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Abstract: Deoxynivalenol (DON) is a predisposing factor for necrotic enteritis. This study aimed to
investigate the effects of a DON and Clostridium perfringens (CP) challenge on the intestinal morphology,
morphometry, oxidative stress, and immune response of broilers. Additionally, we evaluated the
potential of a Lactobacillus spp. mixture as an approach to mitigate the damage induced by the challenge.
One-day-old broiler chickens (n = 252) were divided into seven treatment groups: Control, DON, CP,
CP + DON, VL (DON + CP + viable Lactobacillus spp. mixture), HIL (DON + CP + heat-inactivated
Lactobacillus spp. mixture), and LCS (DON + CP + Lactobacillus spp. mixture culture supernatant).
Macroscopic evaluation of the intestines revealed that the CP + DON group exhibited the highest
lesion score, while the VL and HIL groups showed the lowest scores. Microscopically, all Lactobacillus
spp. treatments mitigated the morphological changes induced by the challenge. DON increased
levels of reactive oxygen species (ROS) in the jejunum, and CP increased ROS levels in the jejunum
and ileum. Notably, the Lactobacillus spp. treatments did not improve the antioxidant defense against
CP-induced oxidative stress. In summary, a Lactobacillus spp. mixture, whether used as a probiotic,
paraprobiotic, or postbiotic, exerted a partially protective effect in mitigating most of the intestinal
damage induced by DON and CP challenges.

Keywords: intestinal health; mycotoxins; detoxification; immunity; necrotic enteritis

Key Contribution: The combined challenge of deoxynivalenol (DON) and Clostridium perfringens
exacerbates necrotic enteritis lesions in broilers, yet supplementation with a Lactobacillus spp. mixture
effectively mitigates the resulting intestinal changes, highlighting its potential as a protective measure.

1. Introduction

Intestinal health plays a key role in broiler performance and productivity [1]. The
growing concern regarding the emergence of multi-resistant bacteria from poultry has led
many markets to prohibit or restrict the use of antimicrobials as growth promoters [2,3].
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Consequently, maintaining intestinal health in poultry flocks has become increasingly
challenging, resulting in the reemergence of intestinal diseases such as necrotic enteritis
(NE) [4].

Necrotic enteritis (NE) is a bacterial disease caused by strains of Clostridium perfringens
(CP) [5]. CP is a Gram-positive, anaerobic, spore-forming bacterium that is a natural
component of the poultry gut microbiota [6]. This disease occurs when there is an abnormal
increase in the population of C. perfringens in the gastrointestinal tract (GIT), combined
with predisposing factors such as coccidia infection, diets rich in non-starch polysaccharide
grains, and exposure to mycotoxins, among others. Virulent strains produce the plasmid-
encoded NetB toxin [6–9]. NE can be manifested as either clinical (resulting in high
mortality rates) or subclinical (leading to growth performance failures), with an estimated
annual cost of approximately USD 6 billion, equivalent to USD 0.05 per chick [10].

Contamination with mycotoxins is a growing concern in feedstock due to climate
change [11]. Mycotoxin exposure significantly contributes to the occurrence of NE, and
poultry are frequently exposed to deoxynivalenol (DON) [9,12,13]. DON is one of the most
prevalent mycotoxins contaminating finished feed and raw commodities worldwide [14].
In poultry, DON exposure has been linked to villus atrophy, failure in intestinal barrier func-
tion, increased intraepithelial lymphocyte infiltration, heightened goblet cell abundance,
intestinal oxidative stress, and disruption of gut microbiome diversity [15–19]. Consump-
tion of DON has additionally been linked to increased susceptibility to coccidiosis and
necrotic enteritis, particularly in more severe cases [9,12,20].

Probiotics consist of beneficial microorganisms that can enhance host health through
various mechanisms [21]. Paraprobiotics, on the other hand, refers to dead probiotic micro-
bial cells and their constituents, making them a preferred choice for immunosuppressed
hosts due to the absence of the risk of bacterial translocation [22]. Postbiotics encom-
pass bacterial metabolites, cell-free supernatant (CFS), and soluble factors (products or
metabolic byproducts) produced by live bacteria or released following bacterial lysis [23].
Lactobacillus spp. strains, in different forms—be it live cells, heat-inactivated cells, or culture
supernatants—have demonstrated protective effects in chickens individually challenged
with either DON or CP [5,24–27].

This study aimed to investigate the impact of a dual challenge involving DON and
CP on intestinal morphology, morphometry, immune response, and oxidative stress in
broilers. Additionally, we have evaluated the efficacy of a Lactobacillus spp. mixture,
administered as a probiotic (live cells), paraprobiotic (heat-inactivated cells), and postbiotic
(culture supernatant), as a potential alternative to mitigate the damage induced by both of
these factors.

2. Results
2.1. Effects of DON, C. perfringens, and Lactobacillus spp. Mixture on the Intestines

On the 23rd day, the intestines were macroscopically evaluated (Figure 1). The
CP + DON group exhibited a worse intestinal gross appearance than the CP group. Among
the Lactobacillus spp.-supplemented groups, VL and HIL induced the most effective protec-
tive effects. The observed changes included loss of intestinal tonus, hyperemia (Figure 1C),
excessive mucus, the presence of yellow peeling content (Figure 1D), and, less frequently, a
thick fibrinous mucus layer.

Intestinal morphometry is directly related to zootechnical performance [28]. In the
jejunum, DON, CP, and CP + DON treatments reduced villus height and the villus: crypt ra-
tio compared to the control and Lactobacillus spp.-supplemented groups. In the ileum, DON
and CP treatments led to a reduction in villus height compared to the other groups, while
no significant difference was observed in duodenal morphometry among the experimental
groups (Table 1).
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Figure 1. (A) Effect of Lactobacillus spp. mixture in the macroscopic aspect of the small intestine of 
broilers challenged with DON and Clostridium perfringens. Values are the means ± standard 
deviation of the mean. ANOVA followed by Scott–Knott multiple comparison test was used to 
determine statistical differences among groups. a,b,c Different letters indicate a statistical difference. 
(B) Control—normal gross aspect of intestinal mucosa. (C) CP + DON—altered gross aspect of 
intestinal mucosa, moderate hyperemia, and presence of an ulcer (arrowhead). (D) LV—gross aspect 
of the intestine from the viable Lactobacillus spp. mixture group, discrete presence of yellow peeling 
content (arrowhead), and hyperemia and petechiae are observed. Control—uncontaminated diet. 
DON (deoxynivalenol)—diet with DON 19.3 mg kg−1. CP (Clostridium perfringens)—uncontaminated 
diet + C. perfringens challenge. CP + DON—DON 19.3 mg kg−1 + C. perfringens challenge. LV—DON 
19.3 mg kg−1 + C. perfringens challenge plus viable Lactobacillus spp. mixture. HIL—DON 19.3 mg 
kg−1 + C. perfringens challenge plus heat-inactivated Lactobacillus spp. mixture. LCS—DON 19.3 mg 
kg−1 + C. perfringens challenge plus Lactobacillus spp. mixture culture supernatant. 

Intestinal morphometry is directly related to zootechnical performance [28]. In the 
jejunum, DON, CP, and CP + DON treatments reduced villus height and the villus: crypt 
ratio compared to the control and Lactobacillus spp.-supplemented groups. In the ileum, 
DON and CP treatments led to a reduction in villus height compared to the other groups, 
while no significant difference was observed in duodenal morphometry among the 
experimental groups (Table 1). 

Table 1. Effect of Lactobacillus spp. mixture on villus height, crypt depth, villus: crypt ratio, 
microscopic lesion score, intraepithelial lymphocytes infiltration, and goblet cell count in the 
duodenum, jejunum, and ileum. 

Treatment Villus Height 
[µm] Crypt Depth [µm] Villi: Crypt Ratio Microscopic Lesion 

Score IEL Goblet Cells 

 Duodenum 
Control 1315.02 ± 189.85 145.91 ± 18.95 9.13 ± 1.78 7.50 b ± 1.22 NA NA 

DON  1216.70 ± 182.97 158.64 ± 19.96 7.84 ± 1.92 9.16 b ± 3.31 NA NA 
CP 1159.23 ± 202.50 133.11 ± 15.99 8.71 ± 1.19 11.83 a ± 5.81 NA NA 

CP + DON  1296.70 ± 258.16 148.60 ± 17.92 8.80 ± 1.93 15.40 a ± 3.71 NA NA 
VL 1299.06 ± 135.00 164.57 ± 43.96 8.22 ± 1.84 11.40 b ± 1.52 NA NA 
HIL 1352.86 ± 99.07 140.28 ± 13.89 9.76 ± 1.53 8.40 b ± 3.05 NA NA 
LCS 1180.26 ± 98.46 138.52 ± 14.33 8.55 ± 1.19 9.40 b ± 2.51 NA NA 

 Jejunum 
Control 970.52 a ± 159.33 133.87 ± 13.01 7.30 a ± 1.34 4.16 b ± 2.86 20.18 b ± 2.89 NA 

DON  632.43 b ± 109.73 129.62 ± 12.69 4.89 b ± 0.83 8.16 a ± 1.47 25.68 b ± 2.66 NA 
CP 840.82 b ± 232.02 126.74 ± 11.09 6.59 b ± 1.43 11.17 a ± 3.71 28.84 a ± 2.79 NA 

CP + DON  789.68 b ± 77.20 127.23 ± 9.13 6.22 b ± 0.69 12.00 a ± 2.16 32.70 a ± 4.94 NA 

Figure 1. (A) Effect of Lactobacillus spp. mixture in the macroscopic aspect of the small intestine
of broilers challenged with DON and Clostridium perfringens. Values are the means ± standard
deviation of the mean. ANOVA followed by Scott–Knott multiple comparison test was used to
determine statistical differences among groups. a,b,c Different letters indicate a statistical difference.
(B) Control—normal gross aspect of intestinal mucosa. (C) CP + DON—altered gross aspect of intesti-
nal mucosa, moderate hyperemia, and presence of an ulcer (arrowhead). (D) LV—gross aspect of the
intestine from the viable Lactobacillus spp. mixture group, discrete presence of yellow peeling content
(arrowhead), and hyperemia and petechiae are observed. Control—uncontaminated diet. DON
(deoxynivalenol)—diet with DON 19.3 mg kg−1. CP (Clostridium perfringens)—uncontaminated
diet + C. perfringens challenge. CP + DON—DON 19.3 mg kg−1 + C. perfringens challenge.
LV—DON 19.3 mg kg−1 + C. perfringens challenge plus viable Lactobacillus spp. mixture. HIL—DON
19.3 mg kg−1 + C. perfringens challenge plus heat-inactivated Lactobacillus spp. mixture. LCS—DON
19.3 mg kg−1 + C. perfringens challenge plus Lactobacillus spp. mixture culture supernatant.

Table 1. Effect of Lactobacillus spp. mixture on villus height, crypt depth, villus: crypt ratio, micro-
scopic lesion score, intraepithelial lymphocytes infiltration, and goblet cell count in the duodenum,
jejunum, and ileum.

Treatment Villus Height [µm] Crypt Depth
[µm]

Villi: Crypt
Ratio

Microscopic
Lesion Score IEL Goblet Cells

Duodenum

Control 1315.02 ± 189.85 145.91 ± 18.95 9.13 ± 1.78 7.50 b ± 1.22 NA NA
DON 1216.70 ± 182.97 158.64 ± 19.96 7.84 ± 1.92 9.16 b ± 3.31 NA NA

CP 1159.23 ± 202.50 133.11 ± 15.99 8.71 ± 1.19 11.83 a ± 5.81 NA NA
CP + DON 1296.70 ± 258.16 148.60 ± 17.92 8.80 ± 1.93 15.40 a ± 3.71 NA NA

VL 1299.06 ± 135.00 164.57 ± 43.96 8.22 ± 1.84 11.40 b ± 1.52 NA NA
HIL 1352.86 ± 99.07 140.28 ± 13.89 9.76 ± 1.53 8.40 b ± 3.05 NA NA
LCS 1180.26 ± 98.46 138.52 ± 14.33 8.55 ± 1.19 9.40 b ± 2.51 NA NA

Jejunum

Control 970.52 a ± 159.33 133.87 ± 13.01 7.30 a ± 1.34 4.16 b ± 2.86 20.18 b ± 2.89 NA
DON 632.43 b ± 109.73 129.62 ± 12.69 4.89 b ± 0.83 8.16 a ± 1.47 25.68 b ± 2.66 NA

CP 840.82 b ± 232.02 126.74 ± 11.09 6.59 b ± 1.43 11.17 a ± 3.71 28.84 a ± 2.79 NA
CP + DON 789.68 b ± 77.20 127.23 ± 9.13 6.22 b ± 0.69 12.00 a ± 2.16 32.70 a ± 4.94 NA

VL 1075.19 a ± 154.24 122.39 ± 18.15 8.88 a ± 1.47 8.60 a ± 3.36 24.76 b ± 3.99 NA
HIL 961.53 a ± 225.59 131.70 ± 16.69 7.48 a ± 2.35 7.00 b ± 3.67 23.41 b ± 1.90 NA
LCS 901.30 a ± 94.33 113.33 ± 14.87 8.02a ± 0.96 9.00 a ± 3.46 30.26 a ± 5.77 NA
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Table 1. Cont.

Treatment Villus Height [µm] Crypt Depth
[µm]

Villi: Crypt
Ratio

Microscopic
Lesion Score IEL Goblet Cells

Ileum

Control 750.29 a ± 49.07 123.43 ± 16.56 6.20 ± 1.21 4.50 c ± 1.87 18.98 b ± 1.07 66.97 c ± 5.87
DON 605.68 b ± 59.83 128.91 ± 25.98 4.86 ± 1.02 6.50 b ± 1.87 23.52 a ± 2.23 73.63 c ± 5.19

CP 671.15 b ± 107.38 118.87 ± 12.92 5.64 ± 0.62 8.67 a ± 3.93 26.11 a ± 5.50 87.34 b ± 11.32
CP + DON 713.88 a ± 86.42 115.98 ± 11.15 6.16 ± 0.58 9.00 a ± 1.87 26.75 a ± 2.47 88.54 b ± 9.36

VL 729.05 a ± 52.30 137.01 ± 13.66 5.34 ± 0.40 4.20 c ± 1.79 22.46 a ± 2.05 108.04 a ± 9.29
HIL 703.70 a ± 42.50 131.71 ± 10.05 5.35 ± 0.26 9.20 a ± 2.28 24.26 a ± 4.27 105.21 a ± 5.83
LCS 731.06 a ± 38.13 131.85 ± 16.41 5.59 ± 0.54 6.80 b ± 2.49 24.11 a ± 2.55 104.81 a ± 10.18

Values are the mean ± standard deviation. ANOVA followed by Scott–Knott multiple comparison test was used
to determine significant differences among groups. a,b,c Different letters in the same column indicate a significant
difference. Control—uncontaminated diet. DON (deoxynivalenol)—diet with DON 19.3 mg kg−1. CP (Clostridium
perfringens)—uncontaminated diet + C. perfringens challenge. CP + DON—DON 19.3 mg kg−1 + C. perfringens
challenge. LV—DON 19.3 mg kg−1 + C. perfringens challenge, supplemented with viable Lactobacillus spp.
mixture. HIL—DON 19.3 mg kg−1 + C. perfringens challenge, supplemented with heat-inactivated Lactobacillus
spp. mixture. LCS—DON 19.3 mg kg−1 + C. perfringens challenge, supplemented with Lactobacillus spp. mixture
culture supernatant. NA—not analyzed.

As sentinels of the intestinal barrier and local immune response, intraepithelial lym-
phocytes (IELs) were evaluated [29]. In the jejunum, only DON ingestion did not induce
an increase in IELs; however, broilers receiving CP or CP + DON showed increased IEL
infiltrate (≈1.5-fold on average for both groups) compared to the control group, while the
VL and HIL groups were similar to the control. In the ileum, all treatments induced a
higher number of IELs compared to the control (Table 1). The number of goblet cells was
evaluated in the ileum, and the Lactobacillus spp.-supplemented groups showed a higher
abundance compared to the control, DON, CP, and CP + DON treatments.

Morphological alterations induced by the different treatments were evaluated using
a lesion score. In the duodenum, CP and CP + DON increased the lesion score by ap-
proximately 2.6-fold compared to the control, while the remaining treatments resulted in
lesion scores similar to those of the control and DON groups. In the jejunum, all treatment
groups showed higher scores than the control group, except for the HIL group. In the
ileum, increased lesion scores were observed in all treatment groups except the VL group
when compared to the control (Table 1). The most frequent changes observed in the histo-
logical evaluation included edema of the lamina propria, lymphocytic infiltrate, cell debris,
apical necrosis, adhesion of bacteria on the villi surface, and cytoplasmic vacuolation of
enterocytes (Figure 2).

Scanning electron microscopy (Figure 3) was performed to illustrate the effects of
Lactobacillus spp. mixture, DON, and CP challenge in the jejunum. The control group
showed normal villus morphology, while in the DON and CP + DON groups, a thicker
mucus layer was observed. The Lactobacillus spp. mixture groups showed preserved villi
morphology, similar to the control.

2.2. Effects of DON, C. perfringens, and Lactobacillus spp. Mixture on Redox Status

Oxidative stress occurs when there is an imbalance between the production of radical
species and the antioxidant response in the organism [30]. Our study aimed to investigate
the effects of DON and CP on the redox status. To achieve this, samples from the jejunum
and ileum were used in lipid peroxidation (TBARS) and superoxide anion production
(NBT) assays to assess the oxidative response. Additionally, GSH (reduced glutathione),
ABTS (3-ethylbenzothiazoline-6-sulphonic acid), and FRAP (ferric reducing ability) assays
were performed to evaluate antioxidant capacity.
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of necrosis (*). HE, bar 200 µm. (E) CP + DON: focal area of apical necrosis with myriad of bacterial 
colonies attached to cell debris (*). HE, bar 50 µm. (F) Viable Lactobacillus spp. mixture: preserved 
villi morphology. HE, bar 200 µm. (G) Heat-inactivated Lactobacillus spp. mixture: preserved villi 
morphology. HE, bar 200 µm. (H) Lactobacillus spp. mixture culture supernatant: preserved villi 
morphology with different development stages of Eimeria spp. oocysts ( ). HE, bar 200 µm. 
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Figure 2. Morphological changes induced by DON, CP, and Lactobacillus spp. mixture supplementa-
tion on broiler jejunal tissue. (A) Control: normal villi morphology. HE, bar 200 µm. (B) DON: villi
atrophy and enhanced presence of inflammatory infiltrate (*). HE, bar 200 µm. (C) DON: enhanced
presence of inflammatory infiltrate (*). HE, bar 100 µm. Insert: inflammatory infiltrate predominantly
composed by mononuclear cells. HE, bar 50 µm. (D) CP + DON: focal area of necrosis (*). HE, bar
200 µm. (E) CP + DON: focal area of apical necrosis with myriad of bacterial colonies attached to cell
debris (*). HE, bar 50 µm. (F) Viable Lactobacillus spp. mixture: preserved villi morphology. HE, bar
200 µm. (G) Heat-inactivated Lactobacillus spp. mixture: preserved villi morphology. HE, bar 200
µm. (H) Lactobacillus spp. mixture culture supernatant: preserved villi morphology with different
development stages of Eimeria spp. oocysts (▲). HE, bar 200 µm.

In the jejunum, exposure to DON and CP + DON increased TBARS levels compared to
the control, CP, and Lactobacillus spp.-supplemented groups. An increase in the NBT levels
was detected in the CP, CP + DON, and Lactobacillus spp.-supplemented groups compared
to the control and DON groups (Table 2). DON, CP, and CP + DON challenges reduced GSH
levels compared to the control group, with the Lactobacillus spp.-supplemented treatments
unable to restore GSH levels to those of the control. Regarding FRAP levels, the DON and
control groups were similar, while the CP, CP + DON, and Lactobacillus spp.-supplemented
groups showed higher levels in comparison. There were no significant differences in ABTS
levels between the groups.
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jejunum after DON and CP challenge. (A) Control—normal villi morphology. (B) DON—enhanced
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presence of mucus compared to the control group. (C) CP + DON—enhanced presence of mucus.
(D) Viable Lactobacillus—preserved villi integrity. (E) Heat-inactivated Lactobacillus—preserved villi
morphology. (F) Lactobacillus culture supernatant—preserved villi morphology.

Table 2. Effect of Lactobacillus spp. mixture on the oxidative status in the small intestine. Values are
the mean ± standard deviation of the mean. ANOVA followed by Scott–Knott multiple comparison
test was used to determine statistical differences among groups. a,b,c Different letters in the same
column indicate a statistical difference.

Treatment TBARS NBT GSH ABTS FRAP

Jejunum

Control 0.04 b ± 0.03 6.67 b ± 3.19 2809.33 a ± 1215.38 0.70 ± 0.09 0.59 b ± 0.17
DON 0.08 a ± 0.05 7.56 b ± 2.30 1313.11 b ± 447.71 1.10 ± 0.18 0.75 b ± 0.25

CP 0.03 b ± 0.01 32.46 a ± 12.51 447.51 c ± 110.76 1.13 ± 0.44 1.65 a ± 0.56
CP + DON 0.05 a ± 0.01 24.51 a ± 13.54 458.97 c ± 20.38 1.11 ± 0.39 1.21 a ± 0.23

VL 0.03 b ± 0.01 32.85 a ± 27.97 593.57 c ± 75.59 1.00 ± 0.25 1.40 a ± 0.15
HIL 0.02 b ± 0.01 48.70 a ± 25.97 585.41 c ± 110.41 0.85 ± 0.25 1.55 a ± 0.33
LCS 0.03 b ± 0.01 25.55 a ± 16.27 400.20 c ± 107.88 1.37 ± 0.40 1.98 a ± 0.45

Ileum

Control 0.02 ± 0.007 6.81 b ± 0.64 1568.72 a ± 731.15 0.81 ± 0.17 1.28 ± 0.94
DON 0.04 ± 0.03 6.48 b ± 3.46 1702.98 a ± 412.50 0.64 ± 0.19 0.96 ± 0.49

CP 0.02 ± 0.008 30.80 a ± 8.62 588.39 b ± 120.34 0.89 ± 0.36 1.78 ± 0.57
CP + DON 0.03 ± 0.02 44.17 a ± 14.05 556.43 b ± 111.85 0.75 ± 0.35 0.97 ± 0.21

VL 0.02 ± 0.01 39.59 a ± 14.33 639.80 b ± 250.44 0.88 ± 0.22 1.18 ± 0.30
HIL 0.03 ± 0.005 36.29 a ± 13.26 606.61 b ± 87.30 0.57 ± 0.34 1.41 ± 0.52
LCS 0.03 ± 0.009 26.03 a ± 17.26 663.84 b ± 137.50 0.59 ± 0.34 0.93 ± 0.23

Control—uncontaminated diet. DON (deoxynivalenol)—diet with DON 19.3 mg kg−1. CP (Clostridium perfringens)—
uncontaminated diet + C. perfringens challenge. CP + DON—DON 19.3 mg kg−1 + C. perfringens challenge. LV—DON
19.3 mg kg−1 + C. perfringens challenge plus viable Lactobacillus spp. mixture. HIL—DON 19.3 mg kg−1 + C. perfringens
challenge plus heat-inactivated Lactobacillus spp. mixture. LCS—DON 19.3 mg kg−1 + C. perfringens challenge
plus Lactobacillus spp. mixture culture supernatant. Results are expressed as: TBARS (thiobarbituric acid reactive
substances)—∆OD A535−A532/mg of tissue; NBT (nitroblue tetrazolium)—OD/mg of protein; GSH (reduced
glutathione)—nmol/mg of protein; ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)—nmol Trolox
Eq/mg of tissue; FRAP (ferric reducing antioxidant power)—nmol Trolox Eq/mg of tissue.

In the ileum, both CP and CP + DON treatments significantly increased NBT levels
by approximately 5.6-fold compared to the control and DON groups. However, the Lacto-
bacillus spp.-supplemented treatments were unable to revert superoxide anion production
to control group levels. Regarding GSH levels, CP and CP + DON treatments reduced it
approximately 2.85-fold compared to the control and DON groups, with the Lactobacillus
spp.-supplemented treatments showing no significant differences compared to the CP and
CP + DON groups. No significant differences were observed among the TBARS, ABTS, and
FRAP levels between the groups.

2.3. Effects of DON, C. perfringens, and Lactobacillus spp. on Intestinal Secretory IgA Levels

Intestinal secretory IgA levels were assessed at three time points: 7, 14, and 20 days. No
significant difference was observed among the treatments (p = 0.08). However, with respect
to time, a lower IgA concentration was observed at 7 days (1,165,620 ± 636,766 ng/mL),
compared to that at 14 (1,488,459 ± 947,397 ng/mL) and 20 (1,610,248 ± 1,050,150 ng/mL)
days (p = 0.02). No interaction between time and treatment was observed (p = 0.20).

3. Discussion

Previous studies have shown that exposure to mycotoxins, such as DON alone or
in combination with other mycotoxins like fumonisins, can exacerbate the occurrence
of necrotic enteritis (NE) [9,12,13]. In this study, we aimed to investigate the effects of
different presentations [probiotic (viable cells), paraprobiotic (heat-inactivated cells), and
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postbiotic (heat-inactivated cells culture supernatant)] of a Lactobacillus spp. mixture on
broiler chickens challenged with DON and Clostridium perfringens (CP), as previous research
has suggested that Lactobacillus spp. strains may mitigate the negative effects of single
challenge with mycotoxins or CP in the intestine [5,24].

Macroscopic evaluation of the intestines revealed that the CP + DON group exhibited
a higher lesion score compared to the group challenged with CP alone, consistent with
previous reports indicating that a DON-contaminated diet can increase the severity of NE
cases [9,12]. Among the Lactobacillus spp. groups, VL and HIL induced the lowest lesion
scores. Microscopically, both DON and CP exposure induced intestinal lesions, and the
combination of both factors tended to increase the lesion score, although the difference was
not significant. The Lactobacillus spp. treatments appeared to mitigate the morphological
changes induced by both challenges.

Zootechnical performance is closely related to increased intestinal absorptive capacity.
Villus height serves as an indicator of the absorption area, and the intestinal crypts are the
sites of new enterocyte multiplication [31,32]. The jejunum and ileum were the intestinal
segments most affected by both DON and CP challenges, showing a reduction in villus
height and the villus: crypt ratio (only in the jejunum) compared to the control and
Lactobacillus spp.-supplemented groups. Since the small intestine is the primary site of
DON absorption, previous studies have reported impaired intestinal morphometry as a
consequence of DON ingestion [16,33]. However, in this study, the combination of DON
and CP did not worsen the intestinal morphometry compared to single challenge.

Intraepithelial lymphocytes (IELs) are key components of the intestinal barrier [29]. In
this study, exposure to CP increased the number of IELs in both the jejunum and ileum,
regardless of DON administration. Similar findings were reported in naturally infected
laying hens [34]. However, in the VL and HIL groups, the number of IELs was reduced to
control levels in the jejunum but not in the ileum.

Contrary to previous reports [16,35], DON exposure did not induce an increase in
goblet cell density under light microscopy evaluation in this study. However, scanning elec-
tron microscopy revealed enhanced mucus presence in the DON-exposed group compared
to the control group. Lactobacillus spp. supplementation increased the number of goblet
cells compared to other groups. Excess mucus can predispose to NE; however, this finding
was expected, as the microbiota can influence mucus layer development, and specifically,
Lactobacillus spp. are known to contribute to strengthening the intestinal mucosal barrier
function [36–39].

Regarding oxidative stress in the jejunum, DON induced lipid peroxidation, and this
effect was sustained after the CP challenge. However, the Lactobacillus spp. treatments
decreased the lipid peroxidation/MDA levels to control levels. Previous research has also
reported DON-induced lipid peroxidation [16,40,41], which is associated with mitochon-
drial damage [42]. The NBT assay quantifies superoxide anions indirectly through their
oxidative effects on NBT and is mainly produced by inflammatory cells [43]. CP induced
inflammation, as confirmed by higher NBT levels, but the Lactobacillus spp. treatments did
not reverse this effect. As a consequence of lipid peroxidation and inflammation, lower
GSH levels were observed in all DON- and CP-challenged groups compared to control
levels. These findings align with other studies that have reported the capacity of DON and
CP to reduce intestinal antioxidant defense [16,26,44,45]. The FRAP assay measures tissue
ferric reducing ability, and CP-challenged groups showed higher FRAP levels, likely as a
response to the inflammatory status and oxidative stress [46].

The ileum is the final segment of the small intestine, and exposure to xenobiotics such
as mycotoxins is lower than that in the proximal regions [47]. In this study, the ileum
showed no change in the oxidative stress response after DON exposure. It is likely that
the levels of mycotoxins were reduced due to the intestinal microbiota’s detoxification
activity [48]. Organisms under long-term toxicity might induce adaptations to reduce
the damage [49–51]. On the other hand, CP induced an inflammatory status resulting
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in higher levels of NBT and lower levels of GSH, and Lactobacillus spp. did not exert a
protective effect.

In this study, concomitant exposure to DON and CP did not worsen most of the
evaluated parameters compared to single challenge. However, the Lactobacillus spp. treat-
ments, especially LV and HIL, were effective in mitigating tissue damage. Viable or
heat-inactivated cells from one strain of L. plantarum used in this study have a recognized
capacity to remove DON [52]. The mechanism of action is still unclear, but based on
research with similar microorganisms, it is hypothesized that viable cells can detoxify
DON while heat-inactivated cells can bind to the mycotoxin, thereby reducing its toxic
effects [53–55].

The Lactobacillus strains used in this experiment underwent in vitro evaluation, reveal-
ing their ability to antagonize the growth of C. perfringens (inhibition zone on spot on the
lawn varying from 14 to 22 mm, data not shown). The protective effects of viable cells
against CP-induced damage were likely a result of bacteriocin production targeting C. per-
fringens, whereas heat-inactivated cells might exert a prebiotic effect by modulating the gut
microbiome and preventing the proliferation of pathogenic microorganisms [26,56–59].

4. Conclusions

Additional studies are required to clarify the mechanisms of action of the evaluated
Lactobacillus spp. strains and establish an industrial process for producing and transforming
these strains into a commercial product for animal consumption. This is especially crucial
as the model employed in this trial (oral gavage) is not applicable in commercial poultry
farming. Nonetheless, it can be inferred that these strains exhibited a protective effect,
mitigating a significant portion of the intestinal damage induced by DON and C. perfringens.

5. Materials and Methods
5.1. Study Location and Ethical Approval

This study was conducted at the avian medicine experimental facilities at Univer-
sidade Estadual de Londrina, Londrina, Paraná, Brazil, and received approval from the
institutional ethics committee for the use of animals (Comitê de Ética no Uso de Animais
CEUA-UEL, protocol number 12433.2018.03, approval date 24 September 2018).

5.2. Animals and Treatments

One-day-old broiler chickens (n = 252), Ross 308 lineage, were housed in cages with
water, feed, and heating provided, following lineage guidelines [60]. The animals were
divided into seven treatment groups (n = 36 each), as follows: Control—uncontaminated
diet; DON—diet containing DON at 19.3 mg kg−1; CP—uncontaminated diet + Clostridium
perfringens challenge; CP + DON—diet containing DON at 19.3 mg kg−1 + C. perfringens
challenge; VL—diet containing DON at 19.3 mg kg−1 + C. perfringens challenge + viable
Lactobacillus spp. mixture; HIL—diet containing DON at 19.3 mg kg−1 + C. perfringens
challenge + heat-inactivated Lactobacillus spp. mixture; LCS—diet containing DON at
19.3 mg kg−1 + C. perfringens challenge + Lactobacillus spp. mixture culture supernatant.

5.3. Diets

The experimental diets were formulated to meet the nutritional requirements of the
animals (Table 3), consisting of three different diets used during the trial period: Diet 1
(0–6 days)—primarily composed of corn (48.16%) and soybean meal (43.70%), free of DON;
Diet 2 (7–14 days)—composed of corn (15%), soybean meal (35.31%), and wheat (40.13%);
Diet 3 (15–23 days)—composed of corn (15%), wheat (40.43%), and fish meal (35.31%).
Fish meal was added to diet 3 to elevate the crude protein level and create an intestinal
environment favorable for the experimental induction of necrotic enteritis [61].
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Table 3. Composition of the experimental diets.

Ingredients (g/kg) Diet 1
0–6 Days

Diet 2
7–14 Days

Diet 3
15–23 Days

Corn 481.6 150 150
Soya bean meal (46% CP) 437 353.14 -
Soybean oil 32 54 54
Wheat - 404.33 404.33
Fishmeal - - 353.14
Dicalcium phosphate 25 9.28 9.29
Limestone 1.5 13.17 13.16
Sodium chloride 6 5.03 5.04
Premix 5 5 5
L-lysine HCL 0.968 2.1 2.08
DL-methionine 3.36 3 2.99
L-threonine 0.38 0.98 0.98

Nutritional Levels

Energy mcal/kg 2975 3050 3010
Protein (%) 24.27 23.31 25.61
Linoleic acid (%) 3.355 - -
Calcium (%) 0.971 0.878 2.910
Phosphorus available (%) 0.463 0.310 1.563
Lysine dig (%) 1.307 1.256 1.418
Methionine dig (%) 0.646 0.600 0.869
Methionine + cistine dig (%) 0.967 0.929 1.176
Threonine dig (%) 0.863 0.829 0.931
Tryptophan dig (%) 0.277 0.271 0.190
Sodium (%) 0.225 0.218 0.451

Premix—Iron 8400.00 mg kg−1; Copper 3200.00 mg kg−1; Manganese 13.60 g kg−1; Zinc 10.80 g kg−1; Iodine
146.00 mg kg−1; Selenium 52.00 mg kg−1; Vitamin A 2,500,000.00 UI/kg; Vitamin D3 420,000.00 UI/kg; Vitamin
E 6000.00 UI/kg; Vitamin K3 500.00 mg kg−1; Vitamin B1 500.00 mg kg−1; Vitamin B2 1600.00 mg kg−1; Niacin
7000.00 mg kg−1; Vitamin B6 900.00 mg kg−1; Folic acid 200.00 mg kg−1; Biotin 36.00 mg kg−1; Vitamin B12
16,000.00 mcg kg−1; Colin 80.00 g kg−1; Methionine 178.20 g kg−1.

On the 7th day, DON-challenged groups (excluding the control) began receiving a
DON-contaminated diet containing 19.3 mg kg−1 (Figure S1). The crude DON extract used
to contaminate the diets was provided by the Laboratory of Mycology, Luiz de Queiroz
College of Agriculture, University of São Paulo. A blend (standard diet + DON) was
prepared at the Universidade Estadual de Londrina facilities using a commercial feed mixer.
The diets were sent to Lamic laboratory (Santa Maria—RS/Brazil), where the mycotoxins
levels were assessed using the HPLC/MS-MS method. Three diet samples were collected
throughout the experimental period: first, 0–6 days (diet 1); second, 7–23 uncontaminated
diet (diets 2 and 3); and third, 7–23 DON-contaminated diet (diets 2 and 3). The results
of the mycotoxin (deoxynivalenol, aflatoxins, fumonisins, and zearalenone) analysis are
shown on Table 4.

5.4. Necrotic Enteritis Induction

Animals in the CP, CP + DON, VL + DON, HIL + DON, and LCS + DON groups
underwent necrotic enteritis induction. They were orally challenged with 4000 oocysts of
Eimeria spp. from a commercial vaccine (Livaccox®, Paulínia, Brazil) and a 10-fold dose of
a commercial Gumboro disease vaccine (Bursa F®, Campinas, Brazil) [62,63] on the 14th
day. The non-challenged groups received 1 mL of sterile PBS to replicate the same stress.

A C. perfringens type G, netB positive strain from the Avian Medicine UEL collection
was used to challenge the birds. The strain was grown in BHI (Brain Heart Infusion,
HiMedia, Sumaré, Brazil) broth at 37 ◦C for 18 h under anaerobic conditions using a
commercial kit (GasPak®, Becton Dickinson Osasco, Brazil). From the 16th to the 22nd day,
animals received 1 mL of fresh CP culture (approximately 4 × 108 CFU/mL) via oral gavage
twice daily (Figure 1). On each challenge day, an inoculum sample was 10-fold diluted
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and plated on SFP agar® (Becton Dickinson Osasco, Brazil), followed by incubation under
anaerobic conditions to determine the CFU count. The non-challenged groups received 1
mL of BHI broth to simulate the same stress.

Table 4. Mycotoxin contamination levels of the experimental diets used in the trial, as determined by
HPLC/MS-MS.

Contamination Level [µg kg−1]

Mycotoxin 1–6 Days
Uncontaminated Diet

7–23 Days
Uncontaminated Diet

7–23 Days
Contaminated Diet

DON <LOQ 200 19,309.4
AFB1 <LOQ <LOQ <LOQ
AFB2 <LOQ <LOQ <LOQ
AFG1 <LOQ <LOQ <LOQ
AFG2 <LOQ <LOQ <LOQ
FB1 252.9 <LOQ <LOQ
FB2 <LOQ <LOQ <LOQ
ZEA 31.4 <LOQ 4878.7

LOQ: limit of quantification. DON: deoxynivalenol; AFB1: aflatoxin B1; AFB2: aflatoxin B2; AFG1: aflatoxin G1;
AFG2: aflatoxin G2; FB1: fumonisin B1; FB2: fumonisin B2; ZEA: zearalenole. LOQ: DON, 200 µg kg−1; AFB1,
AFB2, AFG1, AFG2, 1 µg kg−1; FB1, FB2, 125 µg kg−1; ZEA, 20 µg kg−1.

5.5. Lactobacillus spp. Mixture Administration

Animals in the VL, HIL, and LCS groups received 1 mL of a Lactobacillus spp. mixture
(approximately 2.2 × 109 CFU/mL) via oral gavage every other day throughout the ex-
perimental period (Figure 1). Groups not supplemented with the Lactobacillus spp. pool
received 1 mL of sterile MRS (De Man, Rogosa, and Sharpe medium, HiMedia Sumaré,
Brazil) broth.

The Lactobacillus spp. mixture comprised an equal quantity of three strains: two
isolated from broiler chickens (L. reuteri and L. plantarum, not deposited in GenBank) and
one from wheat (L. plantarum—accession number CP053912) in previous studies [52,64,65].
The strains were grown separately in MRS broth and incubated at 37 ◦C for 24 h under
microaerophilic conditions. Samples were provided in three different forms: (i) a fresh
culture of viable Lactobacillus spp. mixture; (ii) a heat-inactivated culture of Lactobacillus spp.
mixture, and (iii) a supernatant culture from a heat-inactivated Lactobacillus spp. mixture.
The inactivation and mixture preparation followed previously described methods [16,52].
Cell density was assessed daily through 10-fold dilution and plating.

5.6. Sample Collection

Throughout the experimental period, four samplings were conducted. On days 7, 14,
and 20, ten animals per treatment group were euthanized, and on day 23, 6 animals per
treatment were used for biological sample collection. The intestinal samples underwent
macroscopic lesion scoring, histological examination, ELISA (enzyme-linked immunosor-
bent assay), and oxidative stress response assessments.

• Macroscopic intestinal lesion score

On the 23rd day, 6 animals per treatment were euthanized, and an intestinal lesion
score was determined following previously described criteria, ranging from 0 to 5 [66].

• ELISA

Intestinal fluid was collected from 10 animals per treatment at 7, 14, and 20 days.
For this purpose, 2 mL of a wash buffer (PBS pH 7.2, thimerosal 0.01%, 1% BSA, 1 mM
phenylmethylsulfonyl fluoride, and 5 mM EDTA) was injected into the proximal duodenum
and collected at the distal ileum. The collected samples were then centrifuged at 1200× g
for 15 min at 4 ◦C, and the resulting supernatant was collected and stored at −20 ◦C.
The levels of IgA were determined using the chicken IgA ELISA quantitation kit (Bethyl®
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Laboratories, Montgomery, TX, USA). The assay was performed in triplicate following the
manufacturer’s instructions, with the plates read at 450 nm.

• Histology and scanning electron microscopy

Morphological and morphometric evaluations were carried out on the intestines
(duodenum, jejunum, and ileum) of 6 animals per treatment on the 23rd day. The Swiss roll
technique [67] was used to collect and prepare the samples. The tissues were fixed in a 10%
buffered formalin solution and subsequently subjected to routine histological processing.
Sections of 5 µm thickness were obtained and stained with hematoxylin-eosin (HE) and
Alcian Blue (AB). AB staining was utilized to determine goblet cell density.

Morphometric analysis was performed on 30 randomly selected villi and crypts per
slide (180 villi and crypts per treatment) using image analysis software (Motic Image Plus
2.0, Motic Instruments, Richmond, BC, Canada). Measurements of villus height, crypt
depth, and villus: crypt ratio were conducted in the duodenum, jejunum, and ileum.
The morphological evaluation of the intestines followed the scoring system described by
Terciolo, et al. [68], with minor modifications (including additional lesions in the score:
inflammatory infiltrate, congestion, bacteria adhered to the villi, presence of Eimeria spp.,
and cell debris). The count of intraepithelial lymphocytes (IELs) was performed on 12 ran-
domly chosen villi per slide (72 villi per treatment), considering IELs positioned above
the enterocyte nucleus. Goblet cell density was determined exclusively in the ileum by
evaluating 15 random villi per slide (90 villi per treatment).

Scanning electron microscopy was conducted specifically in the jejunum. Samples
were collected on the 23rd day, fixed in a 2.5% glutaraldehyde buffered solution (sodium
cacodylate solution 0.1 M, pH 7.2) for 24 h, and subsequently washed with sodium cacody-
late buffer (0.1 M, pH 7.2). Treatment involved exposure to 1% osmium tetroxide in sodium
cacodylate buffer (0.1 M, pH 7.2) for 1 h. Subsequent steps included gradual dehydration
in different ethanol concentrations (70, 80, 90, 100%) and drying to the critical point using
a CPD 030 critical point dryer (Bal-Tec Union Ltd., Vaduz, Liechtenstein). Following this,
tissues were coated with gold (Sputter Coater SDC 050, Bal-Tec Union Ltd., Vaduz, Liecht-
enstein), and the morphology of the intestinal villi was examined using a scanning electron
microscope (FEI Quanta 200, Field Electron and Ion Company, Hillsboro, USA).

• Oxidative stress response

The oxidative stress response was evaluated in both the jejunum and ileum. On the
20th day, 4 animals per treatment were euthanized, and samples from these tissues were
collected in microtubes and preserved at −80 ◦C until processing. The antioxidant capacity
was assessed by quantification of reduced glutathione (GSH) following the method of
Sedlak and Lindsay [69], ferric reducing ability (FRAP), and reduction of 2,2′-azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), as described by Katalinic, et al. [70].

The oxidative response was evaluated using the nitroblue tetrazolium assay (NBT) [71]
and the quantification of thiobarbituric acid reactive substances (TBARS) [72,73]. Tissue
homogenization was carried out in buffer using a Tissue-Tearor (Bjospec, São Paulo, SP,
Brazil). For the FRAP, ABTS, NBT, and TBARS protocols, the buffer consisted of KCL
(1.15%) and EDTA (0.02 M) for GSH analysis.

5.7. Statistical Analysis

The experimental design was entirely randomized, except for the ELISA analysis,
which followed a factorial 3 × 7 design (3 time points and 7 treatments). Each animal was
considered one experimental unit. Data analysis was carried out using the free software R®

version 3.4.4, and ANOVA was performed using the AgroR package with a significance
level of 5%. If the means exhibited statistical significance, the data were submitted to a
Scott–Knott multiple comparison test at a 5% significance level. Data that did not meet
the assumption of normality of errors were subjected to logarithmic transformation before
undergoing ANOVA and the Scott–Knott test.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxins16010046/s1, Figure S1. Experimental design. Experimental
groups: Control—uncontaminated diet. DON (deoxyniva-lenol)—diet with DON 19.3 mg kg−1.
CP (Clostridium perfringens)—uncontaminated diet + C. perfringens challenge. CP + DON—DON
19.3 mg kg−1 + C. perfringens challenge. LV—DON 19.3 mg kg−1 + C. perfringens challenge plus viable
Lactobacillus spp. mixture. HIL—DON 19.3 mg kg−1 + C. perfringens challenge plus heat-inactivated
Lactobacillus spp. mixture. LCS—DON 19.3 mg kg−1 + C. perfringens challenge plus Lactobacillus spp.
mixture culture supernatant.
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