure 1.

ClinicalTrials.gov
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Figure 1. Flowchart of the population included and analyzed in this study.

The final analysis was carried out on 91 eligible subjects who completed the four
BoNT-A cycles (59 with CM and 32 with HFEM) and on 54 subjects who terminated the
treatment after one single cycle (all CM).

A good/excellent response rate (>50% monthly migraine days (MMD) reduction) after
1 year of treatment was observed in 38% of the subjects who completed the four cycles.
Demographic and anamnestic features of the population analyzed, divided according to
the response rate to BoNT-A, are listed in Tables 1 and 2.

Table 1. Demographic characteristics.

Group 1 Group 2 Group 3 Group 4 Group 5

Early Termination <25% Response Rate 25–50% Response Rate 50–75% Response Rate >75% Response Rate

Gender 48F. 6M 30F. 8M 13F. 5M 17F. 3M 13F. 2M
Disease duration, years 31.8 ± 15.4 34.7 ± 14.0 34.9 ± 11.8 31.45 ± 17.7 32.7 ± 17.9

Preventive drugs
previously tried, n. 3.9 ± 1.3 3.3 ± 2.1 2.9 ± 1.5 2.5 ± 1.8 2.5 ± 1.45

Comorbidity:
Mood disorder, n (%) 28 (51.8%) 20 (52.6%) 6 (33.3%) 10 (50.0%) 6 (40.0%)

Anxiety, n (%) 33 (61.1%) 23 (60.5%) 12 (66.7%) 9 (45.0%) 8 (53.3%)
Low back pain, n (%) 4 (7.4%) 9 (23.7%) 3 (16.7%) 3 (15.0%) 4 (26.7%)
Hypertension, n (%) 10 (18.5%) 7 (18.4%) 4 (22.2%) 5 (25.0%) 4 (26.7%)
Sleep apnea, n (%) 0 0 0 0 1 (6.7%)

Epilepsy, n (%) 1 (1.8%) 2 (5.3%) 0 1 (5.0%) 0
MOH before, n (%) 11 (20.4%) 15 (39.5%) 6 (33.3%) 5 (25.0%) 3 (20.0%)
MOH now, n (%) 37 (68.5%) 12 (31.6%) 6 (33.3%) 8 (40.0%) 8 (53.3%)

Opioid use before, n (%) 11 (20.4%) 0 2 (11.1%) 1 (5.0%) 0
Opioid use now, n (%) 11 (20.4%) 7 (18.4%) 4 (22.2%) 3 (15.0%) 1 (6.7%)

CT + M, n (%) 18 (33.3%) 23 (60.5%) 8 (44.4%) 9 (45.0%) 6 (40.0%)
CT + O, n (%) 33 (61.1%) 23 (60.5%) 11 (61.1%) 10 (50.0%) 11 (73.3%)

Table: Groups were labelled as follows: Group 1: early termination (after 1 BoNTA administration); Group 2:
nonresponders (<25% response after the 4th cycle); Group 3: poor responders (25–50% response after the 4th
cycle); Group 4: good responders (50–75% response after the 4th cycle); Group 5: excellent responders (>75%
response after the 4th cycle). All variables are expressed as mean value, ±standard deviation. Legend: F = female;
M = male; n = number; MOH = medication overuse headache; CT + M = concomitant treatment prescribed for
migraine; CT + O = concomitant treatment prescribed for other indication.
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Table 2. Headache anamnestic characteristics.

Group 1 (n. 54) Group 2 (n. 38) Group 3 (n. 18) Group 4 (n. 20) Group 5 (n. 15)

Baseline 1st
Trimester Baseline 4th

Trimester Baseline 4th
Trimester Baseline 4th

Trimester Baseline 4th
Trimester

Migraine
days, n 24.4 ± 5.1 22 ± 6.4 18.9 ± 7.5 20.6 ± 11.1 16.2 ± 6.6 10.6 ± 4.3 17.65 ± 6.95 7.4 ± 2.6 22.7 ± 7.1 4.2 ± 2.1

Headache
days, n 24.1 ± 5.4 21.9 ± 6.3 19.8 ± 7.5 20.8 ± 13.8 17.4 ± 6.8 10.7 ± 4.3 17.95 ± 6.7 10.3 ± 7.7 22.5 ± 7.1 7.2 ± 8.6

Abortive
medica-

tion,
n

26.8 ± 31.3 16.8 ± 13.5 20.6 ± 21.5 19.9 ± 21.4 15.8 ± 8.3 11.3 ± 6.95 18.85 ± 16.25 7.9 ± 4.6 26.05 ± 16.5 3.0 ± 1.8

MIDAS, n 80.1 ± 51.8 74.9 ± 51.0 63.7 ± 52.6 43.0 ± 32.1 42.2 ± 27.0 31.6 ± 30.6 46.3 ± 43.1 21.1 ± 25.5 60.4 ± 47.6 5.7 ± 8.4
HIT6, n 66.8 ± 5.6 64.9 ± 5.1 66.1 ± 6.0 63.6 ± 4.9 64.75 ± 3.3 60.25 ± 7.2 66.5 ± 5.8 60.75 ± 6.6 66.8 ± 7.9 57 ± 10.3

ASC-12, n 6.2 ± 4.4 6.2 ± 4.2 6.1 ± 3.7 5.5 ± 3.95 7.0 ± 3.9 6.8 ± 4.15 4.6 ± 4.1 3.4 ± 2.6 3.9 ± 2.8 2.3 ± 5.1

Table: Groups were labelled as follows: Group 1: early termination (after 1 BoNTA administration); Group 2:
nonresponders (<25% response after the 4th cycle); Group 3: poor responders (25–50% response after the 4th cycle);
Group 4: good responders (50–75% response after the 4th cycle); Group 5: excellent responders (>75% response
after the 4th cycle). All variables are expressed as mean value, ±standard deviation. Legend: n = number; MIDAS
= Migraine Disability Assessment; HIT6 = Headache Impact Test-6; ASC-12 = Allodynia Symptom Checklist-12.

2.2. Machine Learning Analysis

All ML methods applied to the datasets (classified according to the primary or sec-
ondary endpoints) failed to discriminate good/excellent responders from nonresponders
to BoNT-A administration after the fourth cycle of the treatment using only demographic,
anamnestic or clinical features as the input. Table 3 shows the performances using all the
different ML approaches applied in the classification comparing groups 2 vs. 4 + 5. The
panel of features used for each different classification between groups is listed in Table S1.

Table 3. Results of the different machine learning methods to classify responders vs. nonresponders
after the fourth cycle.

Machine Learning Methods ACC (%) Sens (%) Spec (%) AUC (%) N Features

PRIMARY ENDPOINT—migraine days reduction
Random forest 100 100 100 16,67 12

SVM (linear kernel) 76.67 63.33 90 23.33 3
SVM (RBF kernel) 76.67 70 83.33 23.33 2

ANFIS (aNN) 50 100 0 20 1
MLP (aNN) 85 90 80 15 2

Fuzzy clustering (unsup. ML) 45 90 0 86.67 2
SECONDARY ENDPOINT—abortive medication intake reduction

Random forest 100 100 100 33 8
SVM (linear kernel) 83.33 76,67 90 16.67 4
SVM (RBF kernel) 83.33 83033 83.33 16.67 5

ANFIS (aNN) 50 100 0 21.67 1
MLP (aNN) 81.67 83.33 80 18.33 3

Fuzzy clustering (unsup. ML) 48.33 96.67 0 56.67 4
SECONDARY ENDPOINT—reduction in days in which an abortive medication is required

Random forest 100 100 100 12.12 12
SVM (linear kernel) 88.33 76.67 100 11.67 5
SVM (RBF kernel) 75 90 60 25 3

ANFIS (aNN) * - - - - -
MLP (aNN) 88.33 80 86.67 16.67 4

Fuzzy clustering (unsup. ML) 50 100 0 50 1
EXPLORATORY ENDPOINT—MIDAS reduction

Random forest 100 100 100 27.27 2
SVM (linear kernel) 85 80 90 15 3
SVM (RBF kernel) 67.5 55 80 32.5 1

ANFIS (aNN) * - - - - -
MLP (aNN) 85 85 85 15 2

Fuzzy clustering (unsup. ML) 47.5 95 0 57.5 1

Table: The population is composed of only those patients who completed 1 year of treatment. The comparison is
performed between group 2 vs. 4 + 5. Legend: accuracy (ACC); sensibility (Sens); specificity (Spec); area under
the curve (AUC); the number of features used for classification (N); suppor vector machine (SVM); RBF kernel);
ANFIS (aNN); MLP (aNN); unsupervised (unsup.); * performance failure in predicting the outcome. Data are
expressed as percentage (%).
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When the analysis was extended by including the early terminators (group 1) among
the non-responders (groups 1 + 2), the best performance for the primary endpoint with a
high classification accuracy of 84.27% (area under the curve (AUC) = 89%) was obtained
using 24 baseline features, applying the random forest (RF) algorithm. Table S2 shows
the performances and the panel of features resulting from the use of all the different ML
approaches applied in the classification comparing groups 1 + 2 vs. groups 4 + 5.

In the subgroup of 32 people with HFEM, BoNT-A reduced MMD at the end of the
fourth cycle by 3.68 days (−33.1%, p < 0.01) as highlighted in our previous publication [7].
In this subset, RF discriminated responders from nonresponders with a high classification
accuracy of 85.71% (AUC = 90.91%) using four baseline features (Table 4). High respon-
siveness positively correlated with migraine onset age and hospital anxiety and depression
score, namely the anxiety subscore (HADS-a). On the other hand, high responsiveness neg-
atively correlated with ongoing opioid use and Migraine Disability Assessment (MIDAS)
score at baseline (Table 5).

Table 4. Responsiveness prediction in people living with high-frequency episodic migraine with a
panel of 4 baseline features.

Statistics %; [95% C + I]

Accuracy 85.71% [0.66–0.96]
Sensibility 94.12% [0.77–1.00]
Specificity 72.12% [0.52–0.88]
Precision 84.21 % [0.65–0.95]
f-measure 88.89% [0.70–0.98]

Area under the curve (AUC) 90.91% [0.73–0.99]
Table: Summary of the random forest performance scores using the 4 selected features at baseline as a discriminant
pattern in the subset population of people living with high-frequency episodic migraine. The data are expressed
as percentage (%); 95% CI = confidence interval [lower bound; upper bound].

Table 5. Correlations in the HFEM population.

Features Pearson Correlation p-Value

Migraine age onset +0.488 0.009
MIDAS −0.245 0.209

HADS-A score +0.418 0.027
Ongoing opioid use as an

abortive medication −0.509 0.006

Table: Summary table reporting the relevant features resulting from the RF algorithm and their individual Pearson
correlation coefficients, related to the clinical response size (% reduction in MMD after the fourth cycle) in the
subset of patients suffering from high-frequency episodic migraine.

When forcing the ML algorithms to use the pattern of four features described to
validate this model in the cohort of people living with CM, the ML failed to confirm the
validity of the model. The performances of the validation protocols are listed in Table S3.

3. Discussion

This is the first single-center, real-life retrospective study applying machine learning
algorithms to identify factors associated with the efficacy of BoNT-A already at baseline or
after the first trimester in a relatively large database of patients.

Clinicians have been seeking biomarkers predictive of BoNT-A effectiveness in mi-
graine for several years now, also searching in many different biological samples, including
blood, urine, tissue, and saliva [19]. Acquiring this information is crucial to make the best
use of healthcare resources and planning treatments; Table S4 provides an updated sum-
mary of the available articles reporting the factors associated with the efficacy of BONT-A
in chronic migraine. More specifically, regarding clinical predictors, one of the first features
was suggested by Jakubowski et al., who observed that an ocular or imploding phenotype
of pain was associated with response to BoNT-A, while exploding pain was not [20]. This
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finding was later confirmed by some authors [21–23], but not by others [24,25]. It appears
noteworthy that these studies were conducted with different injection paradigms. Other
characteristics were reported as predictive factors of response to BoNT-A in some studies,
including unilateral pain, cutaneous allodynia and pericranial muscle tenderness, but there
is contrasting evidence as not all studies succeeded in finding these associations [26–30].
Conflicting evidence is also available for the presence/absence of comorbidities (e.g., the
presence of depressive symptoms) [31,32] or disease duration [33,34]. CGRP and PTX3 plas-
matic levels have also been reported as predictors of responsiveness and/or efficacy [35,36].
Brain structural and functional MRI could also be a tool for assessing response. In a ret-
rospective study, Hubbard et al. demonstrated that BoNT-A responders had increased
cortical thickness in the right primary somatosensory cortex, anterior insula left superior
temporal gyrus and pars opercularis, compared to nonresponders [37], but it remains
unclear whether these findings could be predictive characteristics of the response. Another
proposed hallmark of responsiveness was the level of iron accumulated in periaqueductal
grey matter, which seemed to correlate with poor response in one study [38].

Overall, despite the mentioned studies, there is currently not enough data to help
clinicians make treatment decisions or predict the drug’s effectiveness for a particular
patient because the extent of their impact is limited (see Table S4). Moreover, while
interesting, testing CGRP or performing an fMRI scan is not yet practical nor economically
sustainable in everyday practice.

For this reason, considering the limited prediction potential of a single biomarker, we
decided to investigate, with several machine learning algorithms, whether the commonly
available clinical information could be combined into a novel panel of features able to pre-
dict response to BoNT-A. This approach would provide a predictive tool easily transferable
to the real-world setting because the ML-based model is based on anamnestic features that
are routinely collected in everyday practice.

The findings obtained with the group of CM patients are partially disappointing
because all ML models reached an overall mediocre accuracy but underperformed and
lacked specificity. Moreover, due to the low AUC, the algorithms were not able to correctly
distinguish one group from the other. A reliable level of discrimination was reached
only when a high number of clinical features were considered simultaneously. Precisely,
the best performance for the primary endpoint with a high classification accuracy was
obtained using 24 features. Considering the requirement of the concomitant presence of all
24 selected features, this condition appears to be impossible to apply in the real-life setting.

This output does not seem related to a limitation of the mathematical approach because
the constraint of this analysis lies primarily in the relevance of the information used as
an input for the investigation. An example was recently published by Gonzalez-Martinez
et al. [17], who used data from a multicentric Spanish database to build an ML model that
can predict anti-CGRP response at 6, 9 and 12 months.

More exciting was the output of ML in our subanalysis of the group of HFEM patients,
where the random forest algorithm discriminated responders from nonresponders with a
high classification accuracy of 85.71% using, altogether, four baseline features: migraine
onset age, opioid use, hospital anxiety score, and the disability calculated with the MIDAS
score. High responsiveness to BoNT-A treatment after 1 year positively correlated with
higher migraine onset age and higher HADS-a score before starting the treatment and
negatively correlated with ongoing opioid use as an abortive medication and higher MIDAS
score at baseline. These four features represent a panel of easy-to-obtain parameters that,
when evaluated together, predict BoNT-A therapy responsiveness in patients with HFEM,
even if each feature is not sufficient to fully account for the result.

Unfortunately, this four-feature panel does not predict the response in our cohort of
patients with CM. This may be explained by the increased complexity of the pathophysi-
ology when the condition progresses to a more severe pattern, which includes persistent
peripheral and central sensitization caused by repetitive and prolonged trigeminal noci-
ceptive activation, and the decrease in endogenous brainstem inhibitory control [39]. This
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mutated condition is more difficult to treat and is associated with a substantially higher
burden of disease, number of comorbidities, and social impact [40].

Machine learning is increasingly being used in the healthcare industry to solve various
problems, including clinical decision-making support. Initially, machine learning was
mainly used to analyze single-mode data. However, to improve the accuracy of predictions
and to simulate the multifaceted nature of clinical decision making, researchers in the field
of biomedical machine learning are combining data from different sources to create a more
comprehensive dataset [41] on which to apply a multimodal machine learning approach.
In the application of BoNT-A to migraine prevention, in order to define a set of features
associated with its efficacy, a multimodal approach is, therefore, mandatory to overcome the
lack of information when considering only the anamnestic features available. By acquiring
and combining data from clinical, radiological, and wet biomarkers, it will probably be
possible to build an effective algorithm, even if its applicability will be limited by the cost,
reproducibility of the analysis, and technology required to collect/interpret this information.
This approach of fusing disparate features, bringing together multiple data sources to
capitalize on the unique and complementary information in an algorithmic framework, is
aimed at replicating the holistic approach used by clinical experts in their decision-making
process. In the near future, medicine will not witness ML overcoming clinical practice, but
ML will definitely assist clinicians in their decision-making process [42].

Limitations

This was a single-center study in a limited, though relatively large, population. There-
fore, we were forced to opt for the cross-validation approach to train and test the ML
algorithms, which means that the testing records were taken from the same dataset used
for training. A second limitation is represented by the retrospective nature of the study,
which prevented the collection of some of the features for BoNT-A efficacy that proved
interesting with the evolving lines of literature. Information such as the characteristics of
the pain (for example, whether it was throbbing or explosive, unilateral or bilateral) and
the presence of cranial autonomic symptoms or pericranial muscles tenderness were not
collected systematically over the years and, therefore, were not included in the analysis. A
prospective study would require their inclusion for an integrated and updated analysis.
As a third limitation, the decision to also include in the nonresponder group the patients
who stopped the treatment after the first cycle may have resulted in a data selection bias
by analyzing as nonresponders patients who might have responded at later times if not
discontinued. To control for this, we also applied unsupervised ML algorithms. The last
limitation to mention is regarding the sample size, which was unbalanced between the
subgroups. The size difference between the early terminator group and the responders
might have impacted the statistical power of the ML algorithms. To minimize the potential
impact of this, we decided to include both excellent and good responders in the respon-
der group, presenting, therefore, an overall 50% reduction in the MMD, in line with the
available literature.

4. Conclusions

Overall, ML findings suggest that routine anamnestic features acquired in real-life
settings cannot accurately predict the response to BoNT-A treatment in CM patients. A
deeper phenotyping of patients’ features, possibly combined with multimodal parameters,
is probably required to identify features associated with the response to BoNT-A. In the
case of HFEM, ML techniques identified an easy-to-obtain panel of four features that are
associated with the response to BoNT-A treatment. This finding is very important and
paves the way to tailored therapy in a population of migraine patients who are at high risk
of chronification and/or medication overuse.
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5. Materials and Methods

This was a single-center, observational, retrospective, real-life study conducted at
the Headache Science and Rehabilitation Center of the IRCCS Mondino Foundation of
Pavia, Italy.

Data from patients with CM or HFEM on preventive treatment with BoNTA be-
tween January 2016 and March 2021 were evaluated. Data were previously acquired and
anonymized within two different protocols both performed at the IRCCS Mondino Foun-
dation of Pavia (Protocol 1 FM-BOEM authorized by the Pavia local ethical committee on
22 July 2017, reg. n◦ NCT 04578782 clinicaltrial.gov and Protocol 2 authorized by the Pavia
local ethical committee n◦ 0097925/21). In Italy, studies using retrospective anonymous
data from administrative databases, which do not involve direct access for investigators
to identification data, do not require further Ethics Committee approval, notification, or
patient-informed consent signing.

We selected patients who were started on BoNT-A treatment according to the PRE-
EMPT injection paradigm (155–195 UI in 31–39 injection sites every 12 weeks) for at
least one cycle and for whom a prospectively filled headache diary was available for the
following 12 months. We excluded patients with insufficient health and/or headache
documentation or with significant comorbidities that could have interfered with treatment
response. Patients who had already received BoNT-A treatment before the observation
period were also excluded. We collected demographic, general health history and headache-
specific history. Concomitant medications were collected and classified into with/without
potential migraine preventive effect and prescribed/not prescribed for migraine. Infor-
mation concerning demographics, headache history (especially disease duration at first
BoNT-A administration), comorbidities (such as depression, anxiety, low-back pain, hy-
pertension, epilepsy, and sleep apnoea), and previous preventive treatment was also
considered. Treatment efficacy was investigated by using self-assessment scales (Migraine
Disability Assessment (MIDAS) [43]; Headache Impact Test-6 (HIT6) [44]; Allodynia Symp-
tom Checklist-12 (ASC-12) [45]) after every treatment, in addition to the mere count of
migraine/headache days.

5.1. Classification

Patients’ response to treatment was used to separate subjects into different groups.
They were primarily classified based on their percent-based reduction in monthly migraine
days in the 12-week period after the fourth BoNT-A treatment, as compared to a 28-day
baseline period (<25%; 25–50%; 50–75%; >75% reduction rate). Patients who terminated
treatment early after 1 administration without any effects were profiled as well (early
termination (ET)). ET was considered regardless of the clinical indication. The patients
terminating the treatment early due to side effects were excluded from the analysis. The
patients’ disposition is illustrated in Figure 1.

Groups were labelled as follows based on the outcome at 12 weeks after the first
administration cycle or 12 weeks after the 4th administration cycle:

Group 1: early termination, BoNT-A was administered for only 1 cycle due to inefficacy.
Group 2: nonresponders (<25% response after the 4th cycle).
Group 3: poor responders (25–50% response after the 4th cycle).
Group 4: good responders (50–75% response after the 4th cycle).
Group 5: excellent responders (>75% response after the 4th cycle).

The demographic and anamnestic characteristics of the population studied are re-
ported in Tables 1 and 2, considering this primary working classification. All variables are
expressed as mean values ± standard deviation. Secondary classifications were calculated
considering the % reduction in abortive medication intake, the % reduction in days in
which an abortive medication is required and the MIDAS value % reduction.

clinicaltrial.gov
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5.2. Analysis Plan

Considering the entire dataset of people living with migraine, the primary outcome
was the prediction of monthly migraine days (MMD) reduction in the 12-week period after
the last BoNT-A treatment as compared to baseline. In a real-life monocentric prospective
study investigating CM patients treated with BoNT-A, the authors observed that the benefit
of the administrations could manifest itself over the canonical 2 cycles, thus suggesting
extending treatment forward, to prevent early withdrawal in patients who could become
responsive after the 3rd or the 4th cycle [46]. Therefore, we decided to include in the
analysis patients with at least 4 subsequent cycles of BoNT-A treatment. The collected data
at baseline and after the 1st cycle of BoNT-A were used as input features to run several
supervised and unsupervised machine learning algorithms to predict the response to the
BoNT-A treatment. The complete ML approaches applied are described in the next sections.
Compared to the run-in baseline frequency, a 50% reduction in MMDs after the fourth
cycle was considered as a good/excellent response, while a <25% reduction in MMDs was
considered a lack of efficacy.

MMDs for each evaluation period were calculated as the mean of the three 4-week
segments. We initially compared group 2 (nonresponders) vs. groups 4 + 5 (good and
excellent responders). The analysis was subsequently carried out also considering the group
of the early terminator as part of the nonresponders’ group (groups 1 + 2 vs. groups 4 + 5).

Secondary endpoints were contemplated as well, and the same analysis plan with the
different ML algorithms was carried out, first considering the reduction in abortive medi-
cation and, consequently, the number of days when the abortive medications were used.
Compared to the run-in baseline condition, a reduction of more than 50% in abortive medi-
cation intake or days of drug use after the fourth cycle was considered as a good/excellent
response, while a reduction of less than 25% was labelled as a lack of efficacy. As an
exploratory endpoint, the reduction in MIDAS value was also evaluated, with the same
approaches (classification: responders if >50% reduction after the fourth cycle compared to
baseline, nonresponders if <25% reduction).

A final analysis was performed considering the subgroup of HFEM. The primary
outcome was the reduction in MMDs in the 12-week period after the last BoNT-A treatment
as compared to baseline. Therefore, the collected data were used as input features to run a
machine learning algorithm to predict responders (>50% MMD reduction after the fourth
administration vs. baseline). The Pearson correlation coefficient was calculated between
the resulting features and the percentage of MMD reduction. Finally, the panel of features
observed in the HFEM population was applied to the entire CM population to validate its
predictive potential.

5.3. Machine Learning (ML)
5.3.1. Feature Selection

The feature selection is an essential step for extracting the most informative features
for the specific task from a dataset, discarding those which would add only redundant
information. In this manuscript, each patient assessment resulted in a long feature vector
and, therefore, a very large dataset which could have also led to overfitting issues in the
following steps of the analysis. For these reasons, before running any ML code, the entire
dataset underwent the application of the ReliefF feature selection algorithm [47], which
outputs a ranking of features according to their relevance in determining the class value of
the dataset records. After the feature selection step, the data underwent the ML algorithms
to build the classification models.

5.3.2. Machine Learning Analysis

In this study, the automatic classification between groups was achieved implement-
ing different ML algorithms (i.e., classifiers): artificial neural network (ANN), support
vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), random forest
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and fuzzy c-means clustering (FCM). All the methods were implemented as part of a
home-developed [12] tool in Matlab (v. R2018b, The Mathworks, Inc., Natick, MA, USA).

Each ML classifier was run separately to perform model construction and assess
validation. For model construction purposes, for each ML classifier, a tuning of the relevant
parameters was performed to optimize the setup of the algorithm, therefore maximizing
its classification performance. In order to minimize any risk of overfitting, a balanced
cross-validation approach (see Section 5.3.3) was adopted and used to train and test each
constructed model. For each classifier, we identified the best pool of features to separate
patients’ groups with the best classification performance.

Artificial Neural Network (ANN)

ANN are ML approaches are inspired by biological neural networks [48]. ANN
models are based on connected units (i.e., artificial neurons) that simulate the structure
and functionality of brain neurons and their synapses. Among ANN models, the radial
basis function network (RBFN) is a feed-forward neural network that uses the radial basis
(Gaussian) function as an activation function [10]. Compared to other ANN models, the
RBFN special architecture can grant important advantages such as a simpler structure and
a faster learning approach.

Support Vector Machine (SVM)

Support vector machines (SVMs) are fast and robust classification models that tend to
perform very well, even when run on a limited amount of data. SVM algorithms’ objective
is to use training data to find the hyperplane in an N-dimensional space (where N is the
number of the features) which best separates data from different groups [49]. For the
present study, two SVM architectures with a different nonlinear kernel function were used:
SVM with the linear kernel (SVMLIN) and SVM with radial basis function (RBF) kernel
(SVMRBF).

Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a classification approach, in between the ANN methods and the fuzzy
logic systems. ANFIS integrates both ANN and fuzzy logic principles and converges
the benefits from both methods, offering adaptability, which is characteristic of the ANN
backpropagation, and the smoothness that characterizes the fuzzy control interpolation [50].
For this work, we used the ANFIS algorithm included in the fuzzy logic toolbox in Matlab
with a Sugeno-type fuzzy inference system (FIS) and Saussian functions as membership
functions to specify the fuzzy set.

Random Forest (RF)

The random forest approach operates on training data by constructing a forest of
decision trees. The classification output is the class predicted by most trees [51]. In
this work, the random forest algorithm was implemented in Matlab using the TreeBagger
function, which uses bootstrap aggregation (i.e., bagging) as an ensemble method to control
for overfitting, therefore improving the model generalization.

Fuzzy c-Means Clustering (FCM)

Fuzzy c-means clustering (FCM) is a clustering method which allows a data point
to belong to more than one cluster [52]. Each data point is assigned to a cluster to some
degree which depends on its membership grade. In this work, the FCM approach was
implemented in Matlab as part of the homemade classification toolbox.

5.3.3. Cross Validated Accuracy

To improve the classification performances of each ML algorithm, decreasing their
variance and, therefore, reducing overfitting issues, a balanced Monte Carlo 10-fold cross-
validation (CV) approach using 100 bootstraps was considered [12]. At each run, the
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CV algorithm splits the original input data into 10 parts, with the dataset classes equally
represented, therefore generating 100 new different CV datasets. For each algorithm, for
each newly generated CV dataset, nine parts (i.e., nine folds) were used to run the ReliefF
feature selection (see Section 5.3.1) and then to train the classifier, while the remaining part
(i.e., one fold) was used to test it. For each ML algorithm, the best classification performance,
obtained over the 100 bootstraps, and its related model were taken as the final result.

5.4. Performance Comparison

In this paper, each ML classifier performed a binary classification to discriminate
group A from group B (where A and B are generically used here to address two different
groups of patients). For a performance comparison, we calculated classification accuracy,
specificity and sensitivity [10]. For each built model, the receiver operating characteristic
(ROC) curve was calculated, using its area under the curve (AUC) to compare the different
classifiers’ performance [53].

Two hundred thirty-nine subjects started BoNT-A treatment at IRCCS Mondino Foun-
dation between January 2016 and March 2021. Twenty-seven patients were excluded
because it was not possible to track medical records (n = 3) or those had already used
BoNTA (n = 4). Fifteen were lost at follow up and four presented an adverse event, because
of which it was decided not to proceed with the treatment. Of the remaining 212, 32 were
affected by HFEM, and the remaining 204 suffered from CM. The analysis was carried out
on 145 eligible subjects, of whom 91 completed the 4 BoNT-A cycles, while 54 terminated
the treatment early after 1 single cycle. Sixty-seven subjects who decided to terminate the
treatment after the second or third cycle were not included in the analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins15060364/s1, Table S1: List of the features evaluated with
each different ML algorithm. Results of the different machine learning (ML) approaches applied to
primary, secondary, and exploratory endpoints. The population is composed of only those patients
who completed 1 year of treatment. The comparison is performed between groups 2 vs. 4 + 5. Legend:
accuracy (ACC); sensibility (Sens); specificity (Spec); area under the curve (AUC); the number of
features used for classification (N); support vector machine (SVM); RBF kernel; ANFIS (aNN); MLP
(aNN); unsupervised (unsup.) * performance failure in predicting the outcome. Data are expressed
as percentage (%). Table S2: Results, responders vs. nonresponders or early terminator. Results
of the different machine learning (ML) approaches applied to primary, secondary, and exploratory
endpoints. The population is composed of those patients who completed 1 year of treatment as
well as the early terminator who lacked efficacy after 1 cycle and decided to stop the treatment.
The comparison is performed between groups 1 + 2 vs. 4 + 5. Legend: accuracy (ACC); sensibility
(Sens); specificity (Spec); area under the curve (AUC); the number of features used for classification
(N); support vector machine (SVM); RBF kernel; ANFIS (aNN); MLP (aNN); unsupervised (unsup.).
Table S3: Validation, in people living with chronic migraine, of the 4-feature panel obtained with the
population of people living with high-frequency episodic migraine. The comparison is performed
between groups 1 + 2 vs. 4 + 5. Legend: accuracy (ACC); sensibility (Sens); specificity (Spec); area
under the curve (AUC); the number of features used for classification (N); support vector machine
(SVM); RBF kernel; ANFIS (aNN); MLP (aNN); unsupervised (unsup.). Table S4: Summary of the
available literature regarding BonT-A efficacy and predictors.
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