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Mycotoxins are toxic secondary metabolites produced by filamentous fungi belonging,
in particular, to the Aspergillus, Fusarium, and Penicillium genera. Aflatoxins, zearalenone
(ZEN), deoxynivalenol (DON), T-2 toxin, ochratoxin A (OTA), fumonisins, patulin, and
ergot alkaloids are the most contaminating mycotoxins found in food and feed, posing
potentially carcinogenic, mutagenic, teratogenic, cytotoxic, neurotoxic, nephrotoxic, estro-
genic, and immunosuppressant effects on both humans and animals [1]. Moreover, the
broad spectrum of contamination caused by mycotoxins affects not only the economy but
also poses a threat to public health due to the wide range of effects caused by contamina-
tion, which attracts the attention of researchers to explore novel approaches to detoxify
mycotoxin-contaminated food and feed. This Special Issue therefore summarizes various
strategies for the detoxification of mycotoxins through post-harvest detoxification methods,
which are divided into physical, chemical, biological, and other developing innovative
strategies. The physical strategies used to mitigate mycotoxins include rapid and proper
drying, post-harvest insect control, good storage conditions, inorganic and organic adsor-
bents, such as montmorillonite and yeast cell walls, and advanced oxidation technology,
such as irradiation and cold plasma, which allow for the rapid degradation of mycotox-
ins [2]. Chemical approaches involve the use of ozone, electrolyzed oxidizing water, organic
acids, and natural plant extracts, which are widely accepted as safe food additives in many
countries [3]. Biological approaches are defined as the microbial and enzymatic degradation
of mycotoxins into non-toxic or less toxic metabolites. The biodegradation of mycotoxins is
an emerging and frequently studied research topic. Many microorganisms and enzymes
have been reported to degrade various mycotoxins in recent times [4].

This Special Issue aims to gather contributions of original research or reviews related to
novel strategies for the biodegradation and detoxification of mycotoxins. Topics of interest
will include, in particular, novel mycotoxin-degrading microorganisms and enzymes,
fermentation technology to reduce the mycotoxin content in cereal products, and studies
on alleviating the mycotoxicosis of livestock through the addition of bioactive substances
or mycotoxin biodegradation agents.

The first study included in this Special Issue developed sustainable strategies to
counteract mycotoxin contamination and cowpea weevil in chickpea seeds during the
post-harvest period. The results showed that O3 significantly decreased the incidence
of Penicillium spp. (by an average of −50%, independent of the time of exposure) and
reduced the contents of patulin and aflatoxins (−85 and −100% after 30 min of exposure,
respectively). High N2 concentrations significantly reduced mycotoxin contamination
(by an average of −94%) and induced pest mortality (at 100% after 5 days of exposure).
These results confirm the promising potential of O3 and N2 in post-harvest conservation
strategies for eliminating mycotoxin contamination [5]. Five essential oils (thymol, car-
vacrol, cinnamaldehyde, eugenol, and citral) were tested for their inhibition effects against
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Aspergillus flavus and aflatoxin B1 production in broth and feed. The results showed that
cinnamaldehyde and citral have a positive synergistic effect and that both of them could
inhibit at least 90% of the fungal growth and aflatoxin B1 production in broth and poultry
feed; thus, they could be an alternative to control aflatoxin contamination in food and
feed in future [6]. Li et al. revealed that the disruption of redox genes is involved in the
mechanism of coumalic acid and geraniol against Aspergillus flavus spore germination,
and essential oils have a significant inhibitory effect on germination rates and redox gene
expression [7]. Another study from the same group explored the fungistatic effect and
mechanism of thymol on Fusarium graminearum, with the results showing that thymol
can effectively inhibit the growth and toxin production of F. graminearum and cause an
extensive transcriptome response, and the gluconeogenesis/glycolysis pathway may be a
potential and important way for thymol to affect the growth of F. graminearum hyphae and
the production of DON simultaneously [8].

Second, this Special Issue places a specific emphasis on the microbial and enzymatic
transformation of mycotoxins in post-harvest detoxification strategies. A new Alcaligenes
faecalis ANSA176 with a strong OTA-detoxifying ability was isolated from donkey intestinal
chyme, which could degrade 97.43% of 1 mg/mL OTA into OTα within 12 h at 37 ◦C. The
study of laying hens fed an OTA-contaminated diet showed that ANSA176 supplemen-
tation in their diet inhibited or attenuated the immune injury and inflammation induced
by OTA through efficiently degrading OTA in the animals’ intestinal tract [9]. A study
was conducted to compare the potential ameliorative effects between probiotic Bacillus
subtilis (ANSB010) and biodegradable B. subtilis (ANSB01G) on ZEN toxicosis in gilts. The
results showed that the ZEN-contaminated diet had a harmful impact on the growth perfor-
mance, plasma immune function, and hormone secretion of gilts. Although probiotic and
biodegradable B. subtilis have similar antimicrobial capacities, only biodegradable B. subtilis
could eliminate these negative effects through its degradation of ZEN in the intestinal tract
of gilts [10]. A laccase-degrading aflatoxin B1 from B. amyloliquefaciens B10 was isolated,
purified, and characterized by Xiong et al. Their results showed that purified laccase could
degrade 79.3% of AFB1 within 36 h, and the mutation of the three key metal combined
sites (H-87, C-132, and H-149) of B10 laccase resulted in the loss of AFB1-degrading activity,
indicating that these three metal combined sites of B10 laccase play an essential role in
the catalytic degradation of AFB1 [11]. Ery4 laccase, acetosyringone, ascorbic acid, and
dehydroascorbic acid were applied to artificially contaminated corn for AFB1 reduction,
which showed that AFB1 (0.1 µg/mL) was completely removed in vitro and reduced by
26% in corn [12]. Wang et al. discovered that a manganese peroxidase (MrMnP) from
Moniliophthora roreri can efficiently degrade patulin. The recombinant MrMnP was able to
completely remove 5 mg/L of pure patulin within 5 h. Moreover, up to 95% of the toxin was
eliminated in simulated patulin-contaminated apple juice after 24 h. The study concluded
that MrMnP can be used as an intriguing candidate useful in the enzymatic detoxification
of patulin in food and beverages [13]. A novel bacterium ketogulonicigenium vulgare D3_3
isolated from the feces of tenebrio molitor larvae was able to efficiently degrade 50 mg/L
of DON under a broad range of conditions. Furthermore, four PQQ-dependent alcohol
dehydrogenases responsible for the oxidative detoxification of DON were identified from
the genome of isolate D3_3. These findings suggest that bio-detoxification is a potential
strategy to remit the toxicity of DON in animals [14].

Finally, some studies have focused on the toxicity of mycotoxins in cells and animals
and the alleviating effects of some nutritional and enzymatic additives on some mycotoxins.
Chao et al. demonstrated that AFB1 exposure impaired the proliferation of porcine alveolar
macrophage 3D4/2 via the non-coding RNA-mediated pathway by whole-transcriptome
analysis [15]. Wang et al. also revealed that AFB1 exposure caused pathological damage
to ducklings’ livers, decreased enzymatic activity and glutathione content in the liver,
and increased the serum enzyme activities of alanine aminotransferase, aspartate amino-
transferase, alkaline phosphatase, and γ-glutamyl transpeptidase. Moreover, the study
found that dietary epigallocatechin gallate and glutathione attenuate AFB1-induced acute
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liver injury in ducklings via mitochondria-mediated apoptosis and the Nrf2 signaling
pathway [16]. In addition, glutamine can alleviate ZEN-induced apoptosis in IPEC-J2 cells
via the PI3K/Akt signaling pathway [17]. Meanwhile, dietary catalase supplementation
alleviates DON-induced oxidative stress and intestinal damage in broilers, which can be
associated with its ability to improve the gut microbiota, aside from its direct oxygen
radical-scavenging activity [18].
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